
STUDIA MATHEMATICA 225 (3) (2014)

Compactness in L1 of a vector measure

by

J. M. Calabuig (Valencia), S. Lajara (Albacete),
J. Rodríguez (Murcia) and E. A. Sánchez-Pérez (Valencia)

Abstract. We study compactness and related topological properties in the space
L1(m) of a Banach space valued measure m when the natural topologies associated to
convergence of vector valued integrals are considered. The resulting topological spaces are
shown to be angelic and the relationship of compactness and equi-integrability is explored.
A natural norming subset of the dual unit ball of L1(m) appears in our discussion and we
study when it is a boundary. The (almost) complete continuity of the integration operator
is analyzed in relation with the positive Schur property of L1(m). The strong weakly
compact generation of L1(m) is discussed as well.

1. Introduction. In recent years, a remarkable effort has been made
in order to improve the knowledge of the topological properties of the
Banach lattices L1(m) of integrable functions with respect to Banach
space valued measures m. One of the main topological components of
these spaces is the so called τm topology, providing information regarding
the norm convergence of integrals. The so called σ(L1(m), Γ ) topology
is weaker than the weak topology and is also relevant for the analysis
of the spaces L1(m): it is the topology of weak convergence of integrals.
Actually, in these spaces the most interesting summability properties involve
convergence of integrals in a certain sense, and this was in fact the topic
that motivated the original study of integration with respect to vector
measures.

The aim of this paper is to prove some fundamental facts regarding com-
pact sets for these topologies, which can clarify the general theory, and also
to show some applications in Banach lattice theory and operator theory. It
must be noted here that the spaces L1(m) represent all the order continuous
Banach lattices with weak unit.
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The structure of the paper is the following. After the preliminary Sec-
tion 1, we start in Section 2 the analysis of the topological properties of the
locally convex spaces (L1(m), τm) and (L1(m), σ(L1(m), Γ )), showing that
these spaces are angelic (Proposition 2.2). Technically, these results will al-
low us to work with the sequential characterization of compactness for these
topologies.

In Section 3 we approach the main question regarding compact sets
in L1(m). In particular, Theorem 3.7 gives a complete characterization of
the relatively τm-compact sets for vector measures of relatively norm com-
pact range as the sets that are bounded and equi-integrable. Proposition 3.5
states that τm-compactness of BL∞(m) when considered as a subset of L1(m)
is equivalent to relative norm compactness of the range of m. We finish
Section 3 with a characterization of σ(L1(m), Γ )-precompact sets (Theo-
rem 3.13).

In Section 4 we analyze when the set Γ of all functionals on L1(m)
with an integral representation given by f  

	
fh d〈m,x∗〉, x∗ ∈ BX∗ and

h ∈ BL∞(m), defines a boundary (X is the Banach space in which m takes its
values). The property of m having relatively norm compact range appears
again and it is shown that, in this case, Γ is a boundary. Far from being
a technical matter for specialists, this result has some nice consequences on
the structure of L1(m). In Theorem 4.3 we prove that, for vector measures
of relatively norm compact range, the extreme points of the dual unit ball
are included in Γ .

Section 5 will present a detailed discussion of when L1(m) is strongly
weakly compactly generated (briefly SWCG), thus showing some improve-
ments of the known results on weak generation of this space. The positive
Schur property (briefly PSP) of L1(m) implies that this space is SWCG. On
the way, the following new characterization of completely continuous inte-
gration operators Im : L1(m) → X is given: Im is completely continuous if
and only if L1(m) has the PSP and m(Σ) is relatively norm compact (The-
orem 5.8). We also prove that L1(m) has the PSP if and only if Im is almost
Dunford–Pettis (Theorem 5.12).

Some closely connected results have appeared recently. The natural topo-
logies associated to convergence of integrals studied here have been analyzed
for Lp(m), 1 ≤ p <∞, in [37, 38], where some applications to factorization
of homogeneous maps are shown. As a consequence of the analysis of the
τm-compactness of the unit ball in Lp(m), a generalized Dvoretzky–Rogers
type theorem is proved in [39]. Also related to compactness in L1(m), the
properties of integration operators fixing a copy of c0 have been intensively
studied in [35].

Notation. Our topological spaces are Hausdorff and our Banach spaces
are real. By an “operator” between Banach spaces we mean a continuous
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linear mapping. By a “subspace” of a Banach space we mean a closed linear
subspace. Given a Banach space Y , its norm is denoted by ‖ · ‖Y (or simply
‖·‖). We write BY for the closed unit ball of Y . The convex (resp. absolutely
convex) hull of a set C is denoted by co(C) (resp. aco(C)), and its closure
by co(C) (resp. aco(C)). The topological dual of Y is denoted by Y ∗ and
the evaluation of y∗ ∈ Y ∗ at y ∈ Y is denoted by either y∗(y), 〈y, y∗〉 or
〈y∗, y〉. A set B ⊆ BY ∗ is said to be norming if ‖y‖ = supy∗∈B |y∗(y)| for
every y ∈ Y . In this case, the topology on Y of pointwise convergence on B,
denoted by σ(Y,B), is locally convex, Hausdorff and weaker than the weak
topology of Y .

Spaces of integrable functions with respect to a vector measure.
Throughout the paper, we will assume that X is a Banach space, (Ω,Σ) is
a measurable space and m : Σ → X is a countably additive vector measure.
The characteristic function of a set A ∈ Σ is denoted by 1A. By a scalar
measure we mean a real-valued countably additive measure. For any x∗ ∈ X∗
we write 〈m,x∗〉 for the scalar measure given by 〈m,x∗〉(A) := 〈m(A), x∗〉
for A ∈ Σ. A Rybakov control measure of m is a scalar measure of the form
µ = |〈m,x∗0〉| (for some x∗0 ∈ BX∗) such that m is µ-absolutely continuous,
i.e. m(A) = 0 whenever µ(A) = 0. Throughout, the symbol µ will denote
such a measure (see e.g. [14, p. 268, Theorem 2] for a proof of its existence).

A measurable function f : Ω → R is said to be m-integrable if it is
integrable with respect to all the scalar measures of the form |〈m,x∗〉| and, for
each A ∈ Σ, there exists an element

	
A f dm ∈ X such that 〈

	
A f dm, x

∗〉 =	
A f d〈m,x

∗〉 for every x∗ ∈ X∗. The space L1(m) is defined as the Banach
lattice of all (µ-equivalence classes of)m-integrable functions when the µ-a.e.
order and the norm

‖f‖L1(m) := sup
x∗∈BX∗

�
|f | d|〈m,x∗〉|, f ∈ L1(m),

are considered. L1(m) is an order continuous Banach function space over µ
with weak unit. We will write Im : L1(m)→ X for the integration operator,
that is, the operator given by Im(f) :=

	
Ω f dm for all f ∈ L1(m). It is

well-known that L1(m)∗ can be identified with the Köthe dual of L1(m),
defined by

L1(m)× := {h ∈ L1(µ) : hf ∈ L1(µ) for every f ∈ L1(m)}.
After this identification, the duality between L1(m)∗ and L1(m) is given by
〈h, f〉 =

	
Ω hf dµ.

The topologies σ(L1(m), Γ ) and τm. Given h ∈ L∞(m), let Qh :
L1(m)→ X be the operator defined by

Qh(f) := Im(fh) =
�

Ω

fh dm, f ∈ L1(m),
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and, for any x∗ ∈ X∗, consider the functional γh,x∗ := x∗ ◦Qh ∈ L1(m)∗, i.e.

〈γh,x∗ , f〉 =
�

Ω

fh d〈m,x∗〉, f ∈ L1(m).

For every f ∈ L1(m) we have

‖f‖L1(m) = sup
h∈BL∞(m)

‖Qh(f)‖X

(see e.g. [34, Lemma 3.11]), and so the set

Γ := {γh,x∗ : h ∈ BL∞(m), x
∗ ∈ BX∗} ⊆ BL1(m)

is norming. Note that a net (fα) in L1(m) is σ(L1(m), Γ )-convergent to
f ∈ L1(m) if and only if for every h ∈ L∞(m) we have�

Ω

fαh dm→
�

Ω

fh dm weakly.

The family of seminorms {‖Qh(·)‖X : h ∈ L∞(m)} induces another locally
convex Hausdorff topology on L1(m), which we denote by τm. That is, a
net (fα) in L1(m) is τm-convergent to f ∈ L1(m) if and only if for every
h ∈ L∞(m) we have �

Ω

fαh dm→
�

Ω

fh dm in norm.

Observe that τm is weaker than the norm topology and stronger than
σ(L1(m), Γ ). Bearing in mind the density of simple functions in L∞(m),
it is clear that a bounded net (fα) in L1(m) converges to f ∈ L1(m) with
respect to σ(L1(m), Γ ) (resp. τm) if and only if for every A ∈ Σ we have�

A

fα dm→
�

A

f dm weakly (resp. in norm).

2. Angelicity of τm and σ(L1(m), Γ ). The natural topologies τm and
σ(L1(m), Γ ) do not coincide in general with the usual ones, the norm and
the weak topologies, but they share some of their properties. In this section
we analyze the sequential characterization of compactness in (L1(m), τm)
and (L1(m), σ(L1(m), Γ )).

Let us start by recalling some topological notions. Let T be a topological
space. A set A ⊆ T is said to be

(i) (relatively) countably compact if every sequence in A has a cluster
point in A (resp. in T );

(ii) (relatively) sequentially compact if every sequence in A has a subse-
quence converging to a point in A (resp. in T ).

Following Fremlin’s terminology (see [19, 3.3]), T is said to be angelic if every
relatively countably compact set A ⊆ T has the following properties:
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• A is relatively compact;
• for every x ∈ A there is a sequence in A converging to x.

If T is angelic, then for any set A ⊆ T the following equivalences hold:

compact ⇔ countably compact ⇔ sequentially compact

and the same happens for the corresponding “relative” properties (see [19,
3.3]). Of course, all metric spaces are angelic. Beyond the metrizable case,
all Banach spaces equipped with their weak topology are angelic (see [19,
3.10]).

The aim of this section is to prove that L1(m) is angelic when endowed
with the topologies σ(L1(m), Γ ) and τm. Up to this moment, the main ar-
gument for the use of sequential characterizations of compactness in Lp(m)
spaces, 1 ≤ p < ∞, has been the assumption of metrizability of the spaces
involved (see for instance [38, Corollary 8]). The techniques explained here
can also be extended to the general case of Lp(m) spaces without the metriz-
ability requirement. This could also be relevant for applications; for example,
in [39], τm-compactness and sequential τm-compactness are treated as dif-
ferent properties, which does not seem to be necessary.

Lemma 2.1. Let x∗ ∈ X∗. Then the identity operator L1(m) →
L1(〈m,x∗〉) has the following properties:

(i) it is σ(L1(m), Γ )-weak continuous on bounded sets;
(ii) it is σ(L1(m), Γ )-weak continuous on L1(m) whenever |〈m,x∗〉| is a

Rybakov control measure of m.

Proof. (i) Let (fα) be a bounded net in L1(m) which converges to f ∈
L1(m) with respect to σ(L1(m), Γ ). Then

(2.1) lim
α

�

A

fα d〈m,x∗〉 =
�

A

f d〈m,x∗〉 for every A ∈ Σ.

Since (fα) is bounded in L1(〈m,x∗〉), (2.1) is equivalent to saying that (fα)
is weakly convergent to f in L1(〈m,x∗〉). This proves the first statement.

(ii) Repeat the argument of (i) without the assumption of boundedness
on (fα) and replace (2.1) by

(2.2) lim
α

�

Ω

fαh d〈m,x∗〉 =
�

Ω

fh d〈m,x∗〉 for every h ∈ L∞(m).

Since |〈m,x∗〉| is a Rybakov control measure of m, condition (2.2) is equiv-
alent to saying that (fα) is weakly convergent to f in L1(〈m,x∗〉).

Proposition 2.2. (L1(m), σ(L1(m), Γ )) and (L1(m), τm) are angelic.

Proof. Since the identity operator i : L1(m) → L1(µ) is one-to-one and
σ(L1(m), Γ )-weak continuous (Lemma 2.1(ii)) and L1(µ) is angelic when
equipped with its weak topology, we can apply the so called “angelic lemma”
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[19, 3.3.(2)] to conclude that (L1(m), σ(L1(m), Γ )) is angelic as well. Finally,
since σ(L1(m), Γ ) is weaker than τm, another appeal to [19, 3.3(2)] ensures
that (L1(m), τm) is angelic.

We state the following straightforward corollary for future reference.

Corollary 2.3. Let C ⊆ L1(m). The following statements are equiva-
lent:

(i) C is (relatively) τm-countably compact.
(ii) C is (relatively) τm-sequentially compact.
(iii) C is (relatively) τm-compact.

A compact topological space is said to be Eberlein (resp. uniform Eber-
lein) if it is homeomorphic to a weakly compact subset of a Banach (resp.
Hilbert) space. For instance, any compact metric space is uniform Eberlein.
A result of Argyros and Farmaki [3] (cf. [20, Corollary 6.47]) states that
every weakly compact subset of the L1 space of a scalar measure is uniform
Eberlein. We next extend that result to the setting of L1 spaces of vector
measures.

Proposition 2.4. Every σ(L1(m), Γ )-compact subset of L1(m) is uni-
form Eberlein.

Proof. Let K be a σ(L1(m), Γ )-compact subset of L1(m). Since the iden-
tity operator i : L1(m) → L1(µ) is σ(L1(m), Γ )-weak continuous (Lemma
2.1(ii)) and one-to-one, its restriction to K is a σ(L1(m), Γ )-weak homeo-
morphism between K and i(K). Since every weakly compact subset of L1(µ)
is uniform Eberlein (by the aforementioned result in [3]), i(K) is uniform
Eberlein and so is K.

3. τm-compactness and σ(L1(m), Γ )-precompactness

3.1. τm-compactness and equi-integrability. A set C ⊆ L1(m) is
called equi-integrable if for every ε > 0 there is δ > 0 such that ‖f1A‖L1(m)

≤ ε for every A ∈ Σ with µ(A) ≤ δ and every f ∈ C. The classical Dunford–
Pettis criterion states that a subset of the L1 space of a scalar measure is
relatively weakly compact if and only if it is bounded and equi-integrable
(see e.g. [13, p. 93]). In general:

• Every bounded and equi-integrable subset of L1(m) is relatively weakly
compact, but the converse might fail.
• Every relatively norm compact subset of L1(m) is equi-integrable, and

the converse holds true for bounded sets whenever m is purely atomic.
• A subset of L1(m) is bounded and equi-integrable if and only if it is
L-weakly compact, i.e. every disjoint sequence in its solid hull is norm
convergent to 0.
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See for instance [34, Lemma 2.37] and [26, §3.6]. In this subsection we discuss
the link between equi-integrability and τm-compactness.

The set BL∞(m) is equi-integrable and weakly compact in L1(m). In par-
ticular, BL∞(m) is σ(L1(m), Γ )-closed and so it is τm-closed as well. This
set plays a basic role in approximation of equi-integrable sets, as the next
lemma shows. The equivalence between (i) and (ii) is well-known (see e.g.
[34, Lemma 2.37]).

Lemma 3.1. Let C ⊆ L1(m). The following statements are equivalent:

(i) C is bounded and equi-integrable.
(ii) For every ε > 0 there is n ∈ N such that

C ⊆ nBL∞(m) + εBL1(m) in L1(m).

(iii) For every ε > 0 there is n ∈ N such that for every x∗ ∈ BX∗ we
have

C ⊆ nBL∞(m) + εBL1(〈m,x∗〉) in L1(〈m,x∗〉).

Proof. (i)⇒(ii). Fix ε > 0 and choose δ > 0 such that

(3.1) ‖f1A‖L1(m) ≤ ε for every A ∈ Σ with µ(A) ≤ δ.

Since C is bounded, we can find n ∈ N such that

(3.2) sup
f∈C
‖f‖L1(m) ≤ δn.

We claim that C ⊆ nBL∞(m) + εBL1(m). Indeed, pick f ∈ C and consider
the set A := {ω ∈ Ω : |f(ω)| ≥ n} ∈ Σ. Since

µ(A)n ≤
�

A

|f | dµ ≤ ‖f‖L1(µ) ≤ ‖f‖L1(m)

(3.2)
≤ δn,

we get ‖f1A‖L1(m) ≤ ε (by (3.1)). Thus, f = f1Ω\A + f1A ∈ nBL∞(m) +
εBL1(m).

(ii)⇒(iii) is obvious.
(iii)⇒(i). Fix ε > 0 and take n ∈ N as in (iii). For every f ∈ C and

x∗ ∈ BX∗ , we fix gf,x∗ ∈ nBL∞(m) such that
�

Ω

|f − gf,x∗ | d|〈m,x∗〉| ≤ ε.

For each f ∈ C and A ∈ Σ, we have

‖f1A‖L1(m) = sup
x∗∈BX∗

�

A

|f | d|〈m,x∗〉| ≤ sup
x∗∈BX∗

�

A

|gf,x∗ | d|〈m,x∗〉|+ ε

≤ sup
x∗∈BX∗

n|〈m,x∗〉|(A) + ε = n‖m‖(A) + ε,
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where ‖m‖ stands for the semivariation ofm. This implies that C is bounded
(just take A = Ω) and that

sup
f∈C
‖f1A‖L1(m) ≤ 2ε whenever ‖m‖(A) ≤ ε/n.

As ε > 0 is arbitrary, C is equi-integrable.

Lemma 3.2. The following statements hold:

(i) Im is σ(L1(m), Γ )-weak continuous.
(ii) Every σ(L1(m), Γ )-bounded subset of L1(m) is norm bounded.

Proof. (i) follows from the equality 〈γ1Ω ,x∗ , f〉 = 〈x∗, Im(f)〉, which is
valid for all f ∈ L1(m) and x∗ ∈ X∗.

(ii) Let C ⊆ L1(m) be a σ(L1(m), Γ )-bounded set. Fix A ∈ Σ. Since the
linear mapping f 7→ f1A is σ(L1(m), Γ )-σ(L1(m), Γ ) continuous on L1(m),
the set C1A := {f1A : f ∈ C} is σ(L1(m), Γ )-bounded. From (i) and the
Uniform Boundedness Principle it follows that Im(C1A) = {

	
A f dm : f ∈ C}

is bounded. Nikodým’s boundedness theorem (see e.g. [14, p. 14, Theorem 1])
applied to the family of X-valued measures

A 7→
�

A

f dm, f ∈ C,

ensures that C is norm bounded.

Statement (ii) of Lemma 3.2 is equivalent to saying that Γ is w∗-thick
(see [30, Theorem 3.5]; cf. [31, Theorem 1.5]).

Proposition 3.3. Let C ⊆ L1(m) be τm-compact. Then:

(i) C is bounded and equi-integrable.
(ii) τm, σ(L1(m), Γ ) and the weak topology coincide on C.

Proof. (i) SinceC is σ(L1(m), Γ )-compact, it is bounded (Lemma 3.2(ii)).
In order to prove that C is equi-integrable it suffices to check that every
sequence (fn) in C admits an equi-integrable subsequence. Let (fnk) be a
τm-convergent subsequence (we apply Corollary 2.3). Since (

	
A fnk dm) is

norm convergent for every A ∈ Σ, the Vitali–Hahn–Saks theorem (see e.g.
[14, p. 24, Corollary 10]) applied to the sequence of µ-absolutely continuous
measures A 7→

	
A fnk dm yields

lim
µ(A)→0

sup
k∈N

∥∥∥ �

A

fnk dm
∥∥∥
X

= 0,

which is equivalent to saying that (fnk) is equi-integrable, because

‖f‖L1(m) ≤ 2 sup
A∈Σ

∥∥∥ �

A

f dm
∥∥∥ for all f ∈ L1(m).



Compactness in L1 of a vector measure 267

(ii) Since σ(L1(m), Γ ) is weaker than τm, both topologies coincide on
the τm-compact set C. On the other hand, C is relatively weakly compact
(by (i)). Since C is σ(L1(m), Γ )-compact, it is also σ(L1(m), Γ )-closed and
so weakly closed. Therefore, the weak topology and σ(L1(m), Γ ) coincide on
the weakly compact set C.

We next characterize when BL∞(m) is τm-compact. To this end, we need
the following known lemma; see e.g. the proof of [28, Lemma 9.1].

Lemma 3.4. BL∞(m) ⊆ 2 aco({1A : A ∈ Σ}) in L1(m).

Proposition 3.5. The following statements are equivalent:

(i) BL∞(m) is τm-compact.
(ii) m(Σ) is relatively norm compact.

Proof. By Lemma 3.4, we have

(3.3) m(Σ) ⊆ Im(BL∞(m)) ⊆ 2 aco(m(Σ)).

Hence (i)⇒(ii) follows at once from the τm-norm continuity of Im.
(ii)⇒(i). Let (fα) be a net in BL∞(m). Since K := Im(BL∞(m)) ⊆ X is

norm compact (by (3.3) and Mazur’s theorem, [14, p. 51, Theorem 12]), the
product KΣ is compact when equipped with the product topology induced
by the norm topology. Define yα := (

	
A fα dm)A∈Σ ∈ KΣ for all α. Since

the net (yα) admits a convergent subnet, we can assume without loss of
generality that for every A ∈ Σ the limit ν(A) := limα

	
A fα dm exists in the

norm topology. Note that for every x∗ ∈ X∗ and A ∈ Σ we have

|〈ν(A), x∗〉| = lim
α

∣∣∣ �
A

fα d〈m,x∗〉
∣∣∣ ≤ |〈m,x∗〉|(A).

By the Radon–Nikodým theorem for couples of vector measures [29] (cf. [12,
Theorem 3.1]), there is f ∈ BL∞(m) such that ν(A) =

	
A f dm for every

A ∈ Σ. Hence f = τm-limα fα. This proves that BL∞(m) is τm-compact.

A weaker version of the former result can be found in [38, Theorem 10]
in the setting of Lp(m) spaces, 1 ≤ p <∞.

Our next lemma is the “τm-version” of a well-known characterization
of relative weak compactness due to Grothendieck (see e.g. [13, p. 227,
Lemma 2]).

Lemma 3.6. Let C ⊆ L1(m) be a set such that for every ε > 0 there is a
τm-compact set K ⊆ L1(m) such that C ⊆ K+εBL1(m). Then C is relatively
τm-compact.

Proof. For each k ∈ N we choose a τm-compact set Kk ⊆ L1(m) in such
a way that C ⊆ Kk + (1/k)BL1(m). Let (fα) be a net in C. For each α and
k ∈ N we can write fα = fα,k+gα,k, where fα,k ∈ Kk and gα,k ∈ (1/k)BL1(m).
Since

∏
k∈NKk is compact in the product topology induced by τm, we can
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find a sequence (hk) in L1(m) and a subnet of (fα), not relabeled, such that
hk = τm-limα fα,k for all k ∈ N.

Claim 1. For each A ∈ Σ, the net (
	
A fα dm) is norm convergent.

Indeed, fix ε > 0 and choose k ∈ N such that 1/k ≤ ε. Now, take α0 such
that ∥∥∥ �

A

fα,k dm−
�

A

hk dm
∥∥∥ ≤ ε for all α ≥ α0.

Then for all α, α′ ≥ α0 we have∥∥∥ �
A

fα dm−
�

A

fα′ dm
∥∥∥ ≤ ∥∥∥ �

A

gα,k dm
∥∥∥+ ∥∥∥ �

A

fα,k dm−
�

A

hk dm
∥∥∥

+
∥∥∥ �
A

fα′,k dm−
�

A

hk dm
∥∥∥+ ∥∥∥ �

A

gα′,k dm
∥∥∥

≤ ‖gα,k‖L1(m) + 2ε+ ‖gα′,k‖L1(m) ≤ 4ε.

This shows that the net (
	
A fα dm) is norm Cauchy, hence norm convergent.

Write ν(A) := limα

	
A fα dm for all A ∈ Σ.

Claim 2. The sequence (hk) is norm convergent in L1(m).

Indeed, for each k ∈ N and A ∈ Σ, we have∥∥∥ �
A

fα dm−
�

A

fα,k dm
∥∥∥ ≤ ‖gα,k‖L1(m) ≤

1

k
for all α,

hence

(3.4)
∥∥∥ν(A)− �

A

hk dm
∥∥∥ ≤ 1

k
.

Therefore

‖hk − hk′‖L1(m) ≤ 2 sup
A∈Σ

∥∥∥ �

A

hk dm−
�

A

hk′ dm
∥∥∥ ≤ 1

k
+

1

k′

for all k, k′ ∈ N, which shows that (hk) is Cauchy.
Finally, observe that if h ∈ L1(m) is the limit of (hk), then inequal-

ity (3.4) yields
	
A h dm = ν(A) = limα

	
A fα dm for all A ∈ Σ, that is,

(fα) converges to h with respect to τm. This shows that C is relatively
τm-compact.

Theorem 3.7. Let C ⊆ L1(m) and consider the following statements:

(i) C is relatively τm-compact.
(ii) C is bounded and equi-integrable.

Then (i)⇒(ii). If m(Σ) is relatively norm compact, then (i)⇔(ii).
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Proof. (i)⇒(ii) follows from Proposition 3.3(i).
Suppose now that m(Σ) is relatively norm compact. Then BL∞(m) is

τm-compact (Proposition 3.5). If C is bounded and equi-integrable, then for
every ε > 0 there is n ∈ N such that C ⊆ nBL∞(m) + εBL1(m) (Lemma 3.1).
An appeal to Lemma 3.6 ensures that C is relatively τm-compact.

3.2.ADunford–Pettis typeproperty. Concerning compactness prop-
erties of operators defined on L1(m), the aim of this subsection is to analyze
when they send bounded equi-integrable sets to relatively norm compact
sets. Due to the relation between equi-integrability and weak compactness,
this can be understood as a Dunford–Pettis type property. In particular, we
provide an alternative proof of the following result from [10].

Theorem 3.8 (Curbera). Suppose m has σ-finite variation. Let Y be a
Banach space and T : L1(m)→ Y a weakly compact operator. If C ⊆ L1(m)
is bounded and equi-integrable, then T (C) is relatively norm compact.

Our approach to Theorem 3.8 is based on Proposition 3.9 below and the
Davis–Figiel–Johnson–Pełczyński factorization theorem. Recall first that a
Banach space Y is said to have the Compact Range Property (briefly CRP)
if every Y -valued countably additive measure with σ-finite variation has
relatively norm compact range. For instance, every Banach space with the
Radon–Nikodým property has the CRP. A result of Rybakov (cf. [27, Corol-
lary 10]) states that Y ∗ has the CRP if and only if Y contains no subspace
isomorphic to `1.

Proposition 3.9. Suppose m has σ-finite variation. Let Y be a Banach
space with the CRP and let T : L1(m)→ Y be an operator. If C ⊆ L1(m) is
bounded and equi-integrable, then T (C) is relatively norm compact.

Proof. In view of Lemma 3.1, it suffices to prove that T (BL∞(m)) is
relatively norm compact. To this end, define a countably additive measure
m̃ : Σ → Y by m̃(A) := T (1A). By Lemma 3.4, we have T (BL∞(m)) ⊆
2 aco(m̃(Σ)). Since m̃ has σ-finite variation and Y has the CRP, the set m̃(Σ)
is relatively norm compact, hence aco(m̃(Σ)) is norm compact (thanks to
Mazur’s theorem, see e.g. [14, p. 51, Theorem 12]). It follows that T (BL∞(m))
is relatively norm compact.

The appearance of the CRP for that kind of result is somehow un-
avoidable, as we can observe by considering the integration operator of any
Y -valued measure with σ-finite variation:

Corollary 3.10. Let Y be a Banach space. The following statements
are equivalent:
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(i) Y has the CRP.
(ii) For every Y -valued countably additive measure ν with σ-finite vari-

ation, the set Iν(BL∞(ν)) is relatively norm compact.

Proof of Theorem 3.8. By the Davis–Figiel–Johnson–Pełczyński factor-
ization theorem (see e.g. [16, Theorem 13.33]), there exist a reflexive Ba-
nach space Z and operators T1 : L1(m) → Z and T2 : Z → Y such that
T = T2 ◦T1. Since Z has the Radon–Nikodým property, it also has the CRP.
Proposition 3.9 applied to T1 yields the desired conclusion.

Corollary 3.11. If m has σ-finite variation and Im is weakly compact,
then m(Σ) is relatively norm compact.

Proof. Just apply Theorem 3.8 to Y := X, T := Im and C := BL∞(m).

There exist vector measures with finite variation and relatively norm
compact range whose integration operator is not weakly compact, like the
Volterra measure for r ∈ {1,∞} (see [34, Example 3.49(iv)]).

3.3.σ(L1(m), Γ )-precompactness. Wenow study precompactnesswith
respect to the topology σ(L1(m), Γ ).

Let Y be a Banach space and B ⊆ BY ∗ a norming set. A set C ⊆ Y is
said to be σ(Y,B)-precompact if every sequence (yn) in C admits a σ(Y,B)-
Cauchy subsequence (ynk), i.e. the sequence (y

∗(ynk)) is convergent for every
y∗ ∈ B. By taking B = BY ∗ we obtain the usual notion of weak precompact-
ness. Clearly, if Y is weakly sequentially complete (briefly WSC), then a set
C ⊆ Y is weakly precompact if and only if it is relatively weakly compact.
On the other hand, Rosenthal’s `1-theorem (see e.g. [16, Theorem 5.37])
states that Y does not contain subspaces isomorphic to `1 if and only if
every bounded subset of Y is weakly precompact.

A classical result due to Dieudonné [15], when applied to our particular
setting, says that a set C ⊆ L1(m) is weakly precompact if and only if it
is bounded and, for every h ∈ L1(m)×, the set hC := {hf : f ∈ C} is
equi-integrable in L1(µ). Theorem 3.13 below shows that if we restrict our
attention to h’s of the form d〈m,x∗〉/dµ (the Radon–Nikodým derivative
of 〈m,x∗〉 with respect to µ), then we get a characterization of σ(L1(m), Γ )-
precompact subsets of L1(m). This characterization should be compared
with Lemma 3.1 and the statement of Corollary 5.14 (for the convex weakly
compact set K = BL∞(m)).

Lemma 3.12. For every x∗ ∈ X∗ the identity operator L1(m) →
L1(〈m,x∗〉) maps σ(L1(m), Γ )-Cauchy sequences to weakly convergent se-
quences.

Proof. Let (fn) be a σ(L1(m), Γ )-Cauchy sequence in L1(m). In partic-
ular, it is σ(L1(m), Γ )-bounded, hence norm bounded (Lemma 3.2(ii)). Now
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Lemma 2.1(i) applies to conclude that (fn) is weakly Cauchy, hence weakly
convergent, in the WSC space L1(〈m,x∗〉).

Theorem 3.13. Let C ⊆ L1(m). The following statements are equiva-
lent:

(i) C is relatively weakly compact in L1(〈m,x∗〉) for every x∗ ∈ X∗.
(ii) For every x∗ ∈ X∗ and every ε > 0 there is n ∈ N such that

C ⊆ nBL∞(m) + εBL1(〈m,x∗〉) in L1(〈m,x∗〉).

(iii) C is bounded in L1(µ) and equi-integrable in L1(〈m,x∗〉) for every
x∗ ∈ X∗.

(iv) C is bounded in L1(µ) and the set d〈m,x∗〉
dµ C is equi-integrable in

L1(µ) for every x∗ ∈ X∗.
(v) C is σ(L1(m), Γ )-precompact.

Proof. (i)⇒(ii) follows as in Lemma 3.1.
(ii)⇒(iii) and (iii)⇒(iv) are clear.
(iv)⇒(v). Let (fn) be a sequence in C. Since C is relatively weakly com-

pact in L1(µ) (apply the hypothesis to x∗0 ∈ BX∗ such that µ = |〈m,x∗0〉|),
there is a subsequence (fnk) converging in the weak topology of L1(µ). To
finish the proof of the implication (iv)⇒(v) it suffices to prove the following
claim.

Claim. The sequence (〈γ, fnk〉) converges for every γ ∈ Γ .
Indeed, write γ = γh,x∗ for some h ∈ BL∞(m) and x∗ ∈ BX∗ . Let g =

d〈m,x∗〉/dµ ∈ L1(µ). Fix ε > 0. Since by assumption the set gC is equi-
integrable in L1(µ), the same holds for hgC and so there is δ > 0 such
that

(3.5) sup
k∈N

�

A

|fnkhg| dµ ≤ ε

for every A ∈ Σ with µ(A) ≤ δ. For each p ∈ N, set
Zp := {ω ∈ Ω : |g(ω)| ≤ p} ∈ Σ.

Since the sequence (Zp) is increasing and Ω =
⋃
p∈N Zp, we can find p ∈ N

large enough such that µ(Ω \ Zp) ≤ δ, so (3.5) yields

(3.6) sup
k∈N

�

Ω\Zp

|fnkhg| dµ ≤ ε.

On the other hand, since (fnk) converges weakly in L1(µ) and hg1Zp ∈
L∞(m), there is k0 ∈ N such that

(3.7)
∣∣∣ �
Zp

fnkhg dµ−
�

Zp

fnk′hg dµ
∣∣∣ ≤ ε for all k, k′ ≥ k0.
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By putting together (3.6) and (3.7), we get

|〈γh,x∗ , fnk〉 − 〈γh,x∗ , fnk′ 〉| =
∣∣∣ �
Ω

fnkhg dµ−
�

Ω

fnk′hg dµ
∣∣∣ ≤ 3ε

for all k, k′ ≥ k0. This proves the claim.
(v)⇒(i). For every x∗ ∈ X∗ the identity operator L1(m) → L1(〈m,x∗〉)

mapsσ(L1(m), Γ )-Cauchy sequences toweakly convergent sequences (Lemma
3.12).

4. When is Γ a boundary? Motivated in part by our previous re-
sults, in this section we analyze a norming type property (being a boundary,
see below for the definition) of the set Γ and its applications to the study
of compactness in L1(m). Some other norming properties of Γ have been
discussed in [40].

Curbera [9] and Okada [32] showed that σ(L1(m), Γ ) and the weak topol-
ogy coincide on bounded sets whenever L1(m) contains no subspace isomor-
phic to `1. As observed in [32], a result of Lewis (see [23, Corollary 3.3])
implies that every (necessarily bounded) σ(L1(m), Γ )-convergent sequence
in L1(m) is weakly convergent whenever m(Σ) is relatively norm compact,
but not in general (see [10, Section 6]). But the relative norm compact-
ness of m(Σ) does not imply, in general, that σ(L1(m), Γ ) and the weak
topology coincide on bounded sets: see [9, Example 3]. Manjabacas (see [24,
Section 4.7]) discussed this type of questions by using a new approach based
on the notion of boundary, as follows.

Given an arbitrary Banach space Y , a set B ⊆ BY ∗ is called a bound-
ary (or a James boundary) if for every y ∈ Y there is y∗ ∈ B such that
‖y‖ = y∗(y). A typical example of boundary is the set ext(BY ∗) of ex-
treme points of BY ∗ . If B ⊆ BY ∗ is a boundary, the Rainwater–Simons
theorem (see e.g. [16, Theorem 3.134]) states that every norm bounded
σ(Y,B)-convergent sequence in Y is weakly convergent. More generally, a
striking result of Pfitzner [36] states that, if B ⊆ BY ∗ is a boundary, then
every norm bounded σ(Y,B)-compact subset of Y is weakly compact. This
was previously known in particular classes of Banach spaces like, for in-
stance, weakly compactly generated (briefly WCG) spaces (cf. [6, Corol-
lary 2.2]).

Thus, Manjabacas (see [24, Proposition 4.38]) showed that Γ is a bound-
ary whenever m(Σ) is relatively norm compact. This has also been proved
(without using that terminology) in [33, Lemma 3.3]. The aim of this sec-
tion is to improve Manjabacas’ result by showing that, in fact, the relative
norm compactness of m(Σ) implies that Γ ⊇ ext(BL1(m)∗) (Theorem 4.3
below).
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Given any f ∈ L1(m), we consider the mapping Mf : BL∞(m) → X
defined by

Mf (h) := Im(fh) =
�

Ω

fh dm.

Lemma 4.1. Let f ∈ L1(m). Then:

(i) Mf is τm-norm continuous.
(ii) Mf is σ(L1(m), Γ )-weak continuous.

Proof. Both statements are clear whenever f is a simple function. In
the general case, let (fn) be a sequence of simple functions such that
‖fn − f‖L1(m) → 0. Then (Mfn) converges to Mf uniformly on BL∞(m),
hence Mf is τm-norm continuous and σ(L1(m), Γ )-weak continuous.

Part (i) of the following corollary appears in [33, Lemma 3.3].

Corollary 4.2. Suppose m(Σ) is relatively norm compact. Then:

(i) For every f ∈ L1(m) the set Im(fBL∞(m)) is norm compact.
(ii) Γ is a boundary.

Proof. (i) Bearing in mind that BL∞(m) is τm-compact (because m(Σ)
is relatively norm compact, see Proposition 3.5) and the τm-norm continuity
ofMf (Lemma 4.1(i)), we deduce thatMf (BL∞(m)) = Im(fBL∞(m)) is norm
compact.

Now, (ii) follows from (i) and the equality

‖f‖L1(m) = sup
h∈BL∞(m)

‖Im(fh)‖,

which is valid for all f ∈ L1(m) (see e.g. [34, Lemma 3.11]).

The proof of the next result is based on ideas from [18, Theorem 3.9].

Theorem 4.3. Suppose m(Σ) is relatively norm compact. Then:

(i) Γ is w∗-compact.
(ii) ext(BL1(m)∗) ⊆ Γ .

Proof. We have BL1(m)∗ = co(Γ )
w∗

by the Hahn–Banach separation the-
orem (bear in mind that Γ is norming and symmetric). Thus, the “converse”
of the Krein–Milman theorem (see e.g. [16, Theorem 3.66]) yields the inclu-
sion

ext(BL1(m)∗) ⊆ Γ
w∗
.

Hence (ii) follows immediately from (i). To prove (i), let us consider the
mapping

Φ : BL∞(m) ×BX∗ → L1(m)∗, Φ(h, x∗) := γh,x∗ .
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We shall check that Φ is continuous when L1(m)∗ is equipped with its w∗-
topology and the set P := BL∞(m) × BX∗ is equipped with the product
topology T induced by τm and the w∗-topology of X∗. Since m(Σ) is rel-
atively norm compact, BL∞(m) is τm-compact (Proposition 3.5) and so P
is T-compact. Therefore, statement (i) will follow at once from the T-w∗
continuity of Φ.

Let (hα, x
∗
α) be a net in P which T-converges to some (h, x∗) ∈ P . In

order to prove that Φ(hα, x∗α)→ Φ(h, x∗) in the w∗-topology, fix f ∈ L1(m)
and set

xα := Im(fhα) =
�

Ω

fhα dm ∈ X for every α.

Since the set {xα} is relatively norm compact (by Corollary 4.2(i)), and (x∗α)
is a bounded net which w∗-converges to x∗, we have

(4.1) |γhα,x∗α(f)− x
∗(xα)| = |x∗α(xα)− x∗(xα)| → 0.

On the other hand, as a consequence of Lemma 4.1(i) we also have

(4.2) x∗(xα) =
�

Ω

fhα d〈m,x∗〉 →
�

Ω

fh d〈m,x∗〉 = γh,x∗(f).

From (4.1) and (4.2) it follows that |γhα,x∗α(f)−γh,x∗(f)| → 0. As f ∈ L1(m)
is arbitrary, we conclude that Φ(hα, x∗α)→ Φ(h, x∗) in the w∗-topology.

Remark 4.4. In another direction, it is worth mentioning that if X is
a Banach lattice and m is positive (meaning that m(A) ≥ 0 for all A ∈ Σ),
then Γ is a boundary. Indeed, in this case the norm of any f ∈ L1(m) can
be computed as

‖f‖L1(m) =
∥∥∥ �
Ω

|f | dm
∥∥∥
X

(see e.g. [34, Lemma 3.13]).

We finish this section by pointing out two specialized versions of Theo-
rem 3.13 when Γ is assumed to be a boundary.

Corollary 4.5. Suppose Γ is a boundary. Then a subset of L1(m) is
weakly precompact if and only if it is relatively weakly compact in L1(〈m,x∗〉)
for every x∗ ∈ X∗.

Proof. Bearing in mind Lemma 3.2(ii), the Rainwater–Simons theorem
(see e.g. [16, Theorem 3.134]) implies that the identity mapping on L1(m)
is σ(L1(m), Γ )-weak sequentially continuous, and so every σ(L1(m), Γ )-
Cauchy sequence in L1(m) is weakly Cauchy. The result now follows from
Theorem 3.13.

Corollary 4.6. Suppose L1(m) is WSC and Γ is a boundary. Then
a subset of L1(m) is relatively weakly compact if and only if it is relatively
weakly compact in L1(〈m,x∗〉) for every x∗ ∈ X∗.
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In general, the assumption that Γ is a boundary cannot be removed
from the previous statements. Indeed, in [10, Section 6] there is an example
of an `2-valued measure m and a σ(L1(m), Γ )-null sequence in L1(m) which
is equivalent to the usual basis of `1 (and so it does not have any weakly
Cauchy subsequence).

5. When is L1(m) a SWCG space? It is well-known that the space
L1(m) is WCG (see [8, Theorem 2], cf. [34, Theorem 3.7]). As an applica-
tion of the results obtained before, in this section we analyze the property
of being strongly weakly compactly generated (defined below), which does
not hold for all spaces L1(m). On the way, we will prove some new results
regarding the integration operator, after introducing the so called positive
Schur property for Banach lattices in our discussion.

Following [41], a Banach space Y is called strongly weakly compactly gen-
erated (briefly SWCG) if there is a weakly compact set K ⊂ Y such that
for every weakly compact set L ⊂ Y and every ε > 0 there is n ∈ N
such that L ⊂ nK + εBY (in this case, we say that K strongly gener-
ates Y ). Every SWCG space is both WCG and WSC [41] (cf. [20, Theo-
rem 6.38]). Typical examples of spaces in this class are the reflexive spaces,
separable spaces with the Schur property and the L1 space of any scalar
measure. For more information on SWCG spaces and related classes of
Banach spaces, we refer the reader to [20, Section 6.4] and [17, 21, 22,
25].

We stress that, being a Banach lattice, L1(m) is WSC if and only if it
does not contain subspaces isomorphic to c0 (see e.g. [1, Theorem 4.60]).
Curbera proved in [8, Theorem 3] that L1(m) is WSC whenever X does not
contain subspaces isomorphic to c0 (cf. [35]).

The following well-known general construction will be helpful to exhibit
concrete examples.

Remark 5.1. LetX be a Banach space having an unconditional Schauder
basis (en). Fix a sequence (αn) of strictly positive real numbers such that the
series

∑
n αnen is unconditionally convergent. Define a countably additive

measure m : P(N)→ X by m(A) :=
∑

n∈A αnen. Then:

(i) m is purely atomic.
(ii) m has relatively norm compact range.
(iii) m has finite variation if and only if

∑
n αnen is absolutely conver-

gent.
(iv) Im is an order isomorphism between L1(m) and X.

Example 5.2. c0 is an L1 space of a vector measure which is not WSC,
hence it is not SWCG.
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Example 5.3. Mercourakis and Stamati [25] constructed a subspace of
L1[0, 1] having unconditional Schauder basis which is not SWCG. This is an
L1 space of a vector measure which is WSC (because L1[0, 1] is WSC) but
non-SWCG.

Example 5.4. `2(`1) is an L1 space of a vector measure which is WSC
(because it is the `2-sum of countably many WSC spaces) but does not
embed isomorphically into any SWCG space (see [22, Corollary 2.29]).

The previous examples of non-SWCG spaces are based on vector mea-
sures taking values in non-SWCG spaces. Thus, one might wonder whether
L1(m) is SWCG whenever X is. It turns out that this is not the case even
for reflexive X.

Example 5.5. `2(L1[0, 1]) is the L1 space of some `2-valued measure (see
[4, Example 3.7]). This space is WSC and does not embed isomorphically
into any SWCG space (see [22, Corollary 2.29]).

5.1. The positive Schur property in L1(m). A Banach lattice is
said to have the positive Schur property (briefly PSP) if every weakly null
sequence of positive vectors is norm null. For instance, the L1 space of any
scalar measure has the PSP. This property is equivalent to saying that every
relatively weakly compact set is L-weakly compact. Therefore, L1(m) has the
PSP if and only if every weakly compact subset of L1(m) is equi-integrable.
The reader can find information about these concepts and their relations in
[34, Remark 2.40] and the references therein.

Proposition 5.6. If L1(m) has the PSP, then it is SWCG.

Proof. The set K := BL∞(m) ⊆ L1(m) is weakly compact and strongly
generates L1(m). Indeed, if L ⊆ L1(m) is weakly compact, then it is bounded
and equi-integrable (according to the comments above), and so for every
ε > 0 there is n ∈ N such that L ⊆ nK + εBL1(m) (Lemma 3.1).

Similarly, bearing in mind Propositions 3.3 and 3.5, we have the following
“strong generation” property with respect to the topology τm:

Remark 5.7. Suppose m(Σ) is relatively norm compact. Then BL∞(m)

is a τm-compact subset of L1(m) such that for every τm-compact set L ⊆
L1(m) there is n ∈ N such that L ⊆ nBL∞(m) + εBL1(m).

It was pointed out in [10, Claim 1] that L1(m) has the PSP whenever
X has the Schur property. As we show in Theorem 5.8 below, this is a con-
sequence of the complete continuity of Im when X has the Schur property.
Recall that an operator between Banach spaces is called completely contin-
uous (or Dunford–Pettis) if it maps weakly convergent sequences to norm
convergent ones. The complete continuity of Im has strong consequences on
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the structure of L1(m). Under some assumptions on X (namely, that X∗ has
the Radon–Nikodým property), it is known that if Im is completely contin-
uous, then m has finite variation and L1(m) is order isomorphic to L1(|m|)
(via the identity mapping) (see [5]; cf. [33, Theorem 1.2] for the particular
case in which X is also assumed to have an unconditional Schauder basis).

Theorem 5.8. The following statements are equivalent:

(i) Im is completely continuous.
(ii) L1(m) has the PSP and m(Σ) is relatively norm compact.

Proof. Observe first that (i) is equivalent to

(i′) the identity mapping on L1(m) is weak-τm sequentially continuous,

because a sequence (fn) in L1(m) is weakly convergent to f ∈ L1(m) if and
only if (fn1A) is weakly convergent to f1A for every A ∈ Σ.

(i′)⇒(ii). If C ⊆ L1(m) is weakly compact, then it is weakly sequentially
compact and so the assumption implies that C is τm-sequentially compact,
hence equi-integrable (see the proof of Proposition 3.3). Therefore, L1(m)
has the PSP.

On the other hand, it is well-known thatm(Σ) is relatively norm compact
whenever Im is completely continuous; see e.g. [34, p. 153]. (This fact can
also be deduced by combining (i′) and Proposition 3.5.)

(ii)⇒(i). Theorem 3.7 and (ii) ensure us that a subset of L1(m) is rela-
tively τm-compact if and only if it is relatively weakly compact. By consid-
ering the topology σ(L1(m), Γ ), which is weaker than both τm and the weak
topology, it follows at once that a subset of L1(m) is τm-compact if and only
if it is weakly compact. Therefore, Im maps weakly compact sets to norm
compact sets.

Example 5.9. Let m be the L1[0, 1]-valued measure defined by m(A)
:= 1A for every Borel set A ⊆ [0, 1]. Then L1(m) = L1[0, 1] has the PSP,
but the range of m is not relatively norm compact.

It was known that L1(m) is WSC whenever Im is completely continu-
ous [11, Theorem 3.6] (cf. [7, second proof of Theorem 2.2] and [35, The-
orem 1.1]). The following consequence of Proposition 5.6 and Theorem 5.8
improves that result:

Corollary 5.10. If Im is completely continuous, then L1(m) is SWCG.

Remark 5.11. A Banach space Y has the Dunford–Pettis property if ev-
ery weakly compact operator from Y to another Banach space is completely
continuous. For instance, any L1 space of a scalar measure has this property,
as also does any C(K) space of a compact topological space K. Within the
setting of L1 spaces of vector measures, Curbera [10] applied Theorem 3.8
to deduce that if m has σ-finite variation and L1(m) has the PSP, then it
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has the Dunford–Pettis property. The converse does not hold in general, as
c0 is order isomorphic to the L1 space of a c0-valued vector measure with
finite variation (Remark 5.1).

We finish this subsection by characterizing the PSP of L1(m) in terms
of Im. An operator from a Banach lattice to a Banach space is called almost
Dunford–Pettis if it maps weakly null disjoint sequences to norm null ones
or, equivalently, if it maps weakly null positive sequences to norm null ones
(see [2, Theorem 2.2]).

Theorem 5.12. The following statements are equivalent:

(i) L1(m) has the PSP.
(ii) Im is almost Dunford–Pettis.

Proof. (i)⇒(ii) is clear. In order to prove (ii)⇒(i), we first check that (ii)
implies that L1(m) is WSC. Indeed, if L1(m) is not WSC, then it contains
a sublattice which is order isomorphic to c0 (see e.g. [1, Theorem 4.60]).
Now, following the proof of [7, Theorem 2.2] (cf. [35, Theorem 1.1]), one can
find a c0-sequence (fn) in L1(m) such that fn ≥ 0 for all n ∈ N and Im is
an isomorphism when restricted to span(fn). This contradicts (ii), and so
L1(m) is WSC.

Let C ⊆ L1(m) be any relatively weakly compact set. We shall prove
that C is L-weakly compact. The solid hull

Sol(C) = {g ∈ L1(m) : |g| ≤ |f | for some f ∈ C}
is relatively weakly compact, thanks to the weak sequential completeness
of L1(m) (see e.g. [1, Theorems 4.39 and 4.60]). Let (fn) be a disjoint se-
quence in Sol(C). Since Sol(C) is relatively weakly compact and the fn’s
are pairwise disjoint, (fn) is weakly null. Since Im is almost Dunford–Pettis
and each sequence of the form (fn1A), where A ∈ Σ, is weakly null and
disjoint, we conclude that (fn) is τm-convergent to 0. In particular, (fn) is
equi-integrable (Proposition 3.3). From this fact and the disjointness of (fn)
it follows that ‖fn‖ → 0. This proves that C is L-weakly compact.

Therefore, every relatively weakly compact subset of L1(m) is L-weakly
compact, that is, L1(m) has the PSP.

5.2. A characterization of L1(m) spaces which are SWCG. We
finish this section by giving a characterization of SWCG spaces of integrable
functions with respect to a vector measure. For each h ∈ L1(m)∗ = L1(m)×,
we can consider the scalar measure µh := h dµ given by µh(A) :=

	
A h dµ for

all A ∈ Σ, so that the identity mapping defines an operator from L1(m) to
L1(µh) with norm ≤ 1.

Proposition 5.13. Let K ⊆ L1(m) be a convex weakly compact set,
L ⊆ L1(m) and ε > 0. The following statements are equivalent:
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(i) L ⊆ K + εBL1(m).
(ii) There is a convex w∗-dense set ∆ ⊆ BL1(m)∗ such that, for every

h ∈ ∆,
L ⊆ K + εBL1(µh) in L1(µh).

Proof. (i)⇒(ii) is clear by taking ∆ = BL1(m)∗ .
(ii)⇒(i). The proof is by contradiction. Suppose there is f ∈ L such that

f 6∈ K+εBL1(m). Since K+εBL1(m) is convex and closed, the Hahn–Banach
separation theorem ensures the existence of φ ∈ L1(m)∗ with norm one such
that

(5.1) 〈φ, f〉 > sup
g∈K+εBL1(m)

〈φ, g〉 = sup
g∈K
〈φ, g〉+ ε.

Let T denote the Mackey topology on L1(m)∗, that is, the topology of uni-
form convergence on weakly compact subsets of L1(m). Then Cw

∗
= C

T for
every convex set C ⊆ L1(m)∗ (see e.g. [16, Theorem 3.45]). In particular, we
have

BL1(m)∗ = ∆
w∗

= ∆
T
.

This equality and (5.1) imply that there is h ∈ ∆ such that

(5.2) 〈h, f〉 > sup
g∈K
〈h, g〉+ ε.

Since L ⊆ K + εBL1(µh) in the space L1(µh), we can write f = g + u for
some g ∈ K and u ∈ L1(µh) with ‖u‖L1(µh) ≤ ε. But inequality (5.2) implies
that

	
Ω f dµh >

	
Ω g dµh + ε, hence

	
Ω u dµh > ε, a contradiction.

Corollary 5.14. Let K ⊆ L1(m) be a convex weakly compact set. The
following statements are equivalent:

(i) K strongly generates L1(m).
(ii) For every weakly compact set L ⊆ L1(m) and every ε > 0 there exist

n ∈ N and a convex w∗-dense set ∆ ⊆ BL1(m)∗ such that

L ⊆ nK + εBL1(µh) in L1(µh)

for every h ∈ ∆.
(iii) There exists a convex w∗-dense set ∆ ⊆ BL1(m)∗ such that, for every

weakly compact set L ⊆ L1(m) and every ε > 0, there is n ∈ N such
that

L ⊆ nK + εBL1(µh) in L1(µh)

for every h ∈ ∆.

Proof. The implications (i)⇒(iii) and (iii)⇒(ii) are clear (just take ∆ =
BL1(m)∗). Proposition 5.13 yields (ii)⇒(i).
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Remark 5.15. In particular, we might apply the previous criterion by
choosing the convex w∗-dense set ∆ = co(Γ ). Under the identification of
L1(m)∗ and L1(m)×, Γ is precisely the set{

h
d〈m,x∗〉
dµ

: h ∈ BL∞(m), x
∗ ∈ BX∗

}
,

where d〈m,x∗〉/dµ denotes the Radon–Nikodým derivative of 〈m,x∗〉 with
respect to µ.
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