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Multiple summing operators on lp spaces

by

Dumitru Popa (Constanţa)

Abstract. We use the Maurey–Rosenthal factorization theorem to obtain a new char-
acterization of multiple 2-summing operators on a product of lp spaces. This characteri-
zation is used to show that multiple s-summing operators on a product of lp spaces with
values in a Hilbert space are characterized by the boundedness of a natural multilinear
functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural mul-
tiple s-summing operators T : l4/3 × l4/3 → l2 such that none of the associated linear
operators is s-summing (1 ≤ s ≤ 2). Further we show that if n ≥ 2, there exist natural
bounded multilinear operators T : l2n/(n+1) × · · · × l2n/(n+1) → l2 for which none of the
associated multilinear operators is multiple s-summing (1 ≤ s ≤ 2).

1. Introduction and background. The notion of absolutely summing
operators was first introduced by A. Grothendieck in his “Résumé ” [11] un-
der the name “semi-intégrale à droite” and later on, in two other corner-
stone papers of A. Pietsch [23] and J. Lindenstrauss and A. Pełczyński [15].
The concept of the absolutely summing operator is a fundamental part of
the theory of operator ideals, introduced by A. Pietsch in the linear case.
We recommend the reader to consult the celebrated monographs [6, 10, 24,
26, 35].

Motivated by the importance of the theory of absolutely summing opera-
tors in recent years, in [3] and independently in [16], this concept was gener-
alized to the multilinear setting via the class of multiple summing operators.
Its roots are in the famous paper of H. F. Bohnenblust and E. Hille [2]. Most
of the main properties of the linear analogue are true in this new context
(see [3, 16, 19, 20, 27, 28, 29, 30, 31]), and several applications were found
in different fields.

For instance, in [7] it is applied in vector valued Dirichlet series, in [8]
it helps to understand the behavior of unconditionality in tensor products,
in [9] it is applied to improve the Bohnenblust–Hille results, and [22] exhibits
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natural connections of this class of operators to problems in mathematical
physics.

In this paper we continue the study of multiple summing multilinear
operators. We use the Maurey–Rosenthal factorization theorem to obtain
a new characterization of multiple 2-summing operators on a product of
lp spaces (Theorem 1). This characterization is used to show that multiple
s-summing operators (1 ≤ s ≤ 2) on a product of lp spaces with values in a
Hilbert space are characterized by the boundedness of a natural multilinear
functional (Theorem 2). We apply these results to give concrete examples
of bilinear and multilinear multiple s-summing operators for which the as-
sociated multilinear operators are not multiple s-summing (1 ≤ s ≤ 2)
(Proposition 3, Corollaries 5 and 8). As far as we know, these are the first
examples of this type.

Now we fix some notation and terminology. Throughout this paper,
X1, . . . , Xn, Y etc. denote Banach spaces over K = R or C. For X a Ba-
nach space, X∗ is the dual of X. By I : X → X we denote the identity
operator, I(x) = x. For 1 ≤ p <∞ and x1, . . . , xm ∈ X, we write

wp((xi)1≤i≤m) = sup
‖x∗‖≤1

( m∑
i=1

|x∗(xi)|p
)1/p

.

Let 1 ≤ p < ∞. A bounded linear operator T : X → Y is p-summing if
there exists a constant C ≥ 0 such that for every x1, . . . , xn ∈ X,( n∑

i=1

‖T (xi)‖p
)1/p

≤ Cwp((xi)1≤i≤n),

and the p-summing norm of T is πp(T ) = inf{C | C as above}. We denote
by Πp(X,Y ) the class of p-summing operators (see [6, 10, 24, 26, 35]).

Let n be a natural number and 1 ≤ p <∞. A bounded n-linear operator
U : X1×· · ·×Xn → Y is called multiple p-summing if there exists a constant
C ≥ 0 such that for every choice of elements (xjij )1≤ij≤mj ⊂ Xj (1 ≤ j ≤ n),(m1,...,mn∑
i1,...,in=1

‖U(x1i1 , . . . , x
n
in)‖

p
)1/p

≤ Cwp((x1i1)1≤i1≤m1) · · ·wp((xnin)1≤in≤mn)

and the multiple p-summing norm of U is πmult
p (U) = inf{C | C as above}.

We denote by Πmult
p (X1, . . . , Xn;Y ), or Πmult

p (
∏n
i=1Xi;Y ), the class of all

multiple p-summing operators from X1 × · · · × Xn =
∏n
i=1Xi into Y . We

remark that for n = 1 we get the definition of p-summing linear operators.
Let H1, . . . ,Hn, H be Hilbert spaces. A bounded multilinear operator

T : H1×· · ·×Hn → H is said to be Hilbert–Schmidt if there is an orthonormal
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basis (ejij )ij∈Ij ⊂ Hj (1 ≤ j ≤ n) such that

‖T‖HS =
( ∑
i1∈I1,...,in∈In

‖T (e1i1 , . . . , e
n
in)‖

2
)1/2

<∞.

By HS(H1, . . . ,Hn;H) we denote the class of all Hilbert–Schmidt operators
T : H1 × · · · × Hn → H. We will use the fact that HS(H1, . . . ,Hn;H) =
Πmult

2 (H1, . . . ,Hn;H) (see [16], [19]).
For the following theorem, see [10, Corollary 11.16(c)] and [26] for the

linear case, and [27, Theorem 10(c)] for the multilinear case,

Coincidence Theorem.

(i) If X and Y have cotype 2, then

Πs(X,Y ) = Π1(X,Y ) for all 1 ≤ s <∞.
(ii) If all X1, . . . , Xn have cotype 2 and Y has also cotype 2, then

Πmult
s (X1, . . . , Xn;Y ) = Πmult

2 (X1, . . . , Xn;Y ) for all 1 ≤ s ≤ 2.

If a = (an)n∈N, b = (bn)n∈N are two scalar sequences, we write ab =
(anbn)n∈N. For a = (an)n∈N a scalar sequence, we denote by Ma the mul-
tiplication operator which acts between two sequence spaces and is defined
by Ma(x) = ax. As is well known, if 1 ≤ q, p < ∞ then Ma : lq → lp is
well defined if and only if a ∈ l∞ for q ≤ p, or a ∈ lr for p < q, where
1/p = 1/q + 1/r.

If 1 ≤ p <∞ then p∗ denotes the conjugate of p, i.e. 1/p+1/p∗ = 1, and
(en)n∈N are the standard unit vectors in lp.

Let 1 ≤ p <∞ and X be a Banach space. We write lp(X) to denote the
Banach space of all sequences (xn)n∈N ⊂ X with

∑∞
n=1 ‖xn‖p <∞, endowed

with the norm

‖(xn)n∈N‖lp(X) =
( ∞∑
n=1

‖xn‖p
)1/p

.

We consider the canonical mappings σn : X → lp(X) defined by

σn(x) = (0, . . . , 0, x︸︷︷︸
nth

, 0, . . .),

where n is a natural number.
We recall (see [17, Proposition 43, p. 68 and Proposition 44, p. 70] or [5])

Maurey–Rosenthal Factorization Theorem. Let 1 ≤ p < 2 ≤
r < ∞ be such that 1/p = 1/2 + 1/r and (Ω,Σ, µ) a measure space. If X
has type 2 and Y has cotype 2, then each bounded linear operator U : X →
Lp(µ, Y ) has a factorization of the form

X
V→ L2(µ, Y )

Mg−−→ Lp(µ, Y )
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with V bounded linear, g ∈ Lr(µ) and Mg(f) = gf . Moreover,

‖U‖ ≤ ‖V ‖ ‖g‖r ≤ Kp,2C2(Y )T2(X)‖U‖,
where Kp,2 is the Kahane–Khinchin constant and T2(X), C2(Y ) are the type
2 constant of X and the cotype 2 constant of Y .

Taking as a measure space (N,P(N), card), we get

Corollary 1. Let 1 ≤ p < 2 ≤ r < ∞ be such that 1/p = 1/2 + 1/r.
If X has type 2 and Y has cotype 2, then each bounded linear operator
U : X → lp(Y ) has a factorization of the form

X
V→ l2(Y )

Ma−−→ lp(Y )

with V bounded linear and a ∈ lr. Moreover,

‖U‖ ≤ ‖V ‖ ‖a‖r ≤ Kp,2C2(Y )T2(X)‖U‖.

2. Main results. Our first result is a multilinear extension of a well
known result in the linear case (see [6, Proposition 11.8, p. 136], [10, Propo-
sition 2.7, p. 39], [35, Proposition 9.7, p. 50]). A proof can be found in
[33, Proposition 2.2].

Proposition 1. Let 1 ≤ p <∞, 1 ≤ k ≤ n and T : X1×· · ·×Xn → Y
be a bounded n-linear operator. The following assertions are equivalent:

(i) T is multiple p-summing.
(ii) The operator

T ◦(S1, . . . , Sk, IXk+1
, . . . , IXn) : lp∗×· · ·× lp∗×Xk+1×· · ·×Xn → Y

is multiple p-summing for any bounded linear operators Sj : lp∗ → Xj

(≤ j ≤ k).
Moreover,

sup
‖S1‖,...,‖Sk‖≤1

πmult
p ((T ◦ (S1, . . . , Sk, IXk+1

, . . . , IXn))) = πmult
p (T ).

For p = 1 we consider c0 instead of lp∗.

The following result is the main result of our paper. This result was
suggested by Nahoum’s theorem [18, p. 4]. Later, we have observed that the
same idea was used in a different context by A. Defant and D. Pérez-García
in [8, proof of Lemma 4.5].

Theorem 1. Let 1 ≤ k ≤ n and 1 ≤ p1, . . . , pk < 2 ≤ r1, . . . , rk <∞ be
such that 1/pj = 1/2+1/rj for 1 ≤ j ≤ k. Let X1, . . . , Xk be Banach spaces
of cotype 2, and Xk+1, . . . , Xn be arbitrary Banach spaces. Finally, let

T : lp1(X1)× · · · × lpk(Xk)×Xk+1 × · · · ×Xn → Y

be a bounded n-linear operator. The following assertions are equivalent:
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(i) T is multiple 2-summing.
(ii) The operator

T ◦ (Ma1 , . . . ,Mak , IXk+1
, . . . , IXn) :

l2(X1)× · · · × l2(Xk)×Xk+1 × · · · ×Xn → Y

is multiple 2-summing for all a1 ∈ lr1 , . . . , ak ∈ lrk .

Moreover,

sup
‖a1‖r1 ,...,‖ak‖rk≤1

πmult
2 (T ◦ (Ma1 , . . . ,Mak , IXk+1

, . . . , IXn))

≤ πmult
2 (T ) ≤ Kp1,2 · · ·Kpk,2C2(X1) · · ·C2(Xk)

× sup
‖a1‖r1 ,...,‖ak‖rk≤1

πmult
2 (T ◦ (Ma1 , . . . ,Mak , IXk+1

, . . . , IXn)).

Proof. (ii)⇒(i). From (ii) and the uniform boundedness principle,

L = sup
‖a1‖r1 ,...,‖ak‖rk≤1

πmult
2 (T ◦ (Ma1 , . . . ,Mak , IXk+1

, . . . , IXn)) <∞.

Let Sj : l2 → lpj (Xj) be bounded linear operators (1 ≤ j ≤ k). Since l2 has
type 2 (with T2(l2) = 1), 1 ≤ pj < 2 and Xj has cotype 2 (1 ≤ j ≤ k), from
the Maurey–Rosenthal factorization theorem, more precisely from Corol-
lary 1, it follows that there exist bounded linear operators Vj : l2 → l2(Xj)
and bj ∈ lrj such that

Sj =Mbj ◦ Vj and ‖Vj‖ ‖bj‖r ≤ Kpj ,2C2(Xj)‖Sj‖ for 1 ≤ j ≤ k.
Note that

T ◦ (S1, . . . , Sk, IXk+1
, . . . , IXn)

= T ◦ (Mb1 , . . . ,Mbk , IXk+1
, . . . , IXn) ◦ (V1, . . . , Vk, IXk+1

, . . . , IXn).

Since by (ii),

T◦(Mb1 , . . . ,Mbk , IXk+1
, . . . , IXn) : l2(X1)×· · ·×l2(Xk)×Xk+1×· · ·×Xn→ Y

is multiple 2-summing, by the ideal property of the class of multiple 2-
summing operators,

T ◦(S1, . . . , Sk, IXk+1
, . . . , IXn) : l2(X1)×· · ·× l2(Xk)×Xk+1×· · ·×Xn → Y

is multiple 2-summing and

πmult
2 (T ◦ (S1, . . . , Sk, IXk+1

, . . . , IXn))

≤ πmult
2 (T ◦ (Mb1 , . . . ,Mbk , IXk+1

, . . . , IXn))‖V1‖ · · · ‖Vk‖
≤ L‖b1‖r1 · · · ‖bk‖rk‖V1‖ · · · ‖Vk‖
≤ Kp1,2 · · ·Kpk,2C2(X1) · · ·C2(Xk)L‖S1‖ · · · ‖Sk‖.
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Since S1, . . . , Sk are arbitrary, Proposition 1 ensures that T is multiple 2-
summing and πmult

2 (T ) ≤ Kp1,2 · · ·Kpk,2C2(X1) · · ·C2(Xk)L, which is (i).
(i)⇒(ii). This follows from the ideal property of the class of multiple

2-summing operators.

Remark 1. In the case k = n in Proposition 1(ii) and Theorem 1, the
factors Xk+1, . . . , Xn do not occur.

Lemma 1. Let H1, . . . , Hk, H be Hilbert spaces and T : l2(H1)× · · · ×
l2(Hk)→ H a bounded k-linear operator. Then T is Hilbert–Schmidt if and
only if all T ◦ (σi1 , . . . , σik) : H1 × · · · ×Hk → H are Hilbert–Schmidt and∑∞

i1,...,ik=1 ‖T ◦ (σi1 , . . . , σik)‖2HS <∞. Moreover,

‖T‖2HS =
∞∑

i1,...,ik=1

‖T ◦ (σi1 , . . . , σik)‖
2
HS.

Proof. The conclusion follows from the definition of Hilbert–Schmidt op-
erators and the fact that ifH is a Hilbert space and (ej)j∈J is an orthonormal
basis in H, then (σi(ej))(i,j)∈N×J is an orthonormal basis in l2(H). We omit
the details.

As an application of Theorem 1 we prove a connection between multiple
s-summing operators on a product of lp spaces with values in a Hilbert space
and the boundedness of a natural multilinear functional.

Theorem 2. Let k be a natural number and 1 ≤ p1, . . . , pk < 2 ≤
r1, . . . , rk < ∞ be such that 1/pj = 1/2 + 1/rj for each 1 ≤ j ≤ k. Let
H1, . . . , Hk, H be Hilbert spaces, T : lp1(H1)×· · ·× lpk(Hk)→ H a bounded
k-linear operator and 1 ≤ s ≤ 2. The following assertions are equivalent:

(i) T is multiple 2-summing.
(ii) All T ◦ (σi1 , . . . , σik) : H1 × · · · ×Hk → H are Hilbert–Schmidt and

the k-linear functional S : lr1/2 × · · · × lrk/2 → K defined by

S(x1, . . . , xk) =

∞∑
i1,...,ik=1

〈x1, ei1〉 · · · 〈xk, eik〉‖T ◦ (σi1 , . . . , σik)‖
2
HS

is bounded.
(iii) T is multiple s-summing.

Moreover,
√
‖S‖ ≤ πmult

2 (T ) ≤ Kp1,2 · · ·Kpk,2

√
‖S‖.

Proof. (i)⇒(ii). Since T is multiple 2-summing, from the ideal prop-
erty of the multiple 2-summing operators it follows that all T ◦ (σi1 , . . . , σik)
are Hilbert–Schmidt. Let (a1, . . . , ak) ∈ lr1 × · · · × lrk be such that
‖a1‖r1 , . . . , ‖ak‖rk≤1. Again by the ideal property of the multiple 2-summing
operators, T ◦ (Ma1 , . . . ,Mak) : l2(H1)×· · ·× l2(Hk)→ H is multiple 2-sum-
ming and πmult

2 (T ◦(Ma1 , . . . ,Mak)) ≤ πmult
2 (T ). Since on Hilbert spaces, the
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multiple 2-summing operators coincide with the Hilbert–Schmidt operators,
from Lemma 1 we deduce

(∗)
( ∞∑
i1,...,ik=1

|〈a1, ei1〉|2 · · · |〈ak, eik〉|
2‖T ◦ (σi1 , . . . , σik)‖

2
HS

)1/2
= πmult

2 (T ◦ (Ma1 , . . . ,Mak)) ≤ π
mult
2 (T ).

Now let (x1, . . . , xk) ∈ lr1/2 × · · · × lrk/2 be such that ‖x1‖r1/2, . . . , ‖xk‖rk/2
≤ 1. Choose a1, . . . , ak such that

|〈a1, ei1〉|2 = |〈x1, ei1〉| for each i1 ∈ N,
...

|〈ak, eik〉|
2 = |〈xk, eik〉| for each ik ∈ N,

and note that ‖a1‖r1 = ‖x1‖r1/2, . . . , ‖ak‖rk = ‖xk‖rk/2. Then from (∗) we
get

∞∑
i1,...,ik=1

|〈x1, ei1〉| · · · |〈xk, eik〉| ‖T ◦ (σi1 , . . . , σik)‖
2
HS ≤ [πmult

2 (T )]2.

This means that S : lr1/2 × · · · × lrk/2 → K is bounded k-linear and ‖S‖ ≤
[πmult

2 (T )]2, proving (ii).
(ii)⇒(i). Since S is bounded k-linear,

(∗∗)
∣∣∣ ∞∑
i1,...,ik=1

〈x1, ei1〉 · · · 〈xk, eik〉‖T ◦ (σi1 , . . . , σik)‖
2
HS

∣∣∣ ≤ ‖S‖
for ‖x1‖r1/2, . . . , ‖xk‖rk/2 ≤ 1.

Let a1 ∈ lr1 , . . . , ak ∈ lrk be such that ‖a1‖r1 , . . . , ‖ak‖rk ≤ 1. Then

(|〈a1, ei1〉|2)i1∈N ∈ lr1/2, . . . , (|〈ak, eik〉|
2)ik∈N ∈ lrk/2,

and from (∗∗) we obtain

(∗∗∗)
∞∑

i1,...,ik=1

|〈a1, ei1〉|2 · · · |〈ak, eik〉|
2‖T ◦ (σi1 , . . . , σik)‖

2
HS ≤ ‖S‖.

Again since on Hilbert spaces the multiple 2-summing operators coincide
with the Hilbert–Schmidt operators, from Lemma 1 we deduce

πmult
2 (T ◦(Ma1 , . . . ,Mak)) =

( ∞∑
i1,...,ik=1

‖T ◦(Ma1 , . . . ,Mak)(σi1 , . . . , σik)‖
2
HS

)1/2
=
( ∞∑
i1,...,ik=1

|〈a1, ei1〉|2 · · · |〈ak, eik〉|
2‖T ◦ (σi1 , . . . , σik)‖

2
HS

)1/2
.

From (∗∗∗) we see that T ◦ (Ma1 , . . . ,Mak) is multiple 2-summing and

πmult
2 (T ◦ (Ma1 , . . . ,Mak)) ≤

√
‖S‖.
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Now Theorem 1 ensures that T is multiple 2-summing and

πmult
2 (T ) ≤ Kp1,2 · · ·Kpk,2 sup

‖a1‖r1 ,...,‖ak‖rk≤1
πmult
2 (T ◦ (Ma1 , . . . ,Mak))

≤ Kp1,2 · · ·Kpk,2

√
‖S‖,

proving (i).
(i)⇔(iii) is the coincidence theorem.

Taking k = 1 in Theorem 2 we get

Corollary 2. Let 1≤ p< 2, H1, H be a Hilbert spaces, T : lp(H1)→H
a bounded linear operator and 1 ≤ s < ∞. The following assertions are
equivalent:

(i) T is 2-summing.
(ii) All T ◦σi : H1 → H are Hilbert–Schmidt and (‖T ◦σi‖HS)i∈N ∈ lp∗.
(iii) T is s-summing.

Moreover,

‖(‖T ◦ σi‖HS)i∈N
∥∥
p∗
≤ π2(T ) ≤ Kp,2‖(‖T ◦ σi‖HS)i∈N

∥∥
p∗
.

We will need the following particular case of Corolary 2, certainly well-
known, but for which we do not know an exact reference. Because of its
special importance we think that a different proof may be of some interest.

Corollary 3. Let 1 < p < 2, H a Hilbert space, T : lp → H a bounded
linear operator and 1 ≤ s < ∞. Then T is s-summing if and only if T is
1-summing if and only if

∑∞
i=1 ‖T (ei)‖p

∗
<∞. Moreover,( ∞∑

i=1

‖T (ei)‖p
∗
)1/p∗

≤ π1(T ) ≤ KG

( ∞∑
i=1

‖T (ei)‖p
∗
)1/p∗

,

where KG is the Grothendieck constant.

Proof. Since lp and H have cotype 2, from the coincidence theorem in the
linear case we have Πs(lp, H) = Π1(lp, H). Let us define λ = (‖T (ei)‖)i∈N.

If T is 1-summing, then T is 2-summing and π2(T ) ≤ π1(T ). Define 2 <
r <∞ by 1/p = 1/2+1/r and let a ∈ lr. Since T is 2-summing we infer that
T ◦Ma : l2 → H is 2-summing and π2(T ◦Ma) ≤ π2(T )‖Ma‖ = π2(T )‖a‖r.
Since l2, H are Hilbert spaces,

π2(T ◦Ma) = ‖T ◦Ma‖HS =
( ∞∑
i=1

|ai|2‖T (ei)‖2
)1/2

= ‖Mλ(a)‖2,

and thus sup‖a‖r≤1 ‖Mλ(a)‖2 ≤ π2(T ). By Hölder’s inequality we get λ ∈ ls,
where 1/2 = 1/r + 1/s, i.e. s = p∗ and ‖λ‖p∗ ≤ π2(T ).
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Conversely, if λ ∈ lp∗ , then T has the factorization lp
Mλ−−→ l1

S→ H, where
S : l1 → H is defined by

S(ξ) =
∞∑
i=1

〈ξ, ei〉
T (ei)

‖T (ei)‖

(we use 0
0 = 0) and ‖S‖ ≤ 1. Since by Grothendieck’s theorem, S is

1-summing and π1(S) ≤ KG‖S‖, we conclude that T is 1-summing and
π1(T ) ≤ ‖Mλ‖π1(S) ≤ KG‖λ‖p∗ .

In a 1934 paper, G. H. Hardy and J. E. Littlewood gave necessary con-
ditions for a bilinear functional on lp × lq to be bounded [12, Theorem 5].

Theorem 3 (Hardy and Littlewood). Let 1 < p, q < ∞ be such that
1/p+1/q < 1 and define 1/λ = 1− (1/p+1/q). If aij ≥ 0 are such that the
bilinear functional B : lp × lq → K defined by

B(x, y) =
∞∑

i,j=1

〈x, ei〉〈y, ej〉aij

is bounded, then ( ∞∑
i,j=1

aλij

)1/λ
≤ ‖B‖.

From Theorems 2 and 3 we get

Corollary 4. Let 1 < p1, p2 < 2 be such that 1/p1 + 1/p2 < 3/2
and define 1/λ = 3 − 2(1/p1 + 1/p2). Let H1, H2, H be a Hilbert spaces,
T : lp1(H1)×lp2(H2)→ H a bounded bilinear operator and 1 ≤ s ≤ 2. If T is
multiple s-summing, then all T ◦(σi, σj) : H1×H2 → H are Hilbert–Schmidt
and ( ∞∑

i,j=1

‖T ◦ (σi, σj)‖2λHS

)1/(2λ)
≤ πmult

2 (T ).

Proof. Define 2 < rj < ∞ by 1/pj = 1/2 + 1/rj for j = 1, 2. Note
that 2/r1 + 2/r2 < 1 and 1/λ = 1 − (2/r1 + 2/r2). Since T is multiple
s-summing, from Theorem 2 it folows that all T ◦ (σi, σj) : H1×H2 → H are
Hilbert–Schmidt and the bilinear functional S : lr1/2 × lr2/2 → K defined by

S(x, y) =

∞∑
i,j=1

〈x, ei〉〈y, ei〉‖T (σi, σj)‖2HS

is bounded. The statement now follows from Theorem 3.

3. Examples of multiple summing operators for which no as-
sociated multilinear operator is multiple summing. Let n ≥ 2 be a
natural number and T : X1 × · · · ×Xn → Y a bounded n-linear operator. If
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(A,B) is a proper partition of the set {1, . . . , n}, i.e. A, B are non-empty,
A ∩B = ∅, A ∪B = {1, . . . , n}, we define

TA,B :
∏
i∈A

Xi → L
(∏
i∈B

XiY
)
,

TA,B(xi)i∈A((xi)i∈B) = T (x1, . . . , xn)

(see [9]). For example, in the case n = 2 and T : X × Y → Z a bounded bi-
linear operator we have two natural linear operators associated to T denoted
by T1 : X → L(Y, Z) and T2 : Y → L(X,Z), defined by

(T1x)(y) = T (x, y) and (T2y)(x) = T (x, y).

In [16, Proposition 2.5], [20, Proposition 2.5] or [34, proof of Proposition 3.7]
it was shown that if n ≥ 2 is a natural number, T : X1 × · · · ×Xn → Y a
bounded n-linear operator, 1 ≤ p < ∞ and there exists a proper partition
(A,B) of {1, . . . , n} such that

TA,B :
∏
i∈A

Xi → Πmult
p

(∏
i∈B

Xi, Y
)

is multiple p-summing, then T is multiple p-summing.
In [20, Remark 3.14] it was shown that ifX, Y , Z are infinite-dimensional

L∞-spaces, then there exists a multiple 2-summing bilinear operator T :
X × Y → Z such that T1 /∈ Π2(X,Π2(Y,Z)).

We will show that well known examples of bilinear and multilinear oper-
ators can be adapted to construct multiple s-summing operators for which
no associated multilinear operator is multiple s-summing (1 ≤ s ≤ 2)
(see Proposition 3 and Corollaries 5 and 8). As far as we know, these are the
first examples of this type. For clarity, we analyze first the bilinear case and
then the multilinear case.

The bilinear case. In the next result we give some necessary condi-
tions for the linear operators associated to a bilinear operator defined on a
product of lp spaces with values in a Hilbert space to be multiple s-summing,
1 ≤ s ≤ 2.

Proposition 2. Let 1 < p1, p2 < 2, H be a Hilbert space, T : lp1 × lp2
→ H a bounded bilinear operator and T1, T2 the bounded linear operators
associated to T . Let 1 ≤ s ≤ 2.

(i) If T1 : lp1 → Πs(lp2 , H) is s-summing with respect to the s-summing
norm on Πs(lp2 , H), then

∞∑
i=1

( ∞∑
j=1

‖T (ei, ej)‖p
∗
2

)p∗1/p∗2
<∞.



Multiple summing operators 19

Similarly, if T2 : lp2 → Πs(lp1 , H) is s-summing with respect to the
s-summing norm on Πs(lp1 , H), then

∞∑
j=1

( ∞∑
i=1

‖T (ei, ej)‖p
∗
1

)p∗2/p∗1
<∞.

(ii) If at least one of the sums in (i) in finite, then T is multiple s-
summing.

Proof. First we remark that from the coincidence theorem in the linear
case, Π1(lp2 , H) = Πs(lp2 , H) for 1 ≤ s ≤ 2 (lp2 has cotype 2, 1 < p2 < 2)
and Πs(lp1 , Πs(lp2 , H)) = Π1(lp1 , Π1(lp2 , H)) (lp1 has cotype 2, 1 < p1 < 2).

(i) If T1 : lp1 → Πs(lp2 , H) is s-summing with respect to the s-summing
norm on Πs(lp2 , H), then T1 : lp1 → Π1(lp2 , H) is 1-summing with respect
to the 1-summing norm on Π1(lp2 , H). Let x ∈ lp1 . From Corollary 3, T1x ∈
Π1(lp2 , H) if and only if( ∞∑

j=1

‖(T1x)(ej)‖p
∗
2

)1/p∗2 ≤ π1(T1x) ≤ KG

( ∞∑
j=1

‖(T1x)(ej)‖p
∗
2

)1/p∗2
.

Thus T1 : lp1 → Π1(lp2 , H) is 1-summing with respect to the 1-summing
norm on Π1(lp2 , H) if and only if S : lp1 → lp∗2(H) defined by S(x) =
(T (x, ej))j∈N is 1-summing, and in this case π1(S)≤ π1(T1 : lp1→Π1(lp2 , H))
≤ KGπ1(S). Since S is 1-summing (T1 : lp1 → Π1(lp2 , H) is 1-summing
by hypothesis), the inclusion theorem (in the linear case) shows that S is
p∗1-summing (linear) with πp∗1(S) ≤ π1(S). From wp∗1(en | n ∈ N; lp1) =

‖I : lp∗1 → lp∗1‖ = 1 we get (
∑∞

i=1 ‖S(ei)‖p
∗
1)1/p

∗
1 ≤ πp∗1(S), i.e.( ∞∑

i=1

( ∞∑
j=1

‖T (ei, ej)‖p
∗
2

)p∗1/p∗2)1/p∗1 ≤ π1(T1 : lp1 → Π1(lp2 , H)).

(ii) Suppose, for example, that
∑∞

j=1(
∑∞

i=1 ‖T (ei, ej)‖p
∗
1)p

∗
2/p

∗
1 <∞. De-

fine 2 < r2 < ∞ by 1/p2 = 1/2 + 1/r2 and take b ∈ lr2 . If we show that
T ◦(I,Mb) : lp1×l2 → H is multiple 2-summing then Theorem 1 implies that
T is multiple 2-summing and by the coincidence theorem T will be multiple
s-summing. But, from [1, Theorem 1], T ◦ (I,Mb) is multiple 2-summing, if
and only if [T ◦ (I,Mb)]1 : lp1 → HS(l2, H) is multiple 2-summing, and this
by Corollary 3 is equivalent to

(∗)
∞∑
i=1

( ∞∑
j=1

|bj |2‖T (ei, ej)‖2
)p∗1/2

=
∞∑
i=1

( ∞∑
j=1

‖T ◦ (I,Mb)(ei, ej)‖2
)p∗1/2

<∞.
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Since 1/2 = 1/r2 + 1/p∗2, Hölder’s inequality yields( ∞∑
j=1

|bj |2‖T (ei, ej)‖2
)1/2

≤ ‖b‖r2
( ∞∑
j=1

‖T (ei, ej)‖p
∗
2

)1/p∗2
for i ∈ N,

and thus
∞∑
i=1

( ∞∑
j=1

|bj |2‖T (ei, ej)‖2
)p∗1/2 ≤ ‖b‖r2 ∞∑

i=1

( ∞∑
j=1

‖T (ei, ej)‖p
∗
2)p

∗
1/p

∗
2 <∞,

i.e. (∗) is satisfied.

Unfortunately we do not know whether the converse of (i) in Proposition 2
is true or not. If it is true (hence (i) and (ii) are equivalent) then (ii) will
follow from the already mentioned result in [16, Proposition 2.5], [20, Pro-
position 2.5] or [34, proof of Proposition 3.7].

Next we indicate a way to construct concrete examples of multiple s-
summing bilinear operators, 1 ≤ s ≤ 2, for which the associated linear
operators are not s-summing.

We denote by K the class of all “kernels” K : N × N → [0,∞) with the
following two properties:

(a)
∑∞

i,j=1 |〈x, ei〉| |〈y, ej〉|K(i, j) <∞ for each (x, y) ∈ l2 × l2.
(b)

∑∞
i,j=1[K(i, j)]2 =∞.

Note that, from Hilbert’s theorem [13], K : N × N → [0,∞) defined by
K(i, j) = 1

i+j satisfies condition (a) and
∞∑
i=1

[K(i, j)]2 =
∞∑
i=1

1

(i+ j)2
=

∞∑
k=j+1

1

k2
v

1

j
as j →∞,

thus
∑∞

i,j=1[K(i, j)]2 =∞, i.e. K belongs to the class K.

Proposition 3. Let K ∈ K. Let (vij)(i,j)∈N×N ⊂ l2 be an orthogonal
system with ‖vij‖2 =

√
K(i, j) for (i, j) ∈ N× N. Let T : l4/3 × l4/3 → l2 be

defined by

T (x, y) =

∞∑
i,j=1

〈x, ei〉〈y, ej〉vij

and 1 ≤ s ≤ 2. Then T is multiple s-summing, but the associated linear
operators T1, T2 : l4/3 → Πs(l4/3, l2) are not s-summing.

Proof. Observe that vij =
√
K(i, j) e2i3j is an orthogonal system in l2

which satisfies the conditions stated. (More generally, if σ : N × N → N is
an injective mapping then vij =

√
K(i, j)eσ(i,j) is an orthogonal system in

l2 which satisfies these conditions.)
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From hypothesis (a), for each (a, b) ∈ l2 × l2 the series

(1)

∞∑
i,j=1

|〈a, ei〉| |〈b, ej〉|K(i, j) <∞.

Let (x, y) ∈ l4/3 × l4/3. Since (vij)(i,j)∈N×N is an orthogonal system in l2,
the series

∑∞
i,j=1〈x, ei〉〈y, ej〉vij is norm convergent in l2 if and only if the

numerical series
∑∞

i,j=1 |〈x, ei〉|2|〈y, ej〉|2‖vij‖2 <∞, i.e.

(2)
∞∑

i,j=1

|〈x, ei〉|2|〈y, ej〉|2K(i, j) <∞.

Since x ∈ l4/3, we have a = (|〈x, ei〉|2)i∈N ∈ l2/3 ⊂ l2 and similarly b =

(|〈y, ej〉|2)j∈N ∈ l2. Then from (1) we deduce (2) and hence T is well defined.
From Theorem 2, T is multiple s-summing if and only if T is multiple

2-summing if and only if the bilinear functional S : l2 × l2 → C given by

S(x, y) =
∞∑

i,j=1

〈x, ei〉〈y, ej〉‖vij‖2 =
∞∑

i,j=1

〈x, ei〉〈y, ej〉K(i, j)

is bounded. Again, by hypothesis (a) this is true; p1 = p2 = 4/3 and from
1/p1 = 1/2 + 1/r1, 1/p2 = 1/2 + 1/r2 we get r1 = r2 = 4.

Further, by hypothesis (b),

(3)

∞∑
i,j=1

‖T (ei, ej)‖4 =
∞∑

i,j=1

‖vij‖4 =
∞∑

i,j=1

[K(i, j)]2 =∞.

Now, if one of T1, T2 : l4/3 → Πs(l4/3, l2) is s-summing, then (see the remark
at the beginning of the proof of Proposition 2(i)), one of T1, T2 : l4/3 →
Π1(l4/3, l2) is 1-summing and by Proposition 2(i),

∑∞
i,j=1 ‖T (ei, ej)‖4 <∞,

which contradicts (3).

For example, from Proposition 3 it follows that the bilinear operator
T : l4/3 × l4/3 → l2 defined by

T (x, y) =
∞∑

i,j=1

1√
i+ j

〈x, ei〉〈y, ej〉e2i3j

is multiple s-summing, but neither of the associated linear operators T1, T2 :
l4/3 → Πs(l4/3, l2) is s-summing for 1 ≤ s ≤ 2.

We will need the bilinear multiplication operator.
Let 1 ≤ p, q, r < ∞, let a = (an)n∈N be such that a ∈ l∞ if 1/p ≤

1/q + 1/r, or a ∈ ls if 1/p > 1/q + 1/r, where 1/p = 1/q + 1/r + 1/s, and
let Ba : lr × lq → lp be the bilinear multiplication operator

Ba(x, y) = axy.
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We give necessary and sufficient conditions for a bilinear multiplication
operator to be multiple s-summing and the associated linear operators to be
s-summing, 1 ≤ s ≤ 2.

Proposition 4. Let 1 < p1, p2 < 2, a ∈ l∞, Ba : lp1 × lp2 → l2 be the
multiplication operator and 1 ≤ s ≤ 2.

(i) If 3/2 ≤ 1/p1 + 1/p2, then Ba is multiple s-summing.
(ii) If 3/2 > 1/p1 + 1/p2, then Ba is multiple s-summing if and only if

a ∈ lu, where 1/u = 3/2− (1/p1 + 1/p2).
(iii) (Ba)1 : lp1 → Πs(lp2 , l2) is s-summing if and only if a ∈ lp∗1 ; simi-

larly (Ba)2 : lp2 → Πs(lp1 , l2) is s-summing if and only if a ∈ lp∗2 .
Proof. (i) and (ii) are particular cases of the next Proposition 5(b).
(iii) We need

Claim. Let 1 < p < 2 ≤ q ≤ ∞, a ∈ l∞ and Ma : lp → lq. Then Ma is
1-summing if and only if it is 2-summing if and only if a ∈ lp∗.

This follows from the results in [32]. For the sake of completeness we give
a direct proof.

If Ma is 1-summing, then Ma is p∗-summing and since wp∗(en; lp) = ‖I :
lp∗ → lp∗‖ = 1, we have (‖Ma(en)‖)n∈N ∈ lp∗ , i.e. a ∈ lp∗ .

Conversely, if a ∈ lp∗ , then Ma : lp → lq has the factorization

lp
Ma−−→ l1

J
↪→ l2 ↪→ lq.

Since by Grothendieck’s theorem l1
J
↪→ l2 is 1-summing, we deduce that Ma

is 1-summing.
We have observed that (Ba)1 : lp1 → Πs(lp2 , l2) is s-summing if and only

if (Ba)1 : lp1 → Π1(lp2 , l2) is 1-summing (see the beginning of the proof of
Proposition 2). Let x ∈ lp1 . From Corollary 3, (Ba)1x ∈ Π1(lp2 , H) if and
only if

∑∞
j=1 ‖Ba(x, ej)‖p

∗
2 <∞, and in this case( ∞∑

j=1

‖Ba(x, ej)‖p
∗
2

)1/p∗2 ≤ π1((Ba)1x) ≤ KG(

∞∑
j=1

‖Ba(x, ej)‖p
∗
2)1/p

∗
2 .

Since Ba(x, ej) = aj〈x, ej〉ej ,
‖Ma(x)‖p∗2 ≤ π1((Ba)1x) ≤ KG‖Ma(x)‖p∗2 .

Thus (Ba)1 : lp1 → Π1(lp2 , l2) is 1-summing with respect to the 1-summing
norm on Π1(lp2 , l2) if and only if Ma : lp1 → lp∗2 is 1-summing. By the Claim
this is equivalent to a ∈ lp∗1 .

Taking p1 = p2 = p in Proposition 4 we again get concrete examples of
multiple s-summing bilinear operators for which the associated linear oper-
ators are not s-summing, for 1 ≤ s ≤ 2.
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Corollary 5. Let 1 < p < 2, a ∈ l∞, Ba : lp × lp → l2 be the multipli-
cation operator and 1 ≤ s ≤ 2.

(i) If 1 < p ≤ 4/3, then Ba is multiple s-summing.
(ii) If 4/3 < p < 2, then Ba is multiple s-summing if and only if a ∈

l2p/(3p−2).
(iii) (Ba)1, (Ba)2 : lp → Πs(lp, l2) are s-summing if and only if a ∈ lp∗.
(iv) If 1 < p ≤ 4/3 and a ∈ l∞ but a /∈ lp∗ , then Ba is multiple s-

summing and none of (Ba)1, (Ba)2 : lp → Πs(lp, l2) is s-summing.
(v) If 4/3 < p < 2 and a ∈ l2p/(3p−2) but a /∈ lp/(p−1), then Ba is

multiple s-summing and none of (Ba)1, (Ba)2 : lp → Πs(lp, l2) is
s-summing.

The multilinear case. For convenience, we denote by Ma both the
linear multiplication operator defined by Ma(x) = ax and the multilinear
operator defined byMa(x1, . . . , xn) = ax1 · · ·xn. This will cause no confusion
since the context will make it clear when we are in the linear case and when
with in the multilinear case.

For brevity, we writeX×
(k)
· · · ×X forX × · · · ×X︸ ︷︷ ︸

k times

, and similarlyX,
(k)
· · · , X

for X, . . . ,X︸ ︷︷ ︸
k times

.

Proposition 5.
(a) Let n be a natural number, 2≤ q≤ ∞, a∈ l∞,Ma : l2×

(n)
· · · × l2 → lq

the multiplication operator and 1 ≤ s ≤ 2. Then Ma is multiple
s-summing if and only if a ∈ l2.

(b) Let n be a natural number, 1 < p1, . . . , pn < 2 ≤ q ≤ ∞, a ∈ l∞,
Ma : lp1 × · · · × lpn → lq the multiplication operator and 1 ≤ s ≤ 2.
(i) If (n+ 1)/2 ≤ 1/p1+· · ·+1/pn, thenMa is multiple s-summing.
(ii) If (n+ 1)/2 > 1/p1+ · · ·+1/pn, then Ma is multiple s-summing

if and only if a ∈ lu, where 1/u = (n+ 1)/2−(1/p1+· · ·+1/pn).
(c) Let n be a natural number, 1 < p < 2 ≤ q ≤ ∞, a ∈ l∞, Ma :

lp ×
(n)
· · · × lp → lq the multiplication operator and 1 ≤ s ≤ 2.

(i) If 1 < p ≤ 2n/(n+ 1), then Ma is multiple s-summing.
(ii) If 2n/(n+ 1) < p < 2, then Ma is multiple s-summing if and

only if a ∈ lu, where 1/u = (n+ 1)/2− n/p.
Proof. (a) Suppose thatMa is multiple 2-summing. Since w2(ek | k ∈N; l2)

= ‖I : l2 → l2‖ = 1 we get (‖Ma(ek, . . . , ek)‖)k∈N ∈ l2, i.e. a ∈ l2.
Conversely, if a ∈ l2 then Ma : l2× · · ·× l2 → l2 is Hilbert–Schmidt, thus

multiple 2-summing and hence (l2 ↪→ lq, 2 ≤ q ≤ ∞), Ma : l2 × · · · × l2 → lq
is multiple 2-summing. Note that by the coincidence theorem,Ma is multiple
s-summing if and only if it is multiple 2-summing.
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(b) Define 2 < rj < ∞ by 1/pj = 1/2 + 1/rj for each 1 ≤ j ≤ n.
From Theorem 1, Ma is multiple s-summing if and only if it is multiple
2-summing if and only if for each (a1, . . . , an) ∈ lr1 × · · · × lrn the operator
Maa1···an = Ma ◦ (Ma1 , . . . ,Man) : l2 × · · · × l2 → lq is multiple 2-summing.
By (a) this is equivalent to aa1 · · · an ∈ l2, i.e. Ma : lr1 × · · · × lrn → l2 is
well defined. Then this is equivalent to a ∈ l∞ if 1/2 ≤ 1/r1 + · · · + 1/rn,
and a ∈ lu where 1/2 = 1/r1 + · · ·+ 1/rn + 1/u if 1/2 > 1/r1 + · · ·+ 1/rn,
as claimed.

(c) This is a particular case of (b).
In the rest of the paper, for simplicity, if n ≥ 2 is a natural number,

1 ≤ k ≤ n−1 and T : X1×· · ·×Xn → Y is a bounded n-linear operator, and
A = {1, . . . , k}, B = {k+ 1, . . . , n}, we denote TA,B = T̃ : X1 × · · · ×Xk →
L(Xk+1, . . . , Xn;Y ), thus

T̃ (x1, . . . , xk)(xk+1, . . . , xn) = T (x1, . . . , xk, xk+1, . . . , xn).

Proposition 6. Let n ≥ 2 be a natural number, 1 ≤ k ≤ n − 1, 1 <
p1, . . . , pn < 2, a ∈ l∞, Ma : lp1 × · · · × lpn → l2 the multiplication operator
and 1 ≤ s ≤ 2.

(i) If
k + 1

2
≤ 1

p1
+ · · ·+ 1

pk
and

n− k + 1

2
≤ 1

pk+1
+ · · ·+ 1

pn
,

then M̃a : lp1 × · · · × lpk → Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple s-
summing.

(ii) If
n− k + 1

2
≤ 1

pk+1
+ · · ·+ 1

pn
and

k + 1

2
>

1

p1
+ · · ·+ 1

pk
,

then M̃a : lp1 × · · · × lpk → Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple s-
summing if and only if a ∈ lu, where

1

u
=
k + 1

2
−
(

1

p1
+ · · ·+ 1

pk

)
.

(iii) If
n− k + 1

2
>

1

pk+1
+ · · ·+ 1

pn
and

k + 1

2
≤ 1

p1
+ · · ·+ 1

pk
,

then M̃a : lp1 × · · · × lpk → Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple s-
summing.

(iv) If
n− k + 1

2
>

1

pk+1
+ · · ·+ 1

pn
and

k + 1

2
>

1

p1
+ · · ·+ 1

pk
,

then M̃a : lp1 × · · · × lpk → Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple s-
summing if and only if a ∈ lu, where u is as in (ii).
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Proof. Let (x1, . . . , xk) ∈ lp1 × · · · × lpk . Then

Max1···xk = M̃a(x1, . . . , xk) : lpk+1
× · · · × lpn → l2

and by Proposition 5(b) two situations are possible, denoted by (a) and (b)
below.

(a) If (n− k + 1)/2 ≤ 1/pk+1 + · · · + 1/pn then Max1···xk is multiple
s-summing and for some constants c, C > 0,

c‖ax1 · · ·xk‖∞≤ πmult
s (M̃a(x1, . . . , xk)) = πmult

s (Max1···xk)≤C‖ax1 · · ·xk‖∞.

Thus, in this case M̃a : lp1 × · · · × lpk → Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple
s-summing if and only if Ma : lp1 × · · · × lpk → l∞ is multiple s-summing.

By Proposition 5(b) we get:
(i) If (k + 1)/2 ≤ 1/p1 + · · ·+ 1/pk, then

M̃a : lp1 × · · · × lpk → Πmult
s (lpk+1

, . . . , lpn ; l2)

is multiple s-summing.
(ii) If (k + 1)/2 > 1/p1 + · · · + 1/pk, then M̃a : lp1 × · · · × lpk →

Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple s-summing if and only if a ∈ lu, where
1/u = (k + 1)/2− (1/p1 + · · ·+ 1/pk).

(b) If (n−k+1)/2> 1/pk+1+· · ·+1/pn, thenMax1···xk is multiple s-sum-
ming if and only if a ∈ lt, where 1/t = (n− k + 1)/2− (1/pk+1+ · · ·+1/pn)
and for some constants c, C > 0,

c‖ax1 · · ·xk‖t ≤ πmult
s (M̃a(x1, . . . , xk)) = πmult

s (Max1···xk) ≤ C‖ax1 · · ·xk‖t.

Thus in this case M̃a : lp1 × · · · × lpk → Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple
s-summing if and only if Ma : lp1 × · · · × lpk → lt is multiple s-summing.

By Proposition 5(b) (t > 2 is obvious) this is equivalent to:
(iii) If (k + 1)/2 ≤ 1/p1 + · · · + 1/pk, then M̃a : lp1 × · · · × lpk →

Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple s-summing.
(iv) If (k + 1)/2 > 1/p1 + · · · + 1/pk, then M̃a : lp1 × · · · × lpk →

Πmult
s (lpk+1

, . . . , lpn ; l2) is multiple s-summing if and only if a ∈ lu, with
u as stated.

We will need the following particular case of Proposition 6.

Corollary 6. Let n ≥ 2 be a natural number, 1 ≤ k ≤ n−1, 1 < p < 2,

a ∈ l∞, Ma : lp ×
(n)
· · · × lp → l2 the multiplication operator and 1 ≤ s ≤ 2.

(i) If

p ≤ 2k

k + 1
and p ≤ 2(n− k)

n− k + 1
,

then M̃a : lp ×
(k)
· · · × lp → Πmult

s (lp,
(n−k). . . , lp; l2) is multiple s-sum-

ming.
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(ii) If
2k

k + 1
< p ≤ 2(n− k)

n− k + 1
,

then M̃a : lp ×
(k)
· · · × lp → Πmult

s (lp,
(n−k). . . , lp; l2) is multiple s-sum-

ming if and only if a ∈ lu, where 1/u = (k + 1)/2− k/p.
(iii) If

2(n− k)
n− k + 1

< p ≤ 2k

k + 1
,

then M̃a : lp ×
(k)
· · · × lp → Πmult

s (lp,
(n−k). . . , lp; l2) is multiple s-sum-

ming.
(iv) If

p >
2k

k + 1
and p >

2(n− k)
n− k + 1

,

then M̃a : lp×
(k)
· · · ×lp → Πmult

s (lp,
(n−k). . . , lp; l2) is multiple s-summing

if and only if a ∈ lu, where u is as in (ii).
Taking p = 2n

n+1 in Corollary 6 we get (only (iv) can occur and u = 2n
n−k )

Corollary 7. Let n ≥ 2 be a natural number, 1 ≤ k ≤ n − 1, a ∈ l∞,
Ma : l2n/(n+1)×

(n)
· · · ×l2n/(n+1) → l2 the multiplication operator and 1 ≤ s ≤ 2.

Then

M̃a : l2n/(n+1) ×
(k)
· · · × l2n/(n+1) → Πmult

s (l2n/(n+1),
(n−k). . . , l2n/(n+1); l2)

is multiple s-summing if and only if a ∈ l2n/(n−k).
Now we can give an example of a multiple s-summing n-linear operator

with the property that for each proper partition of {1, . . . , n} the natural
associated multilinear operators are not multiple s-summing, 1 ≤ s ≤ 2. As
far as we know, this is the first example of this kind.

Corollary 8. Let n ≥ 2 be a natural number, 1 ≤ s ≤ 2, a ∈ l∞ but
a /∈ l2n, and Ma : l2n/(n+1)×

(n)
· · · × l2n/(n+1) → l2 the multiplication operator.

Then:
(i) Ma is multiple s-summing;
(ii) for each proper partition (A,B) of {1, . . . , n} the operator

MA,B
a :

∏
i∈A

l2n/(n+1) → Πmult
s

(∏
i∈B

l2n/(n+1), l2

)
is not multiple s-summing.

Proof. (i) follows from Proposition 5(c)(i).
(ii) Suppose that there exists a proper partition (A,B) of {1, . . . , n} such

that
(∗) MA,B

a :
∏
i∈A

l2n/(n+1) → Πmult
s

(∏
i∈B

l2n/(n+1), l2

)
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is multiple s-summing. Denote card(A) = k and thus card(B) = n − k
(1 ≤ k ≤ n− 1). Then (∗) asserts that

M̃a : l2n/(n+1) ×
(k)
· · · × l2n/(n+1) → Πmult

s (l2n/(n+1),
(n−k). . . , l2n/(n+1); l2)

is multiple s-summing. From Corollary 7 we get a ∈ l2n/(n−k). Since
2n/(n− k) ≤ 2n for 1 ≤ k ≤ n − 1 we have l2n/(n−k) ⊂ l2n and thus
a ∈ l2n, which contradicts the hypothesis a /∈ l2n.
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