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Order theory and interpolation in operator algebras
by

Davip P. BLECHER (Houston, TX) and CHARLES JOHN READ (Leeds)

Abstract. In earlier papers we have introduced and studied a new notion of pos-
itivity in operator algebras, with an eye to extending certain C*-algebraic results and
theories to more general algebras. Here we continue to develop this positivity and its as-
sociated ordering, proving many foundational facts. We also give many applications, for
example to noncommutative topology, noncommutative peak sets, lifting problems, peak
interpolation, approximate identities, and to order relations between an operator algebra
and the C*-algebra it generates. In much of this it is not necessary that the algebra have
an approximate identity. Many of our results apply immediately to function algebras, but
we will not take the time to point these out, although most of these applications seem
new.

1. Introduction. An operator algebra is a closed subalgebra of B(H),
for a Hilbert space H. In a series of papers (see e.g. [14, [I5l 17, [18]) we
have studied such algebras. In many of these works our operator algebras
have contractive approximate identities (cai’s), and we call such algebras
approzimately unital. In particular in [I4} [15] B7] we introduced and studied
a new notion of positivity in operator algebras. We have shown elsewhere
that the ‘completely positive’ maps on C*-algebras or operator systems in
our new sense are precisely the completely positive maps in the usual sense;
however, the new notion of positivity allows the development of useful order
theory for more general spaces and algebras. Our main goals are to extend
certain useful C*-algebraic results and theories to more general algebras; and
also to develop ‘noncommutative function theory’ in the sense of generalizing
certain parts of the classical theory of function spaces and algebras [25].
Simultaneously we are developing applications (see also e.g. [I1} 12] with
Matthew Neal, and [g]).
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With the same goals in mind, in the present paper, we continue the
development of foundational aspects of this positivity and of the associated
ordering for operator algebras. We also give many applications, for example
to noncommutative topology, noncommutative peak sets, lifting problems,
peak interpolation, approximate identities, and to order relations between
an operator algebra and the C'*-algebra it generates.

Before proceeding further, we make an editorial /historical note: approx-
imately half of the present paper was formerly part of a preprint [16]. The
latter has been split into several papers, each of which has taken on a life of
its own, e.g. the present paper which focuses on order in operator algebras,
and [13] which covers the more general setting of Banach algebras. The
reader is encouraged to browse the latter paper for complementary theory;
we will not prove results here that may be found in [13] except if there is a
much simpler proof in the operator algebra setting.

As in the aforementioned papers, a central role is played by the set
Fa={ac A:||1—a| <1} (here 1 is the identity of the unitization A! if A
is nonunital). We will be interested in four ‘cones’ or notions of ‘positivity’
in A, and the relations between them. The biggest of these is the set of
accretive operators

tgy={a€ A:Re(a) =a+a" >0},

namely the elements of A whose numerical range in A! is contained in the
closed right half-plane. This has as a dense subcone
ca=R484

(see e.g. [15, Theorem 3.3]). In turn the latter cone contains as a dense
subcone (see Lemma the cone of sectorial operators of angle p < /2,
which we use less frequently. By sectorial angle p we mean that the numerical
range is contained in the sector S, consisting of numbers re’ with argument
6 such that || < p (cf. e.g. [26], B9]). The fourth notion, ‘near positivity’, is
more subtle. If in the statement of a result an element of A is described as
‘nearly positive’, this means that if € > 0 is given one can choose x in the
statement to be in the previous three cones, but also sectorial with angle p
so small that = is within distance € of an actual positive operator. Note that
if an operator z is sectorial with acute angle p so small that ||z||sinp < €
for example, then Re(z) > 0 and

|z = Re(z)|| = [[Im(2)]| = sup{[Im(z¢, ()| : ¢ € Ball(H)} <,

so that z is within distance € of the positive operator Re(z). Such nearly
positive operators usually arise because t4 is closed under taking (principal)
roots, and the nth root of an accretive operator is sectorial with angle as
small as desired for n large enough. We will also usually require our nearly
positive operators to be in %SA too.
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Elements of these ‘cones’, and their roots, play the role in many sit-
uations of positive elements in a C*-algebra. There are some remarkable
relationships between operator algebras and the classical theory of ordered
linear spaces (due to Krein, Ando, Alfsen, and many others). We mention
some examples of this (and see [13], particularly Section 6 there, for more):
In the language of ordered Banach spaces, an operator algebra is approx-
imately unital iff v4 and c4 are generating cones (this is sometimes called
positively generating or directed or co-normal). That is, iff A = vq — ta,
for example. Read’s theorem states that any approximately unital operator
algebra has a cai in 3F4 (see [37], although there are now several much
shorter proofs [8, 13]), and indeed, by taking roots, nearly positive. We
will show that A is cofinal in any C*-algebra B which it generates. In-
deed, given any b € By and € > 0 there exists nearly positive a € A with
b =< a = (||b]] +€)l in the ordering induced by the cone above. We will also
investigate the relationship between such results and ‘noncommutative peak
interpolation’.

Turning to the layout of our paper, in Section 2 we study general proper-
ties of these cones and the related ordering. This is a collection of results on
positivity, some of which are used elsewhere in this paper, or in other papers,
and some of which are of independent interest. In particular we prove sev-
eral surprising order-theoretic properties, some of which are new relations
between an operator algebra and the C*-algebra it generates. Many of these
order-theoretic properties turn out to be equivalent to the existence of a cai.
The short Section 3 studies ‘strictly positive’ elements, a topic that is quite
important for C*-algebras.

The lengthy Section 4 concerns applications to noncommutative topol-
ogy, noncommutative peak sets, lifting problems, and peak interpolation.
First we present versions of some of our previous Urysohn lemmas and peak
interpolation results for operator algebras (see e.g. [14, [12]), but now insist-
ing that the ‘interpolating element’ is ‘nearly positive’ in the sense defined
above (and also in %8 4). This also solves the problems raised at the end
of [12]. We also prove a Tietze extension theorem for operator algebras, and
a strict form of the Urysohn lemma for operator algebras, generalizing the
usual strict form of the Urysohn lemma from topology, and also generalizing
the Brown—Pedersen strict noncommutative Urysohn lemma (see [36]). See
[20] for a recent paper containing ‘Urysohn lemmas’ for function algebras;
our Urysohn lemma applied to the algebras considered there is more general
(see the discussion after Theorem . Indeed, many results in our paper
apply immediately to function algebras (uniform algebras), that is, to uni-
formly closed subalgebras of C'(K), since these are special cases of operator
algebras. We will not take the time to point these out, although most of
these applications seem new.
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We now turn to notation and some background facts (for more details
the reader should consult our previous papers in this series, e.g. [14} [15]
17, 18, 13, 10]). In this paper H will always be a Hilbert space, usually
the Hilbert space on which our operator algebra is acting, or is completely
isometrically represented.

We recall that by a theorem due to Ralf Meyer, every operator algebra
A has a unitization A" which is unique up to completely isometric homo-
morphism (see [10, Section 2.1]). Below 1 always refers to the identity of
Al if A has no identity. We almost always set A = A if A already has an
identity.

We write oa(z) for the operator algebra generated by z in A, the smallest
closed subalgebra containing z. We will often use C*-algebras generated
by an operator algebra A (or containing A completely isometrically as a
subalgebra). For example, the disk algebra A(ID) generates C(T), C(D), and
the Toeplitz C*-algebra (here T and D represent the circle and open unit
disk respectively). However, we want anything we say about an operator
algebra A to be independent of which particular generated C*-algebra was
used.

A state of an approximately unital operator algebra A is a functional with
lle|l = limy p(e;) = 1 for some (or any) cai (e;) for A. These extend to states
of A'. They also extend to a state on any C*-algebra B generated by A,
and conversely any state on B restricts to a state of A. See [10], Section 2.1]
for details. If A is not approximately unital then we define a state on A
to be a norm 1 functional that extends to a state on Al. We write S(A)
for the collection of such states; this is the state space of A. These extend
further by the Hahn—Banach theorem to a state on any C*-algebra generated
by A!, and therefore restrict to a positive functional on any C*-algebra B
generated by A. The latter restriction is actually a state, since it has norm 1
(even on A). Conversely, every state on B extends to a state on B!, and this
restricts to a state on A'. From these considerations it is easy to see that
states on an operator algebra A may equivalently be defined to be norm 1
functionals that extend to a state on any C*-algebra B generated by A.

For us a projection is always an orthogonal projection, and an idempotent
merely satisfies 22 = z. If X, Y are sets, then XY denotes the closure of the
span of products of the form xy for z € X and y € Y. We write X for the
positive operators (in the usual sense) that happen to belong to X. We write
M,,(X) for the space of n x n matrices over X, and of course M,, = M, (C).
The second dual A** is also an operator algebra with its (unique) Arens
product; this is also the product inherited from the von Neumann algebra
B** if A is a subalgebra of a C*-algebra B. Note that A has a cai iff A**
has an identity 14+« of norm 1, and then A' is sometimes identified with
A + C1 g+«. We write 14+« very often as e.
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For an operator algebra, not necessarily approximately unital, we recall
that £§4 = {a € A: |1 —2a|| < 1}. Here 1 is the identity of the unitization
Al if A is nonunital. As we said, A! is uniquely defined, and can be viewed
as A+ Cly if A is completely isometrically represented as a subalgebra of
B(H). Hence so is A' + (A1)* uniquely defined, by e.g. 1.3.7 in [10]. We
define A+ A* to be the obvious subspace of A 4 (A!)*. This is well defined
independently of the particular Hilbert space H on which A is represented, as
shown at the start of Section 3 in [15]. Thus a statement such as a +b* > 0
makes sense whenever a,b € A, and is independent of the particular H
on which A is represented. This gives another way of seeing that the set
ty ={a € A:a+a* >0} is independent of the particular representation
too.

Note that z € ¢4 = R T4 iff there is a positive constant C' with x*x <
C(z + z¥).

We recall that an r-ideal is a right ideal with a left cai, and an ¢-ideal
is a left ideal with a right cai. We say that an operator algebra D with cai,
which is a subalgebra of another operator algebra A, is a HSA (hereditary
subalgebra) in A, if DAD C D. See [9] for the basic theory of HSA’s. HSA’s
in A are in an order preserving, bijective correspondence with the r-ideals
in A, and with the f-ideals in A. Because of this symmetry we will usually
restrict our results to the r-ideal case; the f-ideal case will be analogous.
There is also a bijective correspondence with the open projections p € A**
(also called open projections for A), by which we mean that there is a net
xy € A with z; = pr; — p weak® in A™ or equivalently with x; = pzyp — p
weak® (see [9, Theorem 2.4]). These are also the open projections p in the
sense of Akemann [I] in B**, where B is a C*-algebra containing A, such that
p € AL If A is approximately unital then the complement pt = 144« — p
of an open projection for A is called a closed projection for A. A closed
projection ¢ for which there exists an a € Ball(A) with ag = qa = ¢ is called
compact for A. This is equivalent to ¢ being a closed projection with respect
to Al if A is approximately unital. See [12, [15] for the theory of compact
projections in operator algebras.

If x € ty then it is shown in [I5l Section 3| that the operator algebra
oa(x) generated by x in A has a cai, which can be taken to be a normal-
ization of (z'/™), and the weak* limit of (z!/™) is the support projection
s(z) for z. This is an open projection, and in a separable operator al-
gebra these are the only open projections. For a unital operator algebra
the complement of an open projection (different from 1) for A is a peak
projection, thus for A separable unital operator algebra the peak projec-
tions are exactly the closed projections for A. There are many equivalent
definitions of peak projections (see e.g. [28 O] 12, [15]). For any operator
algebra A we recall that if x is in %SA then the peak projection associ-
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ated with z is u(z) = w*lim, z". This is the weak® limit in A**, which
always exists for z in %3 A, and it is nonzero if z has norm 1 [12, Corol-
lary 3.3] (or equivalently if it has 1 in its spectrum, or attains value 1 on
some state). For other contractions x this weak® limit may not exist or
may be zero, but if this weak® limit does exist and is nonzero then it is
a peak projection, and every peak projection is of this form (indeed even
equals w* lim,, a” for some a € %SA). We have u(xl/”) = u(x) for x € %sA
(see [12, Corollary 3.3]). Compact projections for approximately unital al-
gebras are precisely the infima (or decreasing weak* limits) of collections of
such peak projections [12]. We will say more about peak projections around
Lemma (4.3l

In this paper we will sometimes use the word ‘cigar’ for the wedge-shaped
region consisting of numbers re? with argument 6 such that |6 < p (for some
fixed small p > 0), which are also inside the circle |z —1/2| < 1/2. If p is
small enough so that | Im(z)| < €/2 for all z in this region, then we will call
this a ‘horizontal cigar of height < € centered on the line segment [0, 1] in
the z-axis’.

By numerical range, we will mean the one defined by states, while the
literature we quote usually uses the one defined by vector states on B(H).
However, since the former range is the closure of the latter, as is well known,
this will cause no difficulties. For any operator T' € B(H) whose numerical
range does not include strictly negative numbers, and for any « € [0, 1], there
is a well-defined ‘principal’ root T, which obeys the usual law T¢T# = T8
if a4+ <1 (see e.g. [33,30]). If the numerical range is contained in a
sector Sy = {re?? : 0 < r,and —¢p < 6 < ¢} where 0 < 1 < 7, then
things are better still. For fixed a € (0, 1] there is a constant K > 0 with
| T =S < K||T —S||* for operators S, T with numerical range in Sy, (see
[33, [30]). Our operators T will in fact be accretive (that is, ©» < 7/2), and
then these powers obey the usual laws such as T*T? = T8 for all a, B > 0,
(T*)P = T for a € (0,1] and any 8 > 0, and (T*)® = (T*)*. We shall
see in Lemma that if 1) < 7/2 then T' € ¢p(g). The numerical range of
T lies in Sy /o for any a € (0,1). Indeed, if n € N then T'/™ is the unique
nth root of T' with numerical range in Sy/(,). See e.g. [39, Chapter 1V,
Section 5], [26], and [30] for all of these facts. Some of the following facts
are no doubt also in the literature; since we do not know of a reference we
sketch short proofs.

LEMMA 1.1. For an accretive operator T' € B(H) we have:
(1) ()™ =T for positive scalars ¢, and o > 0.
(2) a— T is continuous from (0,00) into B(H) with the norm topol-

0gy.
(3) T™ € oa(T), the operator algebra generated by T, if a > 0.
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Proof. (1) This is obvious if & = 1/n for n € N by the uniqueness of
nth roots discussed above. In general it can be proved e.g. by a change of
variable in the Balakrishnan representation for powers (see e.g. [26]), or by
the continuity in (2).

(2) By a triangle inequality argument, and the inequality for |7 — S¢||
above, we may assume that T' € cp(y). By (1) we may assume that T €
%gB(H) Define

f(2) = ((1=2)/2)* = (1-2)/2)°, z€C |z[<L
Via the relation T%T% = T8 above, we may assume that 5 € (0,1]. Fix
such 8. We leave it as an exercise using calculus and manipulations with
powers of complex numbers that |f(2)| < g(Joe — 5]) on the unit disk, for a
function g with lim;_,o+ g(t) = 0. By von Neumann’s inequality, used as in
[15, Proposition 2.3], we have
1T = TP = || £(1 = 2T)|| < g(|a — B]).

Now let o« — £.

(3) We proved this in the second paragraph of [I5 Section 3] if « = 1/n
for n € N. Hence for m € N we have by the paragraph above the lemma
that 7™/™ = (TY/™)™ € oa(T). The general case for a > 0 then follows by
the continuity in (2). m

As in [33, Theorem 1] and [I3, Lemma 3.8], if o € (0,1) then there exists
a constant K such that if a,b € tp(y) for a Hilbert space H, and ab = ba,
then [|(a® — b)C|| < K|[(a — b)C|* for € H.

2. Positivity in operator algebras. Let A be an operator algebra, not
necessarily approximately unital for the present. Note that t4 = {a € A :
a+a* > 0} is a closed cone in A, hence is Archimedean, but it is not proper
(hence is what is sometimes called a wedge). On the other hand ¢4 = R F4
is not closed in general, but it is a proper cone (that is, ¢4 N (—c4) = (0)).
Indeed, suppose a € ¢4 N (—c4). Then |1 —ta| <1 and ||1 + sal < 1 for
some s,t > 0. By convexity we may assume s = t (by replacing them by
min{s,t}). It is well known that in any Banach algebra with an identity of
norm 1, the identity is an extreme point of the ball. Applying this in A! we
deduce that a = 0 as desired.

As we said earlier without proof, for any operator algebra A, x € ty
iff Re(¢(z)) > 0 for all states o of Al. Indeed, such ¢ extend to states on
C*(A"Y). So we may assume that A is a unital C*-algebra, in which case
the result is well known (x + z* > 0 iff 2Re(¢(x)) = ¢(x + z*) > 0 for
all states ). We remark though that for an operator algebra which is not
approximately unital, it is not true that x € va iff Re(¢(x)) > 0 for all
states ¢ of A, with states defined as in the introduction. An example would
be C @ C, with the second summand given the zero multiplication.
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The v-ordering is simply the order < induced by the above closed cone;
that is, b < a iff a — b € v4. If A is a subalgebra of an operator algebra B,
it is clear from a fact mentioned in the introduction (or at the start of [15]
Section 3]) that the positivity of a + a* may be computed with reference
to any containing C*-algebra, that is, v4 C tp. If A, B are approximately
unital subalgebras of B(H) then it follows from [15, Corollary 4.3(2)] that
A C Biff vty C tp. As in [I4], Section 8|, t4 contains no idempotents which
are not orthogonal projections, and no nonunitary isometries u (since by the
analogue of [14, Corollary 2.8] we would have wu* = s(uu*) = s(u*u) = I).
In [I5] it is shown that t4 = t4.

The following begins to illustrate the interesting order theory that exists
in an operator algebra A and its generated C*-algebra B. Note particularly
how the order-theoretic results (3)—(7) flow out of the new ‘cofinality of A in
B result’ (item (2) or (2')). See [13] (particularly Section 6 there) for more
interesting connections to, and remarkable relationships with, the classical
theory of ordered linear spaces. In Section 4 we shall see the relationship
between (2) and ‘noncommutative peak interpolation’.

THEOREM 2.1. Let A be an operator algebra which generates a C*-
algebra B, and let Uy denote the open unit ball {a € A : |la|| < 1}. The
following are equivalent:

(1) A is approximately unital.
(2) For any positive b € Up there exists a € t4 with b <X a.
) Same as (2), but also a € 3T 4 and nearly positive.
(3) For any pair x,y € Uy there exist nearly positive a € %%A with
r=<aandy<a.
) For any b € Uy there exist nearly positive a € %SA with —a < b <X a.
) For any b € Uy there exist x,y € %SA with b=z —y.
) ta is a generating cone (that is, A =1t4 —t4).
) A=rcq—cqu.
Proof. (1)=>(2'). Let (e;) be a cai for A in $F4 (by Read’s theorem
stated in the Introduction). By [10} 2.1.6], (e;) is a cai for B, and hence so

is (¢f), and f; = Re(e;). By the proof of Cohen’s factorization theorem, as
adapted in e.g. [I3, Lemma 4.8], we may write b?> = zwz, where 0 < w < 1

and
z= Z Q*kftk = Re (Z Q*ketk),
k=1 k=1

where {f,} are some of the f,. If a = > 3% 27%¢;, € 3T 4, then z = Re(a).
Then b? < 22, so that b < z and b < a. We also have b < al/™ for each n € N
by [7, Proposition 4.7], which gives the ‘nearly positive’ assertion.
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(2')=(3). By C*-algebra theory there exists a positive b € Up with x
and y ‘dominated’ by b. Then apply (2').

(3)=(4). Apply (3) to b and —b.

(4):>(6). b= aT'i_b — aT_b €Ery —ta.

(6)=(1). Thisis in [I5] Section 4], but we give a variant of the argument.
First suppose that A is a weak™ closed subalgebra of B(H). Each = € t4 has
a support projection p, € B(H) by the discussion in [7, Section 3], which
is just the weak* limit of (#'/™), and hence is in A. Then p = Ve, Pr 18
in A, and for any = € t4 we have

pxr = ps(z)r = s(x)r = .

Since ty4 is generating, we have px = x for all z € A. Similarly, zp = =x.
So A is unital. In the general case, we can use the fact from the theory of
ordered spaces [5] that if the order in A is generating, then the order in A*
is normal, and then the order in A** is generating. The latter forces A**
to be unital, and hence A is approximately unital by e.g. [10, Proposition
2.5.8].

(1)=(5). Apply [13, Theorem 6.1].

It is obvious that (2) implies (2), and that (5) implies (7), which im-
plies (6).

(2)=(6). If a € A then by C*-algebra theory and (2) there exist b € By

and z €ty with —z x —b<axb<a Thusa=2E -2 %cry—t4. =

REMARKS. 1) One cannot expect to be able to choose the a in (2) with
|la]| = ||b]|. Indeed, suppose that A = {f € A(D) : f(1) =0} and B = {f €
C(T) : f(1) = 0}, with b =1 on a nontrivial arc. If b < Re(a) < |a] <1 on
that arc, then Re(a) = a = 1 on that arc too. But this implies that a = 1
always, a contradiction.

Similarly, in (3) one cannot replace U4 by Ball(A), even if A is a C*-
algebra (consider for example the universal nonunital C*-algebra generated
by two projections [38]). However, perhaps one can replace U4 by Ball(A)
in (3) (and also perhaps in (4)) if B is commutative. Some remarks on (5)
may be found in [I3] after Theorem 6.1.

2) Another proof that (1) implies (2): if b € By with ||b]| < 1 then
it is immediate from [8, Lemma 2.1] that there exists z € —F4 such that
b < —x*x — 2Re(z). Hence b < a, where a = —2z € 2§ 4.

This leads to a quick proof that (1) implies (2') if b commutes with
Re(a). Namely, first choose € > 0 such that (14 ¢€)|[b]] < 1. Let ¢ = (1 +¢€)b,
and suppose that m € N, and choose by the last paragraph a € 2§4 with
¢™ < Re(a). Hence if n € N we have 1 < Re(z) where z = (¢™ +1/n) *(a +
1/n). Tt follows from a result on p. 181 of [26] that 1 < Re(z!'/™). Thus
(c™+1/n)/™ < Re((a+1/n)"/™). Letting n — oo we obtain ¢ < Re(a'/™).
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For m > mg say, we have

1/m
al/m _ 41/m (a> e 1+ GS’A.

4 2

Dividing by 1 + € and taking m large enough we obtain (2').
3) Of course all parts of the theorem are trivial if A is unital.

2.1. Non-approximately unital operator algebras. Most of the
results in this section apply to approximately unital operator algebras. We
offer a couple of results that are useful in applying the approximately unital
case to algebras with no approximate identity. We will use the space Ay =
tg Aty studied in [I5, Section 4]; it is actually a HSA in A (and will be an
ideal if A is commutative).

COROLLARY 2.2. For any operator algebra A, the largest approximately
unital subalgebra of A is

AH:tA—tA:CA—CA.
In particular these spaces are closed, and form a HSA of A.

If A is a weak® closed operator algebra then Apg = qAq where q is the
largest projection in A. In this case Ap is weak® closed.

Proof. In the language of [I5 Section 4], and using [15, Corollary 4.3],
ta = ty,, and the largest approximately unital subalgebra of A is the HSA
Ap =tay —tay =4 —ta,
by Theorem [2.1(6). A similar argument works in the c4 case, with vy,
replaced by ¢4, in view of Theorem [2.1(7) and facts from [I5, Section 4]

about §4,,.

To see the final assertion, note that if p is as in the proof of (6)=(1)
in Theorem then certainly ¢ < p since ¢ = s(q) € v4. However, p < ¢
since p is a projection in A. So p = ¢, and this acts as the identity on
ta—ta = Ag. So Ay C qAq, and conversely gAq C Ap since Ay is a HSA,
or because Ay is the largest (approximately) unital subalgebra of A. m

LEMMA 2.3. Let A be any operator algebra. Then for every n € N,

Mp(Ag) = Mo(A)H, T, (A) = M (Ag)s SMa(A) = S M (Ag)
(these are the matriz spaces).

Proof. Clearly M, (Ap) is an approximately unital subalgebra of M, (A).
So My, (Ap) is contained in M, (A)m, since the latter is the largest approx-
imately unital subalgebra of M, (A). To show that M, (A)gy C M,(Ax) it
suffices, by Corollary to show that vy, 4y C Mu(An). So suppose that
a = [a;j] € My,(A) with a +a* > 0. Then a;; + a; > 0 for each i. We also
have Zi,j Zi(ai; + a;‘-i)zj > 0 for all scalars z1,...,2,. So Ei,j Zja;jzj € ta.
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Fix 4,7, which we will assume to be 1,2 for simplicity. Set all 2 = 0 if
k¢ {i,j} ={1,2}, to deduce
2
Z122a12 + Z2z1021 = Z ZiQij 25 — (|Zl|2a11 + !22|2a22) €ta—ta=Ap.
ij=1

Choose z; = 1; if z5 = 1 then a12+ag; € Ap, while if z9 = i then i(aj2 —a21)
€ Ag. So a2, a21 € Ag. A similar argument shows that a;; € Ay for all 4, j.
Thus M, (Ag) = M, (A)g, from which we deduce by [15, Corollary 4.3(1)]
that

M, (A) = ™™, (A)y = M, (Ag)-
Similarly SM,L(A) = SMTL(A)H = SMn(AH)' | |

The last result is used in [7].
If S C vty for an operator algebra A, and if xy = yx for all z,y € S,
write oa(.S) for the smallest closed subalgebra of A containing S.

PROPOSITION 2.4. If S is any subset of ta for an operator algebra A,
then oa(S) has a cai.

Proof. Let C' = oa(S). Then t¢ = C' Nty4, so that
C CrtoCrog=CqHxCC.

Hence C = Cp, which is approximately unital. =

2.2. The F-transform and existence of an increasing approx-
imate identity. In [I5] the sets %SA and t4 were related by a certain
transform. We now establish a few more basic properties of this transform.
The Cayley transform x(z) = (x — I)(x + I)~! of an accretive z € A exists
since —1 ¢ Sp(x), and is well known to be a contraction. Indeed, it is well
known (see e.g. [39]) that if A is unital then the Cayley transform maps
t4 bijectively onto the set of contractions in A whose spectrum does not
contain 1, and the inverse transform is T — (I + T)(I — T)~!. The Cay-
ley transform maps the accretive elements x with Re(x) > el for some
€ > 0 onto the set of elements T' € A with ||T']| < 1 (see e.g. [10, 2.1.14]).
The F-transform F(z) = 1 — (x +1)7! = z(z + 1)~! may be written as
F(z) = (1 + k(2)). Equivalently, r(z) = —(1 — 2§(2)).

LEMMA 2.5. For any operator algebra A, the §-transform maps v 4 bijec-
tively onto the set of elements of %3A of norm < 1. Thus §(ta) =UaN %SA.

Proof. First assume that A is unital. By the last equations §F(t4) is
contained in the set of elements of %& 4 whose spectrum does not contain 1.
The inverse of the §-transform on this domain is 7'(I — T)~!. To see for
example that T(I — T)™' € v4 if T € }Fa note that 2Re(T( — T)7!)
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equals
(-7 T*"(I-T)+ T -TT)I-T)""
= ([ -T Y T+T"-2T"T)(I -T)" 1,

which is positive since T*T is dominated by Re(T) if T € 1. Hence for
any (possibly nonunital) operator algebra A the §-transform maps t 41 bijec-
tively onto the set of elements of %S 41 whose spectrum does not contain 1.
However, this equals the set of elements of %S 41 of norm < 1. Indeed, if
II§(z)]] =1 then H%(l + K(ZE))H =1, and so 1 — k(z) is not invertible by [3|
Proposition 3.7]. Hence 1 € Sp 41 (k(x)) and 1 € Spy(F(x)). Since F(z) € A
iff z € A, we are done. u

Thus in some sense we can identify t4 with the strict contractions in %S A-
This for example induces an order on this set of strict contractions.

We recall that the positive part of the open unit ball of a C*-algebra is a
directed set, and indeed is a net which is a positive cai for B (see e.g. [35]).
The following generalizes this to operator algebras:

PROPOSITION 2.6. If A is an approximately unital operator algebra, then
UsnN %SA 1s a directed set in the < ordering, and with this ordering L{AO%SA
18 an increasing cai for A.

Proof. We know §(t4) =Ua N %&4 by Lemma By Theorem 3),
Us N %SA is directed by <. So we may view U4 N 5§ 4 as a net (e;). Given

z € 334, choose n such that |[Re(z!/")z — z|| < € (note that as in the first
few lines of the proof of Theorem [2.1} (Re(z!/™)) is a cai for C*(oa(x)). If
zE€ULN %&4 with z/m < z then
2*[1 — 2%z < (1 — Re(2))z < z*(1 — Re(z"/™))z < e.

Thus e;x — x for all x € %S’A. "

Note that Uy Nty is directed, by Theorem [2.1](3), but we do not know
if it is a cai in this ordering.

The following is a variant of [I3], Corollary 2.10]:

COROLLARY 2.7. Let A be an approximately unital operator algebra, and
B a C*-algebra generated by A. If b € By with ||b]| < 1 then there is
an increasing cai for A in %S'A, every term of which dominates b (where
“increasing’ and ‘dominates’ are in the < ordering).

Proof. Since Uy N %SA is a directed set, {a € Ua N %&4 :b<xa}lisa
subnet of the increasing cai in the last result. m

We remark that any operator algebra A with a countable cai, and in

particular any separable approximately unital A, has a commuting cai which
is increasing (for the < ordering), and also in %S 4 and nearly positive.
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Namely, by [14], Corollary 2.18] we have A = z Az for some = € %SA, so that
(/™) is a commuting cai which is increasing by [7, Proposition 4.7]. For a
related fact see Lemma [3.6] below.

2.3. Real positive maps and real states. An R-linear ¢ : A — R
(resp. C-linear T': A — B) will be said to be real positive if p(t4) C [0, 00)
(resp. T'(t4) C vp). By the usual trick, for any R-linear ¢ : A — R, there is
a unique C-linear ¢ : A — C with Re(@) = ¢, and clearly ¢ is real positive
(resp. bounded) iff @ is real positive (resp. bounded).

COROLLARY 2.8. Let A be an approzimately unital operator algebra, and
B a C*-algebra generated by A. Then every real positive ¢ : A — R extends
to a real positive real functional on B. Also, ¢ is bounded.

Proof. Theorem (2) says that the ordering in A is dominating or
‘cofinal’ in B in the language of ordered spaces (see e.g. [29]). The first
assertion is a well known consequence in the theory of ordered spaces of
this cofinal property (see e.g. [23] or |29, Theorem 1.6.1]). Similarly the
final assertion follows from a general principle for an ordered Banach space
(X, <) whose order is generating: if f : X — R is positive but (by way of
contradiction) unbounded then by a theorem of Ando (see e.g. [6l Theorem
I1.1.2]), f is unbounded on Ball(X). So there exist 3, € X4 of norm < but
with f(zx) > 2. Son < S0 27% f(ar) < F(OSR2, 27 %ay) for all n. This is
the desired contradiction. m

COROLLARY 2.9. Let T : A — B be a C-linear map between approzi-
mately unital operator algebras, and suppose that T is real positive (resp.
suppose that the nth matriz amplifications T, are each real positive; cf. [7,
Definition 2.1]). Then T is bounded (resp. completely bounded).

Proof. First suppose that B = C. Then Re(T) is real positive, hence
bounded by Corollary It is then obvious that T is bounded.

In the general case, we can assume B is a unital C*-algebra. Let ¢ €
S(B), and ¢ = ¢ o T. Then ¢ is real positive, hence bounded. Thus there
exists a constant K such that for all x € Ball(A) we have |[¢(T(x))| =
|p(z)| < K. By the ‘Jordan decomposition’ in B*, it follows that [¢(7T'(z))| <
4K for all ¢ € Ball(B*). Thus T is bounded. In the ‘respectively’ case,
applying the above at each matrix level shows that the nth amplifications
T,, are each bounded. The proof in [7, Section 2] shows that T" extends to
a completely positive map on an operator system, and it is known that
completely positive maps are completely bounded. =

REMARK. It follows from this that in the ‘Extension and Stinespring
dilation theorem for real completely positive maps’ from [7], it is unnecessary
to assume that the RCP maps defined in [7, Definition 2.1] are (completely)
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bounded. One only needs T to be linear and real positive, and similarly at
each matrix level.

We will write CE* for the real dual cone of t4, the set of continuous
R-linear ¢ : A — R such that ¢(t4) C [0,00). Since ¢4 = t4, we see that
¢, is also the real dual cone of c4. It is a proper cone, for if p, —p € &,
then p(a) = 0 for all a € vy, hence p = 0 by the fact above that the norm
closure of ty —t4 is A.

LEMMA 2.10. Suppose that A is an approximately unital operator al-
gebra. The real dual cone . equals {tRe(v)) : 1 € S(A), t € [0,00)}. It
also equals the set of restrictions to A of the real parts of positive function-
als on any C*-algebra containing (a copy of) A as a closed subalgebra. The
prepolar of CE*, which equals its real predual cone, is va; and the polar of
CE*, which equals its real dual cone, is ta+-. Thus the second dual cone of
tA 1S ta++, and hence t4 is weak® dense in tax.

Proof. This is proved in [13] in a more general setting, but there is a
simpler proof in our case. By Corollary every real positive p : A - R
extends to a real positive real functional on B, and the latter is the real part
of a C-linear real positive functional ¢ on B. Clearly ¢ is positive in the
usual sense, and hence 9 is a positive multiple of a state on B. Restricting
to A, we see that ¢ is the real part of a positive multiple of a state on A.
Thus

B, = {tRe(y) : ¢ € S(A),t € [0,00)}.
In any C*-algebra B it is well known that b > 0 iff ¢(b) > 0 for all states ¢

of B. Hence a € t4 = ANtp iff 2Re(p(a)) = p(a + a*) > 0 for all states ¢,
and so iff a € (¢§.)o. The polar of ¢&, is

{ne A :Re(n(y)) >0 for all Y € S(A)} = tpe NA™ =t g0,

since

tp = {n € B*™ : Re(n(yp)) > 0 for allp € S(B)}.

So the real bipolar (t4)°° is t4+«. By the bipolar theorem, t4 is weak* dense
in TAo*+. m

We remark that the last several results have some depth; indeed, one
can show that they are each essentially equivalent to Read’s theorem on
approximate identities (and can be used to give a more order-theoretic proof
of that result).

We give some consequences to the theory of real states. A real state on
an approximately unital operator algebra A will be a contractive R-linear
R-valued functional on A such that ¢(e;) — 1 for some cai (e;) of A. This
is equivalent to ¢**(1) = 1, where ¢** is the canonical R-linear extension



Order theory and operator algebras 75

to A**, and 1 is the identity of A** (here we are using the canonical identi-
fication between real second duals and complex second duals of a complex
Banach space [32]). Hence p(e;) — 1 for every cai (e;) of A.

Since we can identify A' with A+ C1 4+« if we like, by the last paragraph
it follows that real states of A extend to real states of A', hence by the
Hahn-Banach theorem they extend to real states of C*(A'). We claim that
a real state 1) on a C*-algebra B is positive on By, and is zero on ¢B4. To
see this, we may assume that B is a von Neumann algebra (by extending
the state to its second dual similarly to as in the last paragraph). For any
projection p € B, C*(1,p) = £3°, and it is an easy exercise to see that real
states on £5° are positive on (¢5°)4 and are zero on i(¢5°)+. Thus ¥ (p) > 0
and ¥ (ip) = 0 for any projection p, hence 1) is positive on By and zero on
1B+ by the Krein—-Milman theorem.

We deduce:

COROLLARY 2.11. Real states on an approximately unital operator al-
gebra A are in cﬁ*. Indeed, real states are just the real parts of ordinary
states on A.

Proof. Certainly the real part of an ordinary state is a real state. If ¢ is
a real state on A, if a +a* > 0, and if ¢ is the real state extension above to
B = C*(A'), then
1. 1. .. 1.
o) = 3p(a+a’) + S3(=i-ifa —a%) = s@(a+a®) >0,
since i(a —a*) € Bsy = By — By, and ¢(i(B4+ — B1)) = 0, as we said above.
So ¢ € cﬁ*. By [13, Corollary 6.3], ¢ is the real part of a quasistate of A,
and it is easy to see that the latter must be a state. =

\V)

COROLLARY 2.12. Any real state on an approrimately unital closed sub-
algebra A of an approximately unital operator algebra B extends to a real
state on B. If A is a HSA in B then this extension is unique.

Proof. The first part is as in [35, Proposition 3.1.6]. Suppose that A is a
HSA in B and that @1, @2 are real states on B extending a real state on A.
By the above we may write ¢; = Re(v;) for ordinary states on B. Since
1 = @2 on A we have 1)1 = 12 on A. Hence 9); = 12 on B by [9, Theorem
2.10]. So ¢1 = ¢y on B. u

2.4. Principal r-ideals. In the predecessor to this paper ([16]), we
proved several facts about principal and algebraically finitely generated r-
ideals, and these were generalized to Banach algebras in [I3] with essentially
the same proofs. The main difference is that in [I3] one always had the
condition that A be approximately unital, whose purpose was simply to
ensure that t4 makes sense. For operator algebras, t4 always makes sense,
so that one can delete ‘approximately unital’ in the statements of 3.21-3.25
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n [I3]. One may also replace ‘idempotent’ by ‘projection’ in those results,
since for operator algebras the support s(z) is a projection for € t4. One
may also delete the word ‘left’ in [I3], Corollary 3.25] since a left identity is
a two-sided identity if A is approximately unital (since ee; = e; — e for the
cai (et)). Moreover, the proofs show that all of Theorem 3.2 of [14] is valid
for € v4. Similarly, the proof of [13, Corollary 4.7] gives

COROLLARY 2.13. Let A be an operator algebra. A closed r-ideal J in
A is algebraically finitely generated as a right module over A iff J = eA for
a projection e € A. This is also equivalent to J being algebraically finitely
generated as a right module over A'.

2.5. Roots of accretive elements

LEMMA 2.14. Suppose that B is a C*-algebra in its universal represen-
tation, so that B** C B(H) as a von Neumann algebra containing Ip.
Let x € 3Tp and let s(x) be its support projection, viewed in B(H). Then

2" — s(z) in the strong operator topology.

Proof. If ¢ € H, and a,, = /" then a, € %SB by [14, Proposition 2.3].
Hence a}a, < Re(ay), and
[(an—35(x))¢|1? = ((ahan—2Re(an) +5(x))¢, ¢) < ((s(x) —Re(an))¢, ¢) — 0,
since ap, and hence a} and Re(a,), converges weak® to s(z). m

LEMMA 2.15. Let A be an operator algebra, and x € A.

(1) If the numerical range of x is contained in a sector S, for p <

/2 (see notation above Lemma, then z/||Re(x)|| € #&4. So
T ECY.
(2) If x € vty then ™ € ¢y for any o € (0,1).
In particular, the elements of A which are sectorial of angle < w/2 are a

dense subcone of c4.

Proof. (1) Write = a + ib, for positive a and selfadjoint b in a con-
taining B(H). By the argument in the proof of [I4, Lemma 8.1], there
exists a selfadjoint ¢ € B(H) with b = a'/?ca'/? and |c| < tanp. Then
x = a'’?(1 +ic)al/?, and

¥z = a'*(1 +ic)*a(1 +ic)a'/? < Ca.
By the C*-identity (1 + ic)*a(1 + ic)|| equals
la'2(1 + ic)(1 + ic)*a' 2| < [laf| (L + [le]®) < llal|(1 + tan® p) = |la sec? p.

So we can take C' = ||a||sec? p. Saying that x*z < C'Re(z) is the same as
saying that = € %SA.

(2) This follows from (1) since in this case the numerical range of z® is
contained in a sector S, with p < /2.
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The final assertion follows from (1), and from the facts from the In-
troduction that z = lim,_,;- ! and that z! is sectorial of angle < /2 if
0<t<l m

REMARK. The last result is related to the remark before [14], Lemma
8.1].

Of course |[Im(z'/")|| — 0 as n — oo, for z € t4 (as is clear e.g. from
the above, or from the computation in the centered line on the second page
of our paper).

LEMMA 2.16. If a € vty for an operator algebra A, and v is a partial
isometry in any containing C*-algebra B with v*v = s(a), then vav* € tp
and (vav*)" = wva"™v* if r € (0,1) UN.

Proof. This is clear if r = k € N. It is also clear that vav* € tp. We
will use the Balakrishnan representation above to check that (vav*)" =
va"v* if r € (0,1) (it can also be deduced from the F4 case in [12]). Claim:
(t + vav*) Lvav* = v(t + a)"Lav*. Indeed, since v*va = a we have

(t + vav*)u(t + a) tav* = v(t + a)(t + a) tav* = vav*,
proving the claim. Hence for any (,n € H we have

((t +vav*)"twav* ¢, n) = (v(t +a)rav* ¢ m) = ((t + a) " av* ¢, v"n).

Hence by the Balakrishnan representation

((vav™)"¢,m) = H(t + vav®) " wav™ ¢ ) dt,

sin(r) OSO
0
which equals

ST T4+ a)~Law™, vt = (va™*C, ),

™
0

as desired. =

The last result generalizes [11, Lemma 1.4]. With the last few results in
hand, and [I3, Lemma 3.6], it appears that all of the results in [11] stated
in terms of F4 (or %3 A or c4) should generalize without problem to the t4
case. We admit that we have not yet carefully checked every part of every
result in [II] for this though, but hope to in forthcoming work.

2.6. Concavity, monotonicity, and operator inequalities. The
usual operator concavity/convexity results for C*-algebras seem to fail for
the t-ordering. That is, results of the type in [35, Proposition 1.3.11] and
its proof fail. Indeed,, functions like Re(2'/2), Re(2(1 + 2)~1),Re(z~") are
not operator concave or convex, even for operators x,y € %S 4. In fact, this
fails even in the simplest case A = C: take x = 1/2, y = (1 +4)/2. Similar
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remarks hold for ‘operator monotonicity’ with respect to the t4-ordering for
these functions.

For the t-ordering, one way one can often prove operator inequalities, or
that something is increasing, is via the functional calculus, as follows.

LEMMA 2.17. Suppose that A is a unital operator algebra and f,g are
functions in the disk algebra with Re(g — f) > 0 on the closed unit disk.
Then f(1—xz) < g(1l —x) forx € Fa.

Proof. Here e.g. f(1— =) is the ‘disk algebra functional calculus’, arising
from von Neumann’s inequality for the contraction 1 — z. The result follows
by applying [39, Proposition 3.1, Chapter IV] to g — f. m

A good illustration of this principle is the proof at the end of [7] that for
any x € %3 A, the sequence (Re(x!'/™)) is increasing. The last fact is another
example of %3 4 behaving better than t4: for contractions x € t4, we do not
in general have (Re(z'/™)) increasing with m. The matrix example

o

i 0

(communicated to us by Christian Le Merdy) will demonstrate this. This
example also shows that one need not have ||z'/™| < |lz||*/™ for z € ty,
so that one can have x € ty N Ball(4) but ||z'/™| > 1. However, one
can show that for any x € t4 there exists a constant ¢ > 0 such that
(Re((x/c)/™))m>a is increasing with m. Indeed, if ¢ = (2[|Re(z'/?)]|)?, then
by Lemma [2.15(2) we have (z/c)'/? € 38 4. Thus Re((z/c)!) increases as
t \, 0 (see the proof of [7, Proposition 3.4]), from which the desired assertion
follows.

Finally, we clarify a few imprecisions in a couple of the positivity results
in [14, I5]. In the second last paragraph of Section 4 of [I5], states on
a nonunital algebra should probably also be assumed to have norm 1 (this
seems a sensible requirement, although the arguments there do not need this
and the results as stated are correct). In the statement of [14] Proposition
4.3] we should have explicitly added the hypothesis that A is approximately
unital since the proof needs this (otherwise E11 My is a counterexample).
There are some small typos in the proof of [14, Theorem 2.12] but the reader
should have no problem correcting these, and the result itself is correct.

3. Strictly real positive elements. We will study here a variant of
the notion of a ‘strictly real positive element’ introduced after Lemma 2.10 in
[14]. In the present paper, in contrast to the latter, we will say an element
x in A is strictly real positive if Re(¢(z)) > 0 for all states on A whose
restriction to A is nonzero. Such x are in t4. This includes the x € A with
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Re(z) strictly positive (in the usual C*-algebra sense) in some C*-algebra
generated by A. If A is approximately unital, then these conditions are in
fact equivalent, as the next result shows, so that in this case we are not
introducing a notion different to that of [I4]. For algebras that are not
approximately unital it may possibly turn out in the future that for some
purposes our new definition above is too general, but for now we investigate
the ‘broadest class’.

LEMMA 3.1. Let A be an approximately unital operator algebra, which
generates a C*-algebra C*(A). An element © € A is strictly real positive in
the sense above iff Re(x) is strictly positive in C*(A).

Proof. The one direction follows because any state on A' whose restric-
tion to A is nonzero extends to a state on C*(A)! which is nonzero on C*(A).
The restriction to C*(A) of the latter state is a positive multiple of a state.

For the other direction recall that we showed in the introduction that
any state on C*(A) gives rise to a state on A'. Since any cai of 4 is a cai of
C*(A), the latter state cannot vanish on A. =

REMARK. Note that if Re(x) > el in C*(A)!, then there exists a con-
stant C' > 0 with Re(z) > €l > Cz*z, and it follows that x € R4 F4. Thus
if A is unital then every strictly real positive in A is in R4§4. However,
this is false if A is approximately unital (it is even easily seen to be false
in the C*-algebra A = ¢j). Conversely, note that if A is an approximately
unital operator algebra with no r-ideals and no identity, then every nonzero
element of R} F 4 is strictly real positive by [14, Theorem 4.1].

We also remark that it is tempting to define an element x € A to be
strictly real positive if Re(x) strictly positive in some C*-algebra generated
by A. However, this definition can depend on the particular generated C*-
algebra, unless one only uses states on the latter that are not allowed to
vanish on A (in which case it is equivalent to the other definition). As an
example of this, consider the algebra of 2 x 2 matrices supported on the first
row, and the various C*-algebras it can generate.

We next discuss how some results in [I4] generalize, particularly those
related to strict real positivity if we use the definition at the start of the
present section. We recall that in [I4], many ‘positivity’ results were es-
tablished for elements in §4 or %3 4, and by extension for the proper cone
¢4 = RyF4. In [I5, Section 3] we pointed out several of these facts that
generalized to the larger cone t4, and indicated that some of this would be
discussed in more detail in [7]. In [I5, Section 4] we pointed out that the
hypothesis in many of these results that A be approximately unital could be
simultaneously relaxed. In the next few paragraphs we give more details that
indicate the similarities and differences between these cones, particularly fo-
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cusing on the results involving strictly real positive elements. The following
list should be added to the list in [I5], Section 3|, and some complementary
details are discussed in [7]. Since there are a large number of results being
referenced we will not state the results in full, but the interested reader will
easily be able to do so from what we do say. Similarly, we will not prove
the results that generalize, since in most cases it is obvious that the original
proof will work in the new setting. If there needs to be a slight variant of
the argument then we indicate below what the small changes are. We also
state what results do not generalize, and will indicate counterexamples in
these cases.

In [14] Lemma 2.9] the (<) direction is correct for = € t4 with the same
proof. Also one need not assume there that A is approximately unital, as
we said towards the end of Section 4 in [I5]. The other direction is not true
in general, but there is a partial result, Lemma below. For example, a
counterexample in the t4 case both to one implication of [14, Lemma 2.9],
and to some implications in [I4, Lemma 2.10], is given by = = (i, —i) € £5°.
Here z € t4 but @ ¢ §a, and s(z) = (1,1), but Re(x) is not strictly positive,
and ¢(z) = 0 for the state ©((a,b)) = 3(a+b). In [I4, Lemma 2.10], if z € t4
then (i), (ii) and (iii) are still equivalent; and (v) implies (iv) implies (iii).
This uses the t4 version above of the (<) direction of [14, Lemma 2.9], and
[15, Theorem 3.2] (which gives s(z) = s(F(z))). However, none of the other
implications in that lemma are correct in the t4 case, even in £5°, as we said
above.

Proposition 2.11 and Theorem 2.19 of [14] are correct in their t4 variant,
which should be phrased in terms of strictly real positive elements in ty
as defined above at the start of the present section. Indeed, this variant
of Proposition 2.11 is true even for nonunital algebras if in the proof we
replace C*(A) by A!. Theorem 2.19 of [I4] may be seen using the parts of
[14, Lemma 2.10] which are true for t4 in place of F4, and [I5, Theorem
3.2] (which gives s(x) = s(§(x))). Thus we have:

THEOREM 3.2. Let A be an approzimately unital operator algebra. The
following are equivalent:

(i) A has a countable cai.
(ii) A has a strictly real positive element.
(ili) There is an element x in va with s(x) = 14%~.

Indeed, if x € v4 is strictly real positive then s(x) = 14++; and the converse
holds if x € cy.

Lemma 2.14 of [I4] is clearly false in the t4 case even in C, however it is
true with essentially the same proof if the elements x; there are strictly real
positive elements, or more generally if they are in t4 and their numerical
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ranges in A' intersect the imaginary axis only possibly at 0. Also, this does
not affect the correctness of the important results that follow it in [14]
Section 2|. Indeed, as stated in [15], all descriptions of r-ideals and ¢-ideals
and HSA’s from [I4] are valid with t4 in place of §4, sometimes by using
[15, Corollaries 3.4 and 3.5]). We remark that Proposition 2.22 of [14] is
clearly false with § 4 replaced by t4, even in C.

Similarly, in [I4, Theorem 4.1], (c) implies (a) and (b) there with t4 in
place of §4. However, the Volterra algebra [I4, Example 4.3] is an example
where (a) of [14, Theorem 4.1] holds in the t4 case but not (c) (note that the
Volterra operator V' is in t4, but V is not strictly real positive in A). The
results in Section 3 of [14] were discussed for the t4 case in Subsection
and [13]. It follows as in [14] that if z is a strictly real positive element (in our
new sense above) in a nonunital approximately unital operator algebra A,
then xA is never closed. For if xA is closed then by the t4 version of [14]
Lemma 2.10] discussed above, we have zA = A. Now apply Corollary
to see that A has a left identity (which as we said in Subsection forces
it to have an identity).

LEMMA 3.3. In an operator algebra A, suppose that x € ta and either x
is strictly real positive, or the numerical range W (z) of x in A' is contained
in a sector Sy of angle ¥ < /2 (see notation above Lemma. If o is a
state on A or more generally on A, then ¢(s(z)) = 0 iff ¢(z) = 0.

Proof. The one direction is as in [14, Lemma 2.9] as mentioned above.
The strictly real positive case of the other direction is obvious (but nonvac-
uous in the A' case). In the remaining case, write ¢ = (r(-)¢, €) for a unital
*-representation m of C*(A') on a Hilbert space H, and a unit vector & € H.
Then W (m(x)) is contained in a sector of the same angle. By Lemma 5.3 in
Chapter IV of [39] we have ||7(2)¢]|?> = ¢(z*x) = 0. As e.g. in the proof of
[14, Lemma 2.9], this gives ¢(s(z)) =0. =

COROLLARY 3.4. Let x € ta for an operator algebra A. If go(acl/") =0
for somen € N, n > 2, and state p on A, then ¢(s(x)) = 0 and cp(:r:l/m) =0
for allm € N. Thus if (s(x)) # 0 for a state ¢ on A, then Re(p(x'/™)) > 0
foralln e N, n > 2.

Proof. Tt is clear that s(z) = s(z'/™) for all m € N, by using for example
the fact from [I5], Section 3] that 2!/ — s(z) weak*. Since the numerical
range of z!/" in A! is contained in a sector centered on the positive real axis
of angle < , ¢(s(x)) = ¢(s(z'/")) = 0 by Lemma As we said above,
this implies that ¢(z) = 0, and the same argument applies with z replaced
by /™ to give p(z'/™) = 0.

The last statement follows from this, since Re(p(z/™)) > 0 is equivalent
to o(z/™) £ 0ifn>2. =
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REMARK. Examining the proofs of the last few results shows that they
are valid if states on A are replaced by nonzero functionals that extend to
states on A!, or equivalently extend to a C*-algebra generated by A'.

COROLLARY 3.5. In an operator algebra A, if x € vt4 and x is strictly
real positive, then x'/™ is strictly real positive for all n € N.

Proof. If 2/™ is not strictly real positive for some n > 2, then go(xl/")
= 0 for some state ¢ of A which is nonzero on A. Such a state extends
to a state on C*(A!). By the last Remark, ¢(z) = 0 by Corollary a

contradiction. =m

We recall that for a C*-algebra B, an open projection p € B** is
o-compact if it is the supremum (or weak* limit) of an increasing sequence
in B4 [36]. It is well known from C*-algebra theory that this is equivalent
to saying that p is the support projection of a closed right ideal in B which
has a countable left cai; and also equivalent to saying that there exists a
strictly positive element in the hereditary subalgebra defined by p.

LEMMA 3.6. If A is a closed subalgebra of a C*-algebra B, and if p is
an open projection in A**, then the following are equivalent:

(i) p is the support projection of a closed right ideal in A with a count-
able left cai.

(ii) p is o-compact in B** in the sense above.

(iii) p is the support projection of a closed right ideal in A of the form
zA for some x € va. That is, p = s(x) for some x € t4.

(iv) There is a sequence x,, € tg with T, = pr, — p weak*.

(v) The hereditary subalgebra D of A associated with p contains an
element x which is strictly real positive with respect to D.

If these hold then the sequence (x,,) in (iv) can be chosen to be increasing
with respect to <, and they, and the element x in (iii) and (v), can be chosen
to be in %3A and nearly positive. Of course s(x) = p if x is as in (v).

Proof. We know from the theory in [14] [15] that (i) and (iii) are equiv-
alent, and the element x in (iii) can be chosen to be in 3§ and nearly
positive. Indeed, one direction is similar to the argument in the paragraph
after Corollary That these imply (iv) is similar, clearly z,, = '/ has
the desired properties for n large enough.

(iv)=(iii). If z, € v4 with z,, = pz, — p weak®, then p is the support
projection of the closed right ideal J = {a € A : pa = a}. Indeed, it is
easy to see that J++ = pA**. Note that Y pxnA is a left ideal in A and J,
but actually equals J since its weak™® closure contains p and hence contains
pA** = J++. By [14, Proposition 2.14] and [15, Corollary 3.5], >, 2, A = zA
for some x € t4.
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(iii)=-(v). Suppose that D is the hereditary subalgebra defined by p. If
x € 334 is as in (iii) then € D = zAz, and

D C D C /222 Ax C /2D C xAD C zD.

So D = zD, and by Theorem x is a strictly real positive element of D.

(v)=(iii). If x € vp C ty4 is a strictly real positive element of D then
p = w*lim,, 2'/" = s(z) by Theorem

(i) (ii). Let I = pB*NBand J = pA™NA. As we said, (ii) is equivalent
to I having a countable left cai. From [9] Section 2] we have I = JB. So if
J has a countable left cai then so does I. Similarly, any left cai for J is a
left cai for I. If I has a countable left cai (f,), choose elements e, from a
left cai for J such that ||e, f,, — fn|l < 27™. Then since

enazen(a_fna)+(enfn_fn)a+fnaa aEA,
it is clear that J has a countable left cai. =

A similar result holds for left ideals or HSA’s.

If A is an operator algebra then an open projection p € A™ will be said to
be o-compact with respect to A if it satisfies the equivalent conditions in the
previous result. These projections, and the above lemma, will be used in our
‘strict Urysohn lemma’ in Section 4. Note that if A is separable then every
open projection in A** is o-compact with respect to A, by [14, Corollary
2.17].

4. Positivity in the Urysohn lemma and peak interpolation. In
our previous work [9] 14} 12, T5] we had two main settings for noncommuta-
tive Urysohn lemmata for a subalgebra A of a C*-algebra B. In both settings
we have a compact projection ¢ € A**, dominated by an open projection u
in B**, and we seek to find a € Ball(A) with ag = ga = ¢, and both au’
and uta either small or zero. In the first setting u € A** too, whereas this is
not required in the second setting. We now ask if in both settings one may
also have a € %& A and nearly positive (hence ‘positive’ in our new sense,
and as close as we like to a positive operator in the usual sense). In the first
setting, all works perfectly:

THEOREM 4.1. Let A be an operator algebra (not necessarily approxi-
mately unital), and let ¢ € A** be a compact projection which is dominated
by an open projection u € A**. Then there exists nearly positive a € %%’A
with aq = qa = q, and au = ua = a.

Proof. The proofs of [12, Theorem 2.6] and [15, Theorem 6.6 (2)] show
that this all can be done with a € %SA Then a'/"q = qa'/™ = ¢, as is clear

. . 1
for example using the power series form a'/" = 37° ( 2”)(—1)’“(1 —a)k
from [14, Section 2], where it is also shown that a'/™ € %3A- Similarly
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a'/"u = ua/™ = a'/", since u is the identity multiplier on oa(a), and oa(a)
contains these roots [I4, Section 2]. That the numerical range of a'/" lies in
a cigar centered on the line segment [0, 1] in the z-axis, of height < ¢, is as
in the proof of [I14, Theorem 2.4]. =

We now turn to the second setting (see e.g. [I5, Theorem 6.6 (1)]), where
the dominating open projection u is not required to be in A+, Of course if
A has no identity or cai then one cannot expect the ‘interpolating’ element
a to be in %S A or t4. This may be seen clearly when A is the functions in
the disk algebra vanishing at 0. Here %S A and t4 are (0). Indeed, by the
maximum modulus theorem for harmonic functions there are no nonconstant
functions in this algebra which have nonnegative real part. The remaining
question is the approximately unital case ‘with positivity’. We solve this
next, also solving the questions posed at the end of [12].

THEOREM 4.2. Let A be an approximately unital subalgebra of a C*-
algebra B, and let ¢ € A+ be a compact projection.

(1) If q is dominated by an open projection u € B** then for any e > 0,
there exists an a € $Fa with ag = qa = ¢, and |la(1 — u)|| < €
and ||(1 — u)al| < e. Indeed, this can be done with a in addition
nearly positive (thus the numerical range (and spectrum) of a within
a horizontal cigar centered on the line segment [0,1] in the x-axis,
of height < ¢€).

(2) q is a weak® limit of a net (y¢) of nearly positive elements in %SA
with y1q = qys = q.

Proof. (2) First assume that ¢ = u(x) (this was defined in the Intro-
duction) for some z € %S 4. We may replace A by the commutative algebra
oa(x), and then ¢ is a minimal projection, since gp(z) € Cq for any polyno-
mial p. Now ¢ is closed and compact in (A!)**, so by the unital case of (2),
which follows from [I4, Theorem 2.24] and the closing remarks to [12], there
isanet (z) € %{Lp with 2;q = qz = q and z; — q weak™. Let y; = zt1/2x1/2.
By [7, Lemma 4.2(3)], we have y; € %&@ NA = %SA. Also, z/2q = qz'/?2 = ¢

by considerations used in the last proof, and similarly ztl / 2q = qzt1 - q.

Thus yt1 / 2q = qyt1 2= q. If A is represented nondegenerately on a Hilbert
space H, and we identify 141 with Iy, then for any ( € H, by a result at
the end of the Introduction we have

I(we — )¢l = lI(21"? = @)2V/%¢) < Kz — g)2V/2¢)| V2 — 0.

Thus y; — ¢ strongly and hence weak*.

Next, for an arbitrary compact projection ¢ € A+, by [12, Theorem 3.4]
there exists a net z; € %SA with u(xs) \, ¢. By the last paragraph there
exist nets y; € Fa with yfu(z,) = u(zs)yf = u(z;), and yi — u(z,s) weak*.
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Then

yia = yyu(rs)q = u(s)g = q
for all ¢, s. It is clear that the y; can be arranged into a net weak® convergent
to gq.

(1) If A is unital then the first assertion of (1) is [I4, Theorem 2.24]. In
the approximately unital case, by the ideas in the closing remarks to [12], the
first assertion of (1) should be equivalent to (2). Indeed,, by substituting such
a net (y;) into the proof of [12, Theorem 2.1] one obtains the first assertion
of (1).

Finally, we obtain the ‘cigar’ assertion. For (y) as in (2), similarly to the
last paragraph we substitute the net (yt1 / ") into the proof of [12, Theorem
2.1]. Here m is a fixed integer so large that the numerical range of ytl fm
lies within the appropriate horizontal cigar. As in the proof of the previous

theorem, ytl/mq = qytl/m = ¢ and ytl/m — q weak™ with ¢ since if ( € H
again then
1
"™ = @)l < li(we = a)CI ™ = 0

by the inequality at the end of the Introduction. =

REMARK. The recent paper [20] contains a special kind of ‘Urysohn
lemma with positivity’ for function algebras. It seems that our Urysohn
lemma applied to a function algebra has much weaker (fewer) hypotheses,
and has stronger conclusions except that our interpolating element has range
in the usual thin cigar in the right half-plane which we like to use, and this is
contained in their Stolz region which contains 0 as an interior point, except
for a tiny region just to the left of 1. Hopefully our results could be helpful
in such applications.

We now turn to our analogue of the ‘strict Urysohn lemma’. We recall
that the classical form of the strict Urysohn lemma in topology finds a
positive continuous function which is 0 and 1 on the two given closed sets,
and which is strictly between 0 and 1 outside of these two sets. The latter is
essentially equivalent to saying that there is a positive contraction f in the
algebra such that the given closed sets are peak sets for f and 1 — f.

With this in mind we state some preliminaries related to peak pro-
jections, the noncommutative generalization of peak sets. There are many
equivalent definitions of peak projections (see e.g. [28, [9) 12} [15]), but ba-
sically they are the closed projections g for which there is a contraction
x with ¢ = g = ¢ (so x ‘equals one on’ ¢), and |z| < 1 in some sense
(which is made precise in the above references) on ¢*; we write ¢ = u(x).
More generally, if B is a C*-algebra and = € Ball(B) one can define u(x) =
w* limy, z(x*z)"™, which always exists in B** and is a partial isometry (see
e.g. [24] and [12, Lemma 3.1]). When this is a nonzero projection ¢ it is a
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peak projection and equals w* lim,, 2", and we say that x peaks at q; if in
addition A is a closed subalgebra of B with € A and ¢ € A+ then we
say that ¢ is a peak projection for (or relative to) A. This is the case for
example for any element of %S A of norm 1 (or equivalently, with 1 in its
spectrum, or attaining value 1 on some state; see [I2, Corollary 3.3]), for
any closed subalgebra A of B, and here the peak projection u(z) is in A**.
However, it need not be the case for any norm 1 real positive element, even
in a unital C*-algebra. For example, if V is the Volterra operator, which is
accretive, and = = maf + eI), then one can show that w*lim, 2™ = 0.

The following is implicit in [12, Lemma 3.1]:

LEMMA 4.3. Suppose that B is a C*-algebra, x € Ball(B) and g € B**
is a closed projection with qv = q. Then x peaks at q (that is, q is a peak
projection and equals u(x)) iff o(x*z) < 1 for every state ¢ of B with
v(q) = 0.

Proof. (<) This follows from [12, Lemma 3.1].

(=) If ¢ = u(z) then the last assertions of [I2, Lemma 3.1] show that
(3) there holds. If ¢ is a state of B with ¢(q) = 0, then (1 —¢) =1 and by
Cauchy—Schwarz ¢(z*zq) = 0, So ¢(z*z) < 1 by (3) there. m

REMARK. In place of using states with ¢(¢) = 0 in the lemma and its
application below, one can use minimal or compact projections dominated
by 1 — g, as in the proof of [12] Theorem 3.4(2)].

LEMMA 4.4. Suppose that A is an approximately unital operator algebra,
with e = 14+« as usual, that ¢ € A** is compact, and that p = ¢~ = e — ¢
is o-compact in A**. Then q is a peak projection for A, indeed ¢ = u(x) for
some nearly positive T € %&4.

Proof. It is only necessary to find such = € %3 4; the claim about near
positivity will follow from [12] Corollary 3.3]. If A is unital then by [14]
Proposition 2.22] we have ¢ = s(a)* = u(1 — a), and we are done. If A
is nonunital, by the above applied in A' we have 1 — s(a) = u(b) where
b=1-ac %gm. Since ¢ is compact there exists r € Ball(A) with ¢ = rq.
We follow the idea in the proof of [12] Theorem 3.4(3)]. Let d = rb € Ball(A).
Then

dq=rbg=rb(1—p)g=r(1-plg=rq=gq.
If p € S(B) with p(q) = 0, then ¢ extends to a state ¢ € S(B!) with
¥(q) = 0. By Lemma applied in B! we have ¥ (b*b) < 1, so that
p(d*d) = v(d*d) < p(b*b) < 1.
Thus ¢ = u(d) is a peak projection for A by [12, Corollary 3.3]. By [12]
Theorem 3.4(3)], ¢ = u(x) for some x € %SA. .
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COROLLARY 4.5. Suppose that A is a (not necessarily approzimately uni-
tal) operator algebra, and B is a C*-algebra containing A. If a peak projec-
tion for B lies in At then it is also a peak projection for A.

Proof. Suppose that ¢ = u(b) € A+ C (A1), for some b € 1Fp. Then
by [14, Proposition 2.22], s(1 —b) = 1 — ¢ is a o-compact projection in
(A1)++. So by Lemma 3.6| we have 1 — g = s(a) for some a € £§ 1. By [14}
Proposition 2.22] again, ¢ = u(1 — a). By [I5, Proposition 6.4], ¢ is a peak
projection for A. =

THEOREM 4.6 (A strict noncommutative Urysohn lemma for operator
algebras). Suppose that A is any (possibly not approximately unital) opera-
tor algebra and that ¢ and p are respectively compact and open projections in
A with ¢ < p, and p—q o-compact (note that the latter is automatic if A is
separable). Then there exists x € %&4 such that xq = qx = q, xp = px = x,
and x peaks at q (that is, u(z) = q) and s(x) = p, and 1 — x peaks at 1 —p
with respect to A' (that is, u(1 —x) = 1 —p). The latter identities imply that
x is real strictly positive in the hereditary subalgebra C associated with p,
and 1 —x is real strictly positive in the hereditary subalgebra in A" associated
with 1 —q. Also, s(x(1—xz)) = p—gq, so that x(1 —x) is real strictly positive
in the hereditary subalgebra in A associated with p — q. We can also have
x ‘almost positive’, in the sense that if € > 0 is given one can choose x as
above but also satisfying Re(x) > 0 and ||z — Re(z)|| < e.

Proof. That p — ¢ is automatically o-compact if A is separable follows
from the fact at the end of Section 3. Consider the hereditary subalgebra C
associated with p. It is clear e.g. from Lemma that p — ¢ is a o-compact
projection with respect to C. Applying Lemma [4.4] in C, we can choose
be %SC C %SA with u(b) = ¢. By the last Urysohn lemma above, we can
choose r € %&4 with rp = pr = r and rq = qr = ¢. The argument in the
proof of [12, Theorem 3.4(3)] shows that the closed algebra D generated
by x = rbr and b is approximately unital, and that there is an element
foe DN %&4 with u(f2) = ¢q. Note that fop = pfo = fo. By taking roots we
can assume that f5 is nearly positive.

Similarly, but working in A', one sees that there is a nearly positive
f1 € 3841 with fig = ¢f1 = 0 and u(f1) = 1 —p. We have fi(1—p) =1—p,
which implies that (1— f1)p=1— fi. Let 2 = (fo+(1— f1)) € 3§ 41. Since
f1, fo are nearly positive, it is easy to see that x is almost positive in the
sense above, by a variant of the computation involving ||[Im(z)|| in one of
the early paragraphs of our paper. We have 1 —x = %((1 — f2)+ f1). Within
(A1)** by [12, Proposition 1.1] (and the fact that a tripotent dominated by
a projection in the natural ordering on tripotents is a projection) we have

u(z) = u(fe) ANu(l = f1) = u(f2) = g,
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since (1 — f1)q = q which implies u(1 — f1) > ¢. Similarly

u(l —2) = u(l = f2) Au(fr) = u(fr) =1 —p,

since (1 — fo)(1 —p) =1—pand so u(l — fa2) > 1—p.

Since zp = z and p € A++, and A+ is an ideal in (A')**, we see that
re At nAl = A

Note that |1 —4(z — 2?)|| = [|(1 — 22)?|| < 1, so (1 — z) € 1Fa.
Then by Lemma s(x(1 — z)) may be regarded as the strong limit of
(x(1 — 2)V/™ = /"1 — 2)Y/™ (see e.g. [7] for the last identity), which is
s(z)s(l —x) = p(1 — q) = p— q. The ‘strictly real positive’ assertions follow
from Lemma [3.0l =

REMARKS. 1) One may replace the hypothesis in Theorem that p—q
be o-compact by the premise that both ¢ and 1 — p are peak projections (in
A and A1). Indeed, if ¢ = u(w),1 — p = u(z), then by [12, Corollary 3.5]
14 qg—p=u(w)+ u(z) = u(k) say. Hence by [14, Proposition 2.22] and
Lemma [3.6| we conclude that p — g = 1 — u(k) = s(k) is o-compact.

2) Under a commuting hypothesis we offer a quicker proof inspired by
the proof of [36, Theorem 2]: choose b € ¥4 with s(b) = p — ¢. Then if
r is as in the last proof, and br = rb, set x = (1 — r)b + (1 — b)r. Then
1—2z = (1—2b)(1 —2r), a contraction, so that « € 3T 4, and it is easy to
see that xq = ¢ and zp = x.

We give an application of our strict noncommutative Urysohn lemma to
the lifting of projections, a variant of [36, Corollary 4]. First we will need a
sharpening of [I4, Proposition 6.2]. Recall that if A is an operator algebra
containing a closed approximately unital two-sided ideal J with support
projection p, then p is central in (A!)** since J is a two-sided ideal. We
may view A/J C A**(1 — p) via the map a + J — a(1 — p), in view of the
identifications

LEMMA 4.7. Let A be an operator algebra containing a closed approxi-
mately unital two-sided ideal J with support projection p, and suppose that
D is a HSA in A/J. Regarding (A/J)** = A**(1 — p) as above, let r be the
projection in A**(1 — p) corresponding to the support projection of D. Then
the preimage of D in A under the quotient map is a HSA in A with support
projection p + r.

Proof. By the proof of [14, Proposition 6.2 and Corollary 6.3], the preim-
age C of Din Aisa HSA in A, and C/J = D. Thus C** = J+L 3> D**, and
we can view the isomorphism C** — J++ @ D** here as the restriction of
the completely isometric map n — (np,n(1—p)) setting up the isomorphism
A = JLL @00 A%(1 — p). If n € A* with n(1 — p) € rA™r = D**, then



Order theory and operator algebras 89

nenp+rA¥r C (p+r)A™(p+r). Hence
CH={neA™ iyl —p) €rd™r} = (p+r)A™(p+1).
Thus p + r is the support projection of C, so is open. =

COROLLARY 4.8 (cf. [36, Corollary 4]). Let A be an operator algebra
containing a closed two-sided ideal J with a countable cai, or equivalently,
with a o-compact (as defined after Lemma support projection p. Also,
suppose that q is a projection in A/ J. Then there exists an almost positive
(in the sense of the last theorem) x € %sA such that x + J = q. Also, the
peak u(x) for x equals the canonical copy of q in A**(1 — p).

Proof. That J has a countable cai iff it has a o-compact support pro-
jection follows from e.g. Lemma By [14, Proposition 2.22], ¢ has a lift
Yy € %SA, so that the copy of ¢ in A**(1 — p) is r = y(1 — p). Thus r is a
projection in A**. Also, r = (y(1 —p))" = y™(1 — p) — u(y)(1 — p) weak™.
This implies that r = u(y)(1—p) = u(y) A(1—p) is a closed projection in A*,
hence is a compact projection in A**. Clearly r = yr. By Lemma the
projection p 4+ r is open in A**, and it dominates r. We apply Theorem
to see that there exists an almost positive z € %SA such that u(x) = r, and
zr=rx=rand z(p+r) = (p+r)r =2x. Thus y(1—p) =r = azr = z(1—p),
andsoxz+J=¢q. u

REMARK. In the last result, by Theorem [£.6] we can have x real strictly
positive in the HSA associated with p + r; and also s(z(1 — x)) = p, so that

x — 22 is real strictly positive in J.

We now turn to noncommutative peak interpolation. The following is an
improvement of [§, Lemma 2.1].

PROPOSITION 4.9. Suppose that A is an approrimately unital operator
algebra, and B is a C*-algebra generated by A. If ¢ € By with ||c|| < 1 then
there exists an a € %SA with |1 — a\Q < 1 —c. Indeed, such an a can be
chosen to also be nearly positive.

Proof. By Theorem (2’ ), there exists a nearly positive a € %S A with
¢ < Re(a) < 2Re(a) —a*a

since a*a < Re(a) if a € 3F4. Thus [1 —a[* <1—c. =

In the last result one cannot hope to replace the hypothesis ||c|| < 1 by
lell < 1, as can be seen with the example in Remark 1 after Theorem

Proposition like several other results in this paper, is equivalent to
Read’s theorem from [37]. Indeed, if e is an identity of norm 1 for A**, and
if we choose a; € %SA with |e — a¢|? < e — e, where (e;) is any positive cai
in Up, then

[{(e = a)¢,m? < ll(e — ae)¢|? = (e — ar*C, ¢) < (e — er)(,¢) — 0
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for all ( € H. Thus e is a weak™ limit of a net in %3’ 4, and hence by the
usual argument there exists a cai in %S A.

As in [8, Lemma 2.1], Proposition can be interpreted as a noncom-
mutative peak interpolation result. Namely, if the projection ¢ =141 — e is
dominated by d = 1 — ¢ then there exists an element g = 1 —a € A! with
gq = q9 = q, and ¢g*g < d. The new point is that a is in %3/& and nearly
positive.

This leads one to ask whether the other noncommutative peak inter-
polation results we have obtained in earlier papers can also be done with
the interpolating element in %3’ A, or more generally with the interpolating
element having prescribed numerical range. We will discuss this below. As
discussed at the end of [13], lifting elements without increasing the norm,
while keeping the numerical range in a fixed compact convex subset E of
the plane, may be regarded as a kind of Tietze extension theorem. (In the
usual Tietze theorem E = [—1, 1]. It should be pointed out that in the usual
Tietze theorem one can lift elements from the multiplier algebra, whereas
here we are being more modest.) We refer the reader to [19 Section 3| for a
discussion of some other kinds of Tietze theorems for C*-algebras.

The following two theorems may be regarded as peak interpolation the-
orems ‘with positivity’. They are sharpenings of [15, Theorem 5.1] (see also
Corollary 2.2 in that reference).

THEOREM 4.10. Suppose that A is an operator algebra (not necessarily
approzimately unital), and q is a closed projection in (A')**. Suppose that
b e A with bg = gb and ||bg|| <1, and ||(1 —2b)q|| < 1. Then there exists an
element g € %&1 C Ball(A) with gq = qg = bq.

Proof. We modify the proof of [I5, Theorem 5.1]. In that proof a closed
subalgebra C of A! is constructed which contains b and 141, such that ¢ is
in the center of C 22 C**. So ¢ supports a closed two-sided ideal .J in C.
Then we set I = C N A, an ideal in C' containing b. Finally, an M-ideal D
in I was constructed there; this will be an approximately unital ideal in I.
Using the language of the proof of [I5, Theorem 5.1], since P(I+) C I+ it
follows that I+ is invariant under P*. By [27, Proposition 1.1.16] we see
that I + D is closed, hence it follows similarly to the centered equation in
the proof of [I4, Proposition 7.3], and the two lines above it, that

DH =InDH =Dt =g nitt = - g1t
Thus the M-projection from I** onto D1 is multiplication by 1 — ¢, which
is also the restriction of P* to I+, Now I/D is an operator algebra; indeed,
it may be viewed, via the map x + D — qz, as a subalgebra of
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Indeed, it is not hard to see that I/D may be regarded as an ideal in the
unital subalgebra C'/J of gC**, where J was defined above.

If ||(1 = 2b)g|| <1 then bg € %3q(A1)**q, so that b+ D € %31/,3. Hence by
[14, Proposition 6.1] there exists g € %S} C %SA with g+ D =b+ D. We
have gg =qg = bq. u

We will need a simple corollary of Meyer’s theorem mentioned in the
introduction:

LEMMA 4.11. Suppose that A and B are closed subalgebras of unital
operator algebras C and D respectively, with 1c ¢ A and 1 ¢ D, and
q: A — B is acomplete quotient map and homomorphism. Then the unique
unital extension of q to a unital map from A+Cle to B4+Clp is a complete
quotient map.

Proof. Let J = Kergq,let ¢: A/J — B be the induced complete isometry,
and let 8 : A+ Clg — B + Clp be the unique unital extension of ¢q. This
gives a one-to-one homomorphism  : (A+Clg)/.J — B+Clp which equals
gon A/J.If B, and hence A/J, is not unital then 6 is a completely isometric
isomorphism by Meyer’s result mentioned in the Introduction (since both
(A+Cl¢)/J and B+ Clp are ‘unitizations’ of A/J = B). Similarly, if B is
unital, then 6 is a completely isometric isomorphism by the (almost trivial)
uniqueness of the unitization of an already unital operator algebra. So in
either case we may deduce that fis a complete isometry and 6 is a complete
quotient map. =

The following is a noncommutative peak interpolation theorem which is
also, as discussed in the paragraph before Theorem a kind of ‘Tietze
theorem’. It also yields a peak interpolation theorem ‘with positivity’: if
one insists that the set E appearing here lies in the right half-plane, or in
the usual ‘cigar’ centered on [0, 1], then the interpolation or extension is
preserving ‘positivity’ in our new sense.

THEOREM 4.12 (A noncommutative Tietze theorem). Suppose that A is
an operator algebra (not necessarily approzimately unital), and q is a closed
projection in (AY)**. Suppose that b € A with bq = qb and ||bq|| < 1, and the
numerical range of bq (in e.g. q(AY)**q) is contained in a compact convex
set E in the plane. Also suppose, by fattening it slightly if necessary, that
is not a line segment. If both A is nonunital and g € A, then we will also
insist that 0 € E. Then there exists g € Ball(A) with gqg = qg = bq such that
the numerical range of b with respect to Al is contained in E.

Proof. This is the same as the proof of the last theorem except that
the last paragraph should be replaced by the following. Suppose that the
numerical range Wyc++(bg) lies in the convex set E described. If 141 € I
(which is the case for example if A is unital) then I/D viewed in ¢C** as
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above has identity g. Then the numerical range of b+ D in I /D is a subset
of E. By [21, Theorem 3.1] and the Claim at the end of [13], there exists
a contractive lift ¢ € I C C with numerical range with respect to C, and
hence with respect to A!, contained in E. We have g¢ = qg = bq since
g+ D = b+ D. This proves the result. Thus henceforth we can assume that
le =141 ¢ I and A is nonunital.

Next suppose that the copy ¢l of I/D in ¢qC** above does not contain q.
This will be the case for example if ¢ ¢ A+ (for if ¢ = gz for some x € I
then ¢ € ¢gA C A'L, since the latter is an ideal in (A')**). By Lemma
we can extend the quotient map I — I/D to a complete quotient map
0 : I+ Cle — I/D + Cq (the latter viewed as above in ¢C**). By [21
Theorem 3.1] and the Claim at the end of [I3], there exists a contractive lift
g € I+ Cl¢o with numerical range with respect to C, and hence with respect
to A, contained in E. If g = 2 + Mg withz € [ then b+ D =g+ D =
Mg+ x+ D € I/D, which forces A = 0. So g € I C A, and gq = qg = bq
again as above. Finally, suppose that I/D contains ¢, and 0 € F, so that
E =[0,1]E. Here q is the identity of C'/J (viewed as above in ¢C**). Since
I/D is an ideal, we have I/D = C/J. Consider I @ ¢y and its ideal D @ (0).
The quotient here is (I/D) & co, which may be viewed as a subalgebra of
qC**@®c. The numerical range of an element (x, 0) in a direct sum A;®> A of
unital Banach algebras is easily seen to be [0, 1]Wy, (z). Hence the numerical
range of (b+1,0) in (I/D) @ c is contained in [0,1]E = E. By Lemma
the canonical complete quotient map I & ¢y — (I/D) @ co extends to a
unital complete quotient map (I @ ¢) + C(1¢,1) — (I/D) @ c. By [21}
Theorem 3.1 and the Claim at the end of [13], there exists a contractive lift
(9,0) € (I ® o) + C(1¢, ) whose numerical range in the latter space, and
hence in C' @ ¢, is contained in E. By the Banach algebra sum fact a few
lines earlier, we deduce that We(g) C E, and hence Wy41(g) C E. Clearly
g€l C A, and gq = qg = bq as before. m

REMARK. By considering examples such as Cy((0,1])/Co((0,1)) = C
one sees the necessity of the condition 0 € F if A is nonunital and g € A+,
As in [21], by considering the quotient of the disk algebra by an approxi-
mately unital codimension 2 ideal, one sees the necessity of the condition
that E not be a line segment. We remark that the case where E is a point is
technically covered by the theorem: in this case bq is a scalar multiple of q.
The case where the scalar is zero, or where A is unital, is trivial. Otherwise
q € A+t where the hypotheses force [0,1]E = E.

Our best noncommutative peak interpolation result [8 Theorem 3.4]
(and its variant [I5, Corollary 5.4]) should also have ‘positive/Tietze ver-
sions’ analogous to the two cases considered in Theorems and
above. However, there is an obstacle to using the approach for the latter re-



Order theory and operator algebras 93

sults to improve [8, Theorem 3.4] say. Namely the quotient one now has to
deal with is (If)/(Df) as opposed to I/D. (We remark that unfortunately
in the proof of [8, Theorem 3.4] we forgot to repeat that f = d=1/2, as was
the case in the earlier proof from that paper that it is mimicking.) This
is not an operator algebra quotient, and so we are not sure at this point
how to deal with it. We remark that the Tietze variant here initially seems
promising, since the key tool above used in that case is the numerical range
lifting result from [21], and this is stated in that paper in utmost generality.
However, we were not able to follow the proof of the latter in this generality,
although as we said at the end of [I3] we were able to verify it in the less
general setting needed in the last proof, and in [13].
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