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Gradient estimates in
parabolic problems with unbounded coefficients

by

M. Bertoldi (Trento) and S. Fornaro (Lecce)

Abstract. We study, with purely analytic tools, existence, uniqueness and gradient
estimates of the solutions to the Neumann problems associated with a second order elliptic
operator with unbounded coefficients in spaces of continuous functions in an unbounded
open set Ω in RN .

1. Introduction. In this paper we consider a linear second order elliptic
operator,

A =
N∑

i,j=1

qijDij +
N∑

i=1

FiDi − V,

with regular possibly unbounded coefficients in a regular convex open set
Ω ⊂ RN . The set Ω may be unbounded. We study existence, uniqueness
and gradient estimates of the solutions to the Neumann problems




ut(t, x)−Au(t, x) = 0, t > 0, x ∈ Ω,

∂u

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = f(x), x ∈ Ω,

(1.1)





λu(x)−Au(x) = f(x), x ∈ Ω,

∂u

∂ν
(x) = 0, x ∈ ∂Ω,

(1.2)

where f is continuous and bounded and ν is the outward unit normal vector
to ∂Ω. In the case Ω = RN problems (1.1) and (1.2) are replaced by similar
ones without any boundary condition.

These are classical problems in analysis which are well understood if the
coefficients of A are bounded. On the other hand, in the recent literature the
interest towards elliptic operators with unbounded coefficients is growing up.
Motivations come from stochastic analysis and change of coordinates that
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transform elliptic operators with bounded coefficients to elliptic operators
with unbounded coefficients. In the case Ω = RN several results of exis-
tence, uniqueness and regularity are known (see [5], [10], [11], [15], [21] and
the overview [17]). Stochastic calculus is a useful tool ([5], [21], [23]); in par-
ticular the recent book [5] of Sandra Cerrai contains a deep and exhaustive
analysis of what can be proved by stochastic methods.

Our main assumptions are a dissipativity condition on the drift F =
(F1, . . . , FN ), a Lyapunov type condition ensuring that a maximum principle
holds, and that V is bounded from below. Without loss of generality, we may
assume that V (x) ≥ 0 for all x ∈ Ω. We need other technical assumptions
(see Section 2), which are automatically satisfied in the (still important)
case A = ∆+

∑
FiDi.

We consider problem (1.1) and we prove that there exists a unique
bounded classical solution u(t, x). To do this, we consider the solutions un
of Neumann problems in a nested sequence Ωn of bounded domains whose
union is Ω, and we prove that un converges to a solution of (1.1). We re-
mark that one could approximate the solution with solutions of suitable
mixed boundary value problems in Ωn in such a way that for nonnegative
initial data the approximating sequence is increasing. This was done by Seizo
Itô in his pioneering paper [10]. Although this further property could be of
much help in some steps, our techniques to get the gradient bounds do not
work with such boundary conditions. Therefore we consider the Neumann
boundary condition in each Ωn.

If we set (Ptf)(x) = u(t, x), then Pt turns out to be a semigroup of
linear operators in the space Cb(Ω) of continuous and bounded functions
in Ω. We remark that in general Pt is not strongly continuous in Cb(Ω) and
in its subspace BUC(Ω) of uniformly continuous and bounded functions.
This is a typical fact for semigroups associated with elliptic operators with
unbounded coefficients. Therefore the generator cannot be defined in the
classical way. In the literature there are several alternative definitions of
generator; here we consider the weak generator introduced by Enrico Priola
in [19].

Our aim is to prove gradient estimates for Pt. We start by showing that

|∇Ptf(x)| ≤ CT√
t
‖f‖∞, 0 < t < T, x ∈ Ω, f ∈ Cb(Ω),(1.3)

|∇Ptf(x)| ≤ CT (‖f‖∞ + ‖∇f‖∞), 0 < t ≤ T, x ∈ Ω, f ∈ C1
ν (Ω),(1.4)

where

C1
ν (Ω) =

{
u ∈ C1

b(Ω) :
∂u

∂ν
(x) = 0, x ∈ ∂Ω

}
.(1.5)

We prove (1.3) and (1.4) using the Bernstein method, i.e. we apply the
maximum principle to the equation satisfied by zn = u2

n + t|∇un|2 (respec-
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tively zn = u2
n + |∇un|2), which gives a bound for zn independent of n, and

then we obtain (1.3) (respectively (1.4)) letting n → ∞. We observe that
the convexity assumption on Ω is crucial at this point, since it leads to the
condition ∂zn/∂ν ≤ 0 at the boundary (see Lemma 2.4). However, the case
of a nonconvex domain will be object of a future investigation by the au-
thors. In the case Ω = RN the previous estimates were proved in [15] with
the same method and in [5] with probabilistic methods. As a consequence
of (1.3), the domain of the weak generator of Pt is contained in C1

b(Ω).
In Section 4 we assume that V ≡ 0 and in the case qij ≡ δij we prove

the estimates

|∇Ptf(x)|p ≤ ek0ptPt(|∇f |p)(x), t ≥ 0, x ∈ Ω, f ∈ C1
ν (Ω),(1.6)

for all p ≥ 1, where k0 ∈ R is such that
N∑

i,j=1

DiFj(x)ξiξj ≤ k0|ξ|2, x ∈ Ω, ξ ∈ RN .(1.7)

If the coefficients qij are not constant we prove the similar estimate

|∇Ptf(x)|p ≤ eσptPt(|∇f |p)(x), t ≥ 0, x ∈ Ω, f ∈ C1
ν (Ω),(1.8)

for all p > 1, where σp ∈ R is a suitable constant. These estimates have
interesting consequences. First, if there exists an invariant measure for Pt,
that is, a probability measure µ such that

�

Ω

Ptf dµ =
�

Ω

f dµ, t ≥ 0, f ∈ Cb(Ω),

estimates (1.6) and (1.8) are of much help in the study of the realization of Pt
in the spaces Lp(Ω,µ), 1 ≤ p < ∞. (1.6) with p = 1 and k0 < 0 yields the
hypercontractivity of Pt in the space L2(Ω,µ) and the logarithmic Sobolev
inequality. This is the well known Bakry–Émery criterion. (1.8) with p = 2
and σ2 < 0 yields the Poincaré inequality in L2(Ω,µ) and the spectral gap
for the generator of Pt in L2(Ω,µ) (see for example [6, Section 10.5]).

Secondly, we deduce the pointwise estimates

|∇Ptf(x)|p ≤
(

σ2µ
−1
0

2(1− e−σ2t)

)p/2
Pt(|f |p)(x), t > 0, p ≥ 2,

|∇Ptf(x)|p ≤ cpσpµ
−1
0

tp/2−1(1− e−σpt) Pt(|f |
p)(x), t > 0, 1 < p < 2,

(1.9)

for f ∈ Cb(Ω), where cp > 0 is a suitable constant. Estimates (1.9) give
the optimal constant in (1.3); moreover integrating over Ω with respect to
the invariant measure µ we get the corresponding estimates for ∇Ptf in
Lp(Ω,µ), when f ∈ Lp(Ω,µ).
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In the case Ω = RN , estimate (1.6) and estimate (1.9) with p = 2 were
proved respectively in [2] and [3] in the setting of abstract Markov gen-
erators, for functions belonging to a suitable algebra of smooth functions
which is required to be invariant under the generator. Estimate (1.6) was
also proved in [23] by probabilistic methods. A probabilistic approach is used
in [20] as well for establishing estimate (1.6) in the case of a compact Rie-
mannian manifold with convex boundary or of a complete manifold without
boundary.

Dissipativity conditions of the type (1.7) are of crucial importance to
get gradient estimates. Indeed, in Section 5 we give a counterexample to
estimate (1.3) for an operator A = ∆ +

∑
FiDi where F does not satisfy

(1.7). Concerning estimate (1.6), in the case of variable coefficients qij the
constant σp blows up as p → 1, and we do not expect that (1.6) also holds
for p = 1. Estimate (1.9) too fails in general for p = 1, as we show in the
case of the heat semigroup. Finally we show an example related with the
Ornstein–Uhlenbeck operator.

Acknowledgements. The authors would like to thank Alessandra Lu-
nardi and Giorgio Metafune for many useful discussions and comments.

Notations. For x ∈ RN , |x| denotes the euclidean norm, and BR =
{x ∈ RN : |x| < R} denotes the open ball with radius R > 0. We denote
by Cb(Ω) the space of bounded continuous functions in Ω and by Ck

b(Ω)
the space of functions with derivatives up to order k in Cb(Ω). C0(Ω) is the
space of functions in Cb(Ω) vanishing at ∂Ω and at infinity. For 0 < α ≤ 1
and a < b, Ck+α(Ω) is the space of functions such that the derivatives of
order k are α-Hölder continuous in Ω, and C1+α/2,2+α([a, b]×Ω) is the space
of functions u = u(t, x) such that Dtu and Diju are α-Hölder continuous in
[a, b]× Ω with respect to the parabolic distance d((t, x), (s, y)) = |t− s|1/2
+ |x − y|. By C

1+α/2,2+α
loc (]0,∞[ × Ω) we mean the space of functions u

such that u ∈ C1+α/2,2+α([ε, T ]× Ω′) for all 0 < ε < T and bounded open
Ω′ ⊆ Ω. Analogously C1+α

loc (Ω) denotes the space of functions which belong
to C1+α(Ω′) for all bounded open Ω′ ⊆ Ω.

We use the notation

Q[ξ](x) =
N∑

i,j=1

qij(x)ξiξj(1.10)

for all ξ ∈ RN and x ∈ Ω.

2. Preliminary results. First we state our assumptions that will be
kept throughout the paper. Ω ⊂ RN is a convex open set with C2+α bound-
ary. The coefficients of the operator A are real-valued, belong to C1+α

loc (Ω)
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and satisfy the following conditions:

(2.1)
qij = qji,

N∑

i,j=1

qij(x)ξiξj ≥ µ(x)|ξ|2, x ∈ Ω, ξ ∈ RN ,

inf
x∈Ω

µ(x) = µ0 > 0,

(2.2) |∇qij(x)| ≤Mµ(x), x ∈ Ω, i, j = 1, . . . , N,

(2.3)
N∑

i,j=1

DiFj(x)ξiξj ≤ (βV (x) + k0)|ξ|2, x ∈ Ω, ξ ∈ RN ,

(2.4) V (x) ≥ 0, |∇V (x)| ≤ γ(1 + V (x)), x ∈ Ω,
for some constants M,γ ≥ 0, k0, β ∈ R, β < 1/2. Moreover, we suppose that
there exist a positive function ϕ ∈ C2(Ω) and λ0 > 0 such that

(2.5) lim
|x|→∞

ϕ(x) =∞, sup
Ω

(Aϕ− λ0ϕ) <∞, ∂ϕ

∂ν
(x) ≥ 0, x ∈ ∂Ω.

We introduce the following realization of the operator A with homogeneous
Neumann boundary condition:

D(A) =
{
u ∈ Cb(Ω) ∩W 2,p(Ω ∩BR) for all R > 0, p <∞ :

Au ∈ Cb(Ω),
∂u

∂ν
(x) = 0, x ∈ ∂Ω

}
.

We remark that if Ω = RN our results can be generalized to operators
with locally Hölder continuous coefficients satisfying suitable assumptions
by a standard convolution approximation (see Remark 4.4).

In this section we collect some preliminary results which are the main
tools for the study of problems (1.1) and (1.2). We start by proving maxi-
mum principles for such problems, and consequent uniqueness results.

Proposition 2.1. Let z ∈ C([0, T ]×Ω)∩C0,1(]0, T ]×Ω)∩C1,2(]0, T ]×
Ω) be a bounded function satisfying





zt(t, x)−Az(t, x) ≤ 0, 0 < t ≤ T , x ∈ Ω,

∂z

∂ν
(t, x) ≤ 0, 0 < t ≤ T , x ∈ ∂Ω,

z(0, x) ≤ 0, x ∈ Ω.

Then z ≤ 0. In particular there exists at most one bounded classical solution
of problem (1.1).

Proof. We may suppose that Aϕ− λ0ϕ ≤ 0; otherwise we replace ϕ by
ϕ+C for a suitable constant C > 0. Set v(t, x) = e−λ0tz(t, x); we prove that
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v ≤ 0, then the statement follows. We consider the sequence

vn(t, x) = v(t, x)− 1
n
ϕ(x), 0 ≤ t ≤ T, x ∈ Ω,

and we observe that




Dtvn(t, x)− (A− λ0)vn(t, x) ≤ 0, 0 < t ≤ T , x ∈ Ω,

∂vn
∂ν

(t, x) ≤ 0, 0 < t ≤ T , x ∈ ∂Ω,

vn(0, x) ≤ 0, x ∈ Ω.

For every n ∈ N the function vn attains its maximum in [0, T ]×Ω at some
point (tn, xn). If tn > 0 and xn ∈ Ω then

Dtvn(tn, vn) ≥ 0, Avn(tn, xn) + V (xn)vn(tn, xn) ≤ 0,

and consequently, using the equation

(λ0 + V (xn))vn(tn, xn) ≤ (λ0 +Dt −A)vn(tn, xn) ≤ 0.

Since λ0 > 0 this implies that vn(tn, xn) ≤ 0.
If tn = 0 we immediately have vn(tn, xn) ≤ 0. Finally, it is not possible

that tn > 0 and xn ∈ ∂Ω without any interior maximum point because of
the strong maximum principle ([7, Theorem 2.14]).

Therefore we have proved that v(t, x) ≤ n−1ϕ(x) for all 0 ≤ t ≤ T and
x ∈ Ω. Thus letting n→∞ we conclude that v ≤ 0, as claimed.

The following strong maximum principle is well known for C2 solutions.

Proposition 2.2. Let u ∈ Cb(Ω) ∩W 2,p(Ω ∩ BR) for all R > 0 and
p <∞, and suppose that Au ∈ Cb(Ω) and

λu(x)−Au(x) ≤ 0, x ∈ Ω,
for some λ > 0. Let x0 ∈ ∂Ω be such that u(x0) > 0 and u(x) < u(x0) for
all x ∈ Ω. Then

∂u

∂ν
(x0) > 0.(2.6)

Proof. We follow the proof of the classical Hopf maximum principle (see
e.g. [9, Lemma 3.4]). Consider a ball B(y, r) ⊂ Ω such that B(y, r) ∩ ∂Ω
= {x0} and assume that u > 0 in B(y, r). It is readily seen that there exists
α > 0 such that the function z(x) = e−α|x−y|

2 − e−αr2
satisfies Az > 0 in

D = B(y, r)\B(y, r/2). Set w = u+εz, where ε > 0 is chosen in such a way
that w(x) < u(x0) for all x ∈ ∂B(y, r/2). Then w(x) ≤ u(x0) in ∂D and

Aw(x) = Au(x) + εAz(x) > λu(x) > 0, x ∈ D.(2.7)

Let x ∈ D be the maximum point of w in D. It is not possible that x ∈ D,
otherwise from [17, Lemma 3.2] we should have Aw(x) ≤ 0, which is in
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contradiction with (2.7). Then x ∈ ∂D and necessarily x = x0. It follows
that

∂w

∂ν
(x0) =

∂u

∂ν
(x0) + ε

∂z

∂ν
(x0) ≥ 0.

Since ∂z
∂ν (x0) < 0, this implies (2.6).

Proposition 2.3. Let u ∈ Cb(Ω) ∩W 2,p(Ω ∩ BR) for all R > 0 and
p <∞, and suppose that Au ∈ Cb(Ω) and





λu(x)−Au(x) ≤ 0, x ∈ Ω,

∂u

∂ν
(x) ≤ 0, x ∈ ∂Ω,

(2.8)

for some λ ≥ λ0. Then u ≤ 0.

Proof. As in Proposition 2.1, we may assume that Aϕ − λ0ϕ ≤ 0. We
introduce the sequence

un(x) = u(x)− 1
n
ϕ(x), x ∈ Ω,

and we note that 



λun(x)−Aun(x) ≤ 0, x ∈ Ω,

∂un
∂ν

(x) ≤ 0, x ∈ ∂Ω.
(2.9)

We prove that un ≤ 0 for all n ∈ N; then the conclusion follows by letting
n → ∞. Each un has a maximum point xn ∈ Ω. If xn ∈ Ω, then from
[17, Lemma 3.2] it follows that Aun(xn) ≤ 0 and, by (2.9), un(xn) ≤ 0. Now
assume that xn ∈ ∂Ω and un(x) < un(xn) for all x ∈ Ω (otherwise there
would exist an interior maximum point and we could apply the previous
step). Then from Proposition 2.2 and (2.9) it follows that un(xn) ≤ 0, and
this completes the proof.

If Ω is bounded, the above maximum principle for W 2,p solutions is well
known (see for example [1], [4]).

The following lemma is of crucial importance for our estimates; it holds
for convex domains and this is the reason why we have assumed that Ω is
convex.

Lemma 2.4. Let Λ be a convex open set with C1 boundary , not neces-
sarily bounded. Let u ∈ C2(Λ) be such that ∂u/∂ν(x) = 0 for all x ∈ ∂Λ.
Then the function v := |∇u|2 satisfies

∂v

∂ν
(x) ≤ 0, x ∈ ∂Λ.

Proof. Since Ω is convex, we have τ · ∂ν∂τ (x) ≥ 0 for all x ∈ ∂Ω and
all vectors τ tangent to ∂Ω at x (see [8, Section V.B]). By assumption,
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∇u(x) · ν(x) = 0 for all x ∈ ∂Ω and then differentiating we get

∂

∂τ
(∇u(x) · ν(x)) = D2u(x)τ · ν(x) +∇u(x) · ∂ν

∂τ
(x) = 0, x ∈ ∂Λ,

for every vector τ tangent to ∂Ω. For τ = ∇u(x) we have

∂v

∂ν
(x) = 2D2u(x)τ · ν(x) = −2τ · ∂ν

∂τ
(x) ≤ 0, x ∈ ∂Ω.

Now we recall some known results about Neumann problems in bounded
domains. Let Λ be a bounded open set in RN with C2+α boundary. Con-
sider the realization of the operator A in C(Λ) with homogeneous Neumann
boundary condition

(2.10) Dν(A) =
{
u ∈W 2,p(Λ) for all p <∞ :

Au ∈ C(Λ),
∂u

∂ν
(x) = 0, x ∈ ∂Λ

}
,

and Au = Au for all u ∈ Dν(A). The operator (A,Dν(A)) is the generator
of a strongly continuous analytic positive contraction semigroup (S(t))t≥0

in C(Λ) (see e.g. [14, Section 3.1.5]). This means that for all f ∈ C(Λ) the
function u(t, x) = (S(t)f)(x) has the following properties:

(i) u ∈ C([0,∞[;C(Λ))∩C1+α/2,2+α([ε, T ]×Λ) for all 0 < ε < T <∞;
(ii) Diu ∈ C1+α/2,2+α([ε, T ]× Λ1) for all i = 1, . . . , N , 0 < ε < T < ∞

and open sets Λ1 with Λ1 ⊂ Λ, in particular u ∈ C1,3(]0,∞[× Λ);
(iii) u is the unique classical bounded solution of the Neumann problem





Dtu(t, x)− Au(t, x) = 0, t > 0, x ∈ Λ,

∂u

∂ν
(t, x) = 0, t > 0, x ∈ ∂Λ,

u(0, x) = f(x), x ∈ Λ.

(2.11)

Next we prove a gradient estimate for S(t)f , using Bernstein’s method
(see [15, Theorem 2.4]). It is worth observing that since Λ is bounded, this
result is well known. Actually, our interest is not in the estimate itself but
rather in the fact that the constant CT in (2.12) below does not depend on
the domain Λ when it is convex. This will be an important step in the study
of problem (1.1).

Proposition 2.5. Let Λ be a bounded convex open set with C2+α bound-
ary. For all fixed T > 0 there exists a constant CT > 0 independent of Λ
such that

|∇S(t)f(x)| ≤ CT√
t
‖f‖∞, 0 < t ≤ T, x ∈ Λ,(2.12)

for every f ∈ C(Λ).
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Proof. We may suppose that V ≥ 1; the general case follows by consid-
ering the operator A′ = A − I. Assume first that f ∈ Dν(A); set u(t, x) =
(S(t)f)(x) and define the function

v(t, x) = u2(t, x) + at|∇u(t, x)|2, t ≥ 0, x ∈ Λ,
where a> 0 is a parameter that will be chosen later. Then v ∈C1,2(]0, T ]×Λ)
∩C0,1(]0, T ]×Λ); moreover, since f ∈ Dν(A), we have u ∈ C([0, T ];Dν(A));
in particular ∇u ∈ C([0, T ]× Λ) and then v ∈ C([0, T ]× Λ).

We claim that for a suitable value of a > 0 independent of Λ, we have

vt(t, x)−Av(t, x) ≤ 0, 0 < t < T, x ∈ Λ,(2.13)
∂v

∂ν
(t, x) ≤ 0, 0 < t < T, x ∈ ∂Λ;(2.14)

then the maximum principle implies

v(t, x) ≤ sup
x∈Λ

v(0, x) = ‖f‖2∞, 0 ≤ t ≤ T, x ∈ Λ,

which yields (2.12) with CT = a−1/2.
The boundary condition (2.14) follows from Lemma 2.4. For (2.13), a

straightforward computation shows that v satisfies the equation

vt(t, x)−Av(t, x) = a|∇u(t, x)|2 − 2
N∑

i,j=1

qij(x)Diu(t, x)Dju(t, x)

+ g1(t, x) + g2(t, x),
where

g1(t, x) = 2at
N∑

i,j=1

DiFj(x)Diu(t, x)Dju(t, x)− atV (x)|∇u(t, x)|2

− 2atu(t, x)∇u(t, x) · ∇V (x)− V (x)u2(t, x),

g2(t, x) = 2at
( N∑

i,j,k=1

Dkqij(x)Dku(t, x)Diju(t, x)

−
N∑

i,j,k=1

qij(x)Diku(t, x)Djku(t, x)
)
.

Let us estimate the function g1. Using (2.3), (2.4) and recalling that V ≥ 1
we get, for all ε > 0,

g1(t, x) ≤ 2at(βV + k0)|∇u|2 − atV |∇u|2

+ 2aγCεt(1 + V )|u|2 + 2aγεt(1 + V )|∇u|2 − V u2

≤ at(2β−1+2γε)V |∇u|2 +(4aγCεt−1)V u2 + 2at(k0 + γε)|∇u|2,
where Cε > 0 is a constant. Since β < 1/2 we can choose ε = ε(β, γ) such



230 M. Bertoldi and S. Fornaro

that 2β − 1 + 2γε < 0 and we get

g1(t, x) ≤ (4aγCεt− 1)V u2 + 2at(k0 + γε)|∇u|2.(2.15)

Concerning g2, from (2.2) we have
N∑

i,j,k=1

DkqijDkuDiju ≤Mµ(x)
N∑

k=1

|Dku|
N∑

i,j=1

|Diju|

≤MN3/2µ(x)|∇u|
( N∑

i,j=1

(Diju)2
)1/2

≤ µ(x)
N∑

i,j=1

(Diju)2 +
1
4
M2N3µ(x)|∇u|2,

and therefore

g2(t, x) ≤ 2at
(
µ(x)

N∑

i,j=1

(Diju)2(2.16)

+
1
4
M2N3µ(x)|∇u|2 − µ(x)

N∑

i,j=1

(Diju)2
)

=
1
2
atM2N3µ(x)|∇u|2.

Estimates (2.15) and (2.16) imply that

vt(t, x)−Av(t, x)

≤
{
a+ 2at(k0 + γε) +

(
1
2
atM2N3 − 2

)
µ(x)

}
|∇u(t, x)|2

+ (4aγCεt− 1)V (x)u2(t, x)

≤
{
a+ 2aT (k+

0 + γε) +
(

1
2
aTM2N3 − 2

)
µ(x)

}
|∇u(t, x)|2

+ (4aγCεT − 1)V (x)u2(t, x)

for all t ∈ ]0, T ] and x ∈ Λ. It is clear now that there exists a sufficiently
small value a > 0 which depends on µ0,M, k0, β, γ,N, T but not on Λ such
that (2.13) holds.

If f ∈ C(Λ) the statement follows easily from the semigroup law, since
S(t) is analytic:

|∇S(t)f(x)| = |∇S(t/2)S(t/2)f(x)|

≤
√

2CT√
t
‖S(t/2)f‖∞ ≤

√
2CT√
t
‖f‖∞.
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3. Construction of the associated semigroup. In this section we
prove that there exist bounded solutions to problems (1.1) and (1.2), we
show that there exists a semigroup (Pt)t≥0 in Cb(Ω) which yields the solution
of (1.1), and we study the main properties of Pt.

We consider a nested sequence {Ωn}n∈N of convex bounded open sets
with C2+α boundary such that

⋃

n∈N
Ωn = Ω, ∂Ω ⊂

⋃

n∈N
∂Ωn.

We define the domain of the realization of A in Ωn by

(3.1) Dn(A) =
{
u ∈W 2,p(Ωn) for all p <∞ :

Au ∈ C(Ωn),
∂u

∂ν
(x) = 0, x ∈ ∂Ωn

}
,

and we denote the associated semigroup by (Tn(t))t≥0. Here is the existence
theorem for problem (1.1).

Theorem 3.1. For every f ∈ Cb(Ω) there exists a unique bounded solu-
tion u(t, x) of problem (1.1) belonging to C([0,∞[×Ω) ∩C1+α/2,2+α

loc (]0,∞[
×Ω). Moreover

u(t, x) = lim
n→∞

(Tn(t))f(x), t ≥ 0, x ∈ Ω.(3.2)

If we set Ptf = u(t, ·), then (Pt)t≥0 is a positive contraction semigroup in
Cb(Ω). Moreover

‖∇Ptf‖∞ ≤
CT√
t
‖f‖∞, 0 < t ≤ T,(3.3)

where CT is as in (2.12).

Proof. Set un(t, x) = (Tn(t)f)(x). Let Ω′ ⊂ Ω be a bounded open set
and 0 < ε < T . From [13, Theorem IV.10.1] it follows that if Ω ′′ ⊂ Ω is a
bounded open set such that Ω′ ⊂ Ω′′ and dist(Ω′, Ω \ Ω′′) > 0, then there
exists a constant C = C(ε, T,Ω′, Ω′′) > 0 such that

‖un‖C1+α/2,2+α([ε,T ]×Ω′) ≤ C‖un‖C([0,T ]×Ω′′).(3.4)

Hence
‖un‖C1+α/2,2+α([ε,T ]×Ω′) ≤ C‖f‖∞

for all n ∈ N such that Ω′′ ⊂ Ωn, and therefore the sequence (un)n∈N is
relatively compact in C1,2([ε, T ]× Ω′). Considering an increasing sequence
of domains [εn, Tn]×Ω′n whose union is ]0,∞[×Ω and using a diagonal pro-
cedure we can conclude that there exists a subsequence (unk)k∈N (possibly
depending on f) such that

lim
k→∞

unk(t, x) = u(t, x), t > 0, x ∈ Ω,
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where u ∈ C
1+α/2,2+α
loc (]0,∞[ × Ω). Moreover (unk)k∈N converges to u in

C1,2([ε, T ]×Ω′) for all 0 < ε < T and for all bounded open sets Ω ′ ⊂ Ω.
We prove that u is a bounded classical solution of problem (1.1). The

function u is a solution of the equation ut − Au = 0 in ]0,∞[ × Ω. This
follows by letting k →∞ in the equation satisfied by unk . Moreover since

|u(t, x)| ≤ ‖f‖∞, t > 0, x ∈ Ω,
we see that u is bounded in ]0,∞[×Ω. The boundary condition

∂u

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω,

follows immediately since unk converges to u in C1,2([ε, T ]×Ω′) for all 0 <
ε < T and Ω′ ⊂ Ω a bounded open set. Finally we prove that u is continuous
at (0, x0) with value f(x0) for all x0 ∈ Ω. Consider two neighborhoods
U1 ⊂ U0 of x0. Set Ω0 = U0 ∩ Ω and Ω1 = U1 ∩ Ω and suppose that Ω0 is
convex and has C2+α boundary. Let θ ∈ C∞(Ω0) be such that θ = 0 in a
neighborhood of Ω ∩ ∂U0, θ = 1 in Ω1 and ∂θ/∂ν = 0 in U0 ∩ ∂Ω. Define

vn(t, x) = θ(x)un(t, x), t > 0, x ∈ Ω0.

Then vn satisfies the boundary condition

∂vn
∂ν

(t, x) = θ(x)
∂un
∂ν

(t, x) + un(t, x)
∂θ

∂ν
(x) = 0(3.5)

for all t > 0 and x ∈ ∂Ω0 and for all n such that Ω0 ⊂ Ωn. Moreover vn
satisfies the equation

Dtvn(t, x)−Avn(t, x) = ψn(t, x), t > 0, x ∈ Ω0,

where

ψn(t, x) = −un(t, x)(A+ V (x))θ(x)− 2
N∑

i,j=1

qij(x)Diun(t, x)Djθ(x).

Since Tn(t) satisfies the gradient estimate (2.12), it follows that there exists
a constant C > 0 such that

‖ψn(t)‖∞ ≤
C√
t
, 0 < t ≤ T,(3.6)

for all n ∈ N. Let T (t) be the strongly continuous analytic semigroup gener-
ated by the realization of A in C(Ω0) with Neumann boundary conditions.
From [14, Proposition 4.1.2] it follows that vn(t) can be written as

vn(t) = T (t)(θf) +
t�

0

T (t− s)ψn(s) ds.
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Since vn = un in Ω1, if (t, x) ∈ ]0, T [×Ω1 we have

|unk(t, x)− f(x0)| ≤ |T (t)(θf)(x)− f(x0)|+
t�

0

‖T (t− s)ψnk(s)‖∞ ds.

Using (3.6) and letting k →∞ we get

|u(t, x)− f(x0)| ≤ |T (t)(θf)(x)− f(x0)|+
t�

0

C√
s
ds,

which shows that u is continuous at (0, x0). Since x0 ∈ Ω is arbitrary, we
conclude that u is continuous in [0, T ]× Ω. Thus we have proved that u is
a bounded classical solution of problem (1.1).

We claim that the whole sequence (un)n∈N converges to u in C1,2([ε, T ]
×Ω′) for all 0 < ε < T and Ω′ ⊂ Ω a bounded open set. Indeed, consider any
subsequence (unk)k∈N of (un)n∈N. The previous argument can be applied to
(unk)k∈N and it follows that there is a subsequence (unkj )j∈N and a function
v such that v is a classical bounded solution of problem (1.1) and (unkj )j∈N
converges to v. But from Proposition 2.1 it follows that u = v. This shows
that the whole sequence converges to u.

Writing (Ptf)(x) = u(t, x), we get the positivity of Pt directly from the
positivity of Tn(t). The semigroup law for the linear operators Pt follows in
a standard way from uniqueness.

Finally, according to Proposition 2.5, for all T > 0 there exists a constant
CT > 0 such that

|∇Tn(t)f(x)| ≤ CT√
t
‖f‖∞, 0 < t ≤ T, x ∈ Ωn,

for all n ∈ N. Letting n→∞ we get (3.3).

The next proposition shows some continuity properties of Pt that will be
useful subsequently.

Proposition 3.2. If (fn)n∈N ⊂ Cb(Ω) is a bounded sequence which
converges pointwise in Ω to a function f ∈ Cb(Ω), then (Ptfn)(x) converges
to (Ptf)(x) in C1,2([ε, T ] × Ω′) for all 0 < ε < T and all bounded sets
Ω′ ⊂ Ω. If (fn) converges to f uniformly on compact subsets of Ω, then
(Ptfn)(x) converges to (Ptf)(x) uniformly in [0, T ] × Ω′ for all T > 0 and
all bounded sets Ω′ ⊂ Ω. Finally , Pt can be represented in the form

(Ptf)(x) =
�

Ω

f(y) p(t, x; dy), t > 0, x ∈ Ω,(3.7)

where p(t, x; dy) is a positive finite Borel measure on Ω.

Proof. We may assume that f = 0. Let (fn)n∈N be a bounded sequence
in Cb(Ω) that converges pointwise to zero in Ω, and set un(t, x) = Ptfn(x).
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Using the local Schauder estimate (3.4) and the maximum principle it follows
that the sequence (un) is bounded in C1+α/2,2+α([ε, T ]×Ω′) for all 0 < ε < T
and all bounded Ω′ ⊂ Ω. Therefore there exist a subsequence unk and a
function u ∈ C1,2(]0,∞[×Ω) such that unk converges to u in C1,2([ε, T ]×Ω′)
for all 0 < ε < T and for all bounded Ω′ ⊂ Ω. The function u is a bounded
solution of the equation

ut −Au = 0 in (0,∞)×Ω,
and it satisfies the boundary condition

∂u

∂ν
= 0 in (0,∞)× ∂Ω.

Now we show that u is continuous up to t = 0 and that u(0, x) = 0 in order
to conclude that u ≡ 0, by Proposition 2.1. Let Ω0, Ω1 and θ be as in the
proof of Theorem 3.1 and set vn(t, x) = θ(x)un(t, x). Then we can write

vn(t) = T (t)(θfn) +
t�

0

T (t− s)ψn(s) ds,

where T (t) is the semigroup generated by the realization of A in C(Ω0) with
Neumann boundary condition and

ψn(t, x) = −un(t, x)(A+ V (x))θ(x)− 2
N∑

i,j=1

qij(x)Diun(t, x)Djθ(x).

From the gradient estimate (3.3) and the boundedness of (fnk)k∈N it follows
that

|vnk(t, x)| ≤ |(T (t)(θfnk))(x)|+C
√
t, x ∈ Ω0, 0 ≤ t ≤ T, k ∈ N,(3.8)

where C > 0 is a constant independent of k ∈ N. For all 1 < p < ∞
the semigroup (T (t)) extends to an analytic semigroup in Lp(Ω0) (see [14,
Section 3.1.1]), and for p > N the domain of the generator of T (t) in Lp(Ω0)
is embedded in C(Ω0); since θfnk converges to zero in Lp(Ω0) it follows that
T (t)(θfnk) converges to zero uniformly in Ω0. Thus letting k → ∞ in (3.8)
we get

|u(t, x)| ≤ C
√
t, 0 < t < T, x ∈ Ω1,

which implies that u is continuous at (0, x0) for all x0 ∈ Ω1. Since Ω1 ⊂ Ω
is arbitrary, we see that u is continuous at t = 0 with u(0, x) = 0.

Therefore u ≡ 0 and the subsequence unk converges to zero in
C1,2([ε, T ]×Ω′) for all 0 < ε < T and bounded Ω′ ⊂ Ω. As in the proof of
Theorem 3.1 one can prove that the whole sequence (un)n∈N converges to
zero in C1,2([ε, T ]×Ω′) for all 0 < ε < T and bounded Ω′ ⊂ Ω, as stated.
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Suppose now that (fn)n∈N converges to zero uniformly on compact sub-
sets of Ω. By (3.8) we have

|un(t, x)| ≤ ‖T (t)(θfn)‖∞ + C
√
t ≤ ‖θfn‖∞ + C

√
t, x ∈ Ω1, 0 ≤ t ≤ T,

where C > 0 does not depend on n ∈ N. Therefore for all ε > 0 we have

‖un‖C([0,T ]×Ω1) ≤ ‖θfn‖∞ + C
√
ε+ ‖un‖C([ε,T ]×Ω1).

By taking into account the first step of the proof this yields

lim sup
n→∞

‖un‖C([0,T ]×Ω1) ≤ C
√
ε,

that is, un converges to zero uniformly in [0, T ]×Ω1. Since Ω1 is arbitrary,
the conclusion follows.

We can now prove (3.7). By the Riesz representation theorem, for every
x ∈ Ω there exists a positive finite Borel measure p(t, x; dy) in Ω such that

(Ptf)(x) =
�

Ω

f(y) p(t, x; dy), f ∈ C0(Ω).(3.9)

If f ∈ Cb(Ω), we consider a bounded sequence (fn)n∈N ⊂ C0(Ω) which
converges to f uniformly on compact sets of Ω. Writing (3.9) for fn and
letting n → ∞ we obtain the statement for f ∈ Cb(Ω), by dominated
convergence.

By a straightforward application of the semigroup law, from Proposi-
tion 3.2 it follows that estimate (3.3) extends to the whole half-line [0,∞[.

Corollary 3.3. For all ω > 0 there exists Cω > 0 such that

‖∇Ptf‖∞ ≤ Cω
eωt√
t
‖f‖∞, t > 0, f ∈ Cb(Ω).(3.10)

We remark that the semigroup (Pt)t≥0 is not strongly continuous in
Cb(Ω) in general: this is shown by the example Ω = RN and A = ∆.
Following the approach in [19], we introduce the weak generator (Â,D(Â))
defined by

D(Â) =
{
f ∈ Cb(Ω) : sup

t∈(0,1)

‖Ptf − f‖
t

<∞ and ∃g ∈ Cb(Ω) such that

lim
t→0

(Ptf)(x)− f(x)
t

= g(x), ∀x∈Ω
}
,

Âf(x) = lim
t→0

(Ptf)(x)− f(x)
t

, f ∈ D(Â), x ∈ Ω.

The following results are proved in [19]: if f ∈ D(Â), then Ptf ∈ D(Â) and
ÂPtf = PtÂf for all t ≥ 0. Moreover we have (0,∞) ⊂ %(Â), ‖R(λ, Â)‖
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≤ 1/λ and

(R(λ, Â)f)(x) =
∞�

0

e−λt(Ptf)(x) dt, x ∈ Ω,(3.11)

and R(λ, Â) is surjective from Cb(Ω) onto D(Â) for all λ > 0. Our aim now
is to find a solution of problem (1.2) and to prove that Â coincides with the
operator A.

Proposition 3.4. For all f ∈ Cb(Ω) and λ > 0, the function u =
R(λ, Â)f belongs to D(A) and solves problem (1.2). Moreover D(Â) = D(A)
and Âv = Av for all v ∈ D(A).

Proof. Let f ∈ Cb(Ω) and let u = R(λ, Â)f . For all n ∈ N, let
un = Rn(λ,A)f ∈ Dn(A), where Rn(λ,A) is the resolvent of the opera-
tor (A,Dn(A)), that is,

un(x) =
∞�

0

e−λt(Tn(t)f)(x) dt, x ∈ Ωn.

Taking into account the contractivity of Tn(t), we have

‖un‖∞ ≤
1
λ
‖f‖∞, ‖Aun‖∞ ≤ 2‖f‖∞(3.12)

for all n ∈ N, and then from Theorem 3.1 and by dominated convergence it
follows that

lim
n→∞

un = u

pointwise in Ω and in Lp(Ωk) for all k ∈ N. Furthermore, by the Lp estimates
we have

‖un − um‖W 2,p(Ωk) ≤ c(p, k)‖un − um‖Lp(Ωk+1), n,m > k,(3.13)

for all p ∈ (1,∞), where c(p, k) > 0 is a constant. Consequently un converges
to u in W 2,p(Ωk) for all k ∈ N. Hence u ∈ W 2,p(Ω ∩ BR) for all R < ∞.
Moreover by Sobolev embedding un converges to u in C1(Ωk) for all k ∈ N,
and hence we deduce that ∂u/∂ν = 0 in ∂Ω. Finally, letting n→∞ in the
equation λun−Aun = f shows that λu−Au = f in Ω. Therefore u belongs
to D(A) and is a solution of problem (1.2).

In particular, sinceR(λ, Â) is surjective from Cb(Ω) ontoD(Â), it follows
that D(Â) ⊂ D(A). Conversely, let u ∈ D(A) and define f = λu − Au ∈
Cb(Ω), where λ ≥ λ0 (see (2.5)). Then the function v = R(λ, Â)f is a
bounded solution of problem (1.2). By Proposition 2.3 we have u = v, and
in particular u ∈ D(Â).

A consequence of the gradient estimate (3.10) is that D(A) is continu-
ously embedded in C1

b(Ω).
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Proposition 3.5. D(A) ⊆ C1
b(Ω). Moreover for all ω > 0 there exists

a constant Mω > 0 such that

‖∇u‖∞ ≤Mω‖u‖1/2∞ ‖(A− ω)u‖1/2∞(3.14)

for all u ∈ D(A).

Proof. Let u ∈ D(A), ω > 0 and λ > 0. Then the function f =
(λ+ ω)u−Au belongs to Cb(Ω) and

u(x) = (R(λ+ ω, Â)f)(x) =
∞�

0

e−(λ+ω)t(Ptf)(x) dt, x ∈ Ω.

By using estimate (3.10), we may differentiate under the integral sign to
obtain

∇u(x) =
∞�

0

e−(λ+ω)t(∇Ptf)(x) dt, x ∈ Ω,

and

|∇u(x)| ≤ Cω
∞�

0

e−λt√
t
dt ‖f‖∞ =

Mω√
λ
‖f‖∞, x ∈ Ω,

where Mω > 0 is a constant. Therefore

‖∇u‖∞ ≤Mω

(√
λ ‖u‖∞ +

‖(A− ω)u‖∞√
λ

)
,

and, if we take the minimum over λ, (3.14) follows.

With the same technique as in Proposition 2.5 we get the following gra-
dient estimate.

Proposition 3.6. For every T > 0 there exists CT > 0 such that

‖∇Ptf‖∞ ≤ CT (‖f‖∞ + ‖∇f‖∞), 0 < t ≤ T,(3.15)

for every f ∈ C1
ν (Ω) (see (1.5)).

Proof. We may suppose that V ≥ 1; the general case follows by consid-
ering the operator A′ = A − I. We give the proof in several steps; first we
prove that there exists a constant CT > 0 such that

|∇Tn(t)f(x)| ≤ CT (‖f‖∞ + ‖∇f‖∞), 0 < t ≤ T, x ∈ Ωn,(3.16)

for every n ∈ N and f ∈ C1
ν (Ωn). Since Dn(A) (see (3.1)) is dense in C1

ν (Ωn),
it is enough to prove (3.16) for f ∈ Dn(A).

Let f ∈ Dn(A) and define

w(t, x) = u2(t, x) + a|∇u(t, x)|2, t > 0, x ∈ Ωn,
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where u(t, x) = (Tn(t)f)(x) and a > 0 is a constant. Then w ∈ C([0, T ]×Ωn)
∩ C0,1(]0, T ]×Ωn) ∩ C1,2(]0, T ]×Ωn) and from Lemma 2.4 it follows that

∂w

∂ν
(t, x) ≤ 0, t > 0, x ∈ ∂Ωn.

Moreover w satisfies the equation

wt(t, x)−Aw(t, x) = −2
N∑

i,j=1

qij(x)Diu(t, x)Dju(t, x) + h1(t, x) + h2(t, x),

where

h1(t, x) = 2a
N∑

i,j=1

DiFj(x)Diu(t, x)Dju(t, x)− aV (x)|∇u(t, x)|2

− 2au(t, x)∇u(t, x) · ∇V (x)− V (x)u2(t, x),

h2(t, x) = 2a
( N∑

i,j,k=1

Dkqij(x)Dku(t, x)Diju(t, x)

−
N∑

i,j,k=1

qij(x)Diku(t, x)Djku(t, x)
)
.

The same estimates from the proof of Proposition 2.5 show that there exists
a value of a > 0 independent of n such that

wt(t, x)−Aw(t, x) ≤ 0, 0 < t ≤ T, x ∈ Ωn.
Therefore the classical maximum principle yields

w(t, x) ≤ sup
x∈Ωn

w(0, x) ≤ ‖f‖2∞ + a‖∇f‖2∞, 0 < t ≤ T, x ∈ Ωn,

which implies (3.16) with CT = a−1/2 ∨ 1.
Let now f ∈ C1

ν (Ω). For all k ∈ N, let θk ∈ C1
b(Ω) be a function with

bounded support such that

0 ≤ θk ≤ 1, ‖∇θk‖∞ ≤ L, θk = 1 in Ωk,
∂θk
∂ν

= 0 in ∂Ω,

where L > 0 is a constant independent of k ∈ N, and set fk = θkf . Then
for all n ∈ N such that supp(θk) ⊂ Ωn we have

∂fk
∂ν

(x) =
∂θk
∂ν

(x)f(x) + θk(x)
∂f

∂ν
(x) = 0, x ∈ ∂Ωn,

that is, fk ∈ C1
ν (Ωn). Then Tn(t)fk satisfies estimate (3.16), and letting

n→∞ we get

|∇Ptfk(x)| ≤ CT (‖fk‖∞ + ‖∇fk‖∞)

≤ CT ((1 + L)‖f‖∞ + ‖∇f‖∞), 0 < t ≤ T, x ∈ Ω.
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Taking into account Proposition 3.2 and letting k → ∞ yields the state-
ment.

As a consequence we get the following result which will be used in what
follows.

Proposition 3.7. If f ∈ C1
ν (Ω) then the function ∇Ptf is continuous

in [0,∞)×Ω.

Proof. Let f ∈ C1
ν (Ω). Taking account of Theorem 3.1 we only have to

prove that ∇Ptf is continuous at t = 0. Let x0 ∈ Ω be fixed and Ω0, Ω1, θ
and T (t) be as in the proof of Theorem 3.1. We set

v(t, x) = θ(x)(Ptf)(x), t ≥ 0, x ∈ Ω0,

and we prove that ∇v is continuous at (0, x0); since v(t, x) = (Ptf)(x) for
all x ∈ Ω1, the conclusion follows. We can write

v(t) = T (t)(θf) +
t�

0

T (t− s)ψ(s) ds,

where

ψ(t, x) = −Ptf(x)(A+ V (x))θ(x)− 2
N∑

i,j=1

qij(x)DiPtf(x)Djθ(x).

From Proposition 3.6 it follows that

‖ψ(t)‖∞ ≤ CT (‖f‖∞ + ‖∇f‖∞), 0 < t ≤ T,
for some CT > 0, for all fixed T > 0, and then by (2.12) we have

‖∇T (t− s)ψ(s)‖∞ ≤
C√
t− s (‖f‖∞ + ‖∇f‖∞), 0 < s < t ≤ T,

for some C > 0. Therefore
|∇v(t, x)−∇f(x0)| ≤ |∇T (t)(θf)(x)−∇f(x0)|

+ 2C
√
t (‖f‖∞ + ‖∇f‖∞), 0 < t ≤ T, x ∈ Ω0.

Taking account of

lim
(t,x)→(0,x0)

|∇T (t)(θf)(x)−∇f(x0)| = 0,(3.17)

we conclude that ∇v is continuous at (0, x0). Relation (3.17) is immediate
if θf ∈ Dν(A), where Dν(A) is the domain of the generator of T (t), as
in (2.10). Indeed, in this case T (t)(θf) belongs to C([0,∞);Dν(A)) and
Dν(A) ⊂ C1

ν (Ω0). In general we have θf ∈ C1
ν (Ω0) (see (3.5)), and (3.17)

follows by approximation, since Dν(A) is dense in C1
ν (Ω0).

Remark 3.8. In the case Ω = RN the compactness of Pt in Cb(RN ) has
been studied in [16]. The results extend to the case Ω 6= RN , with the same
proofs adapted to the Neumann problem. Assume that V ≡ 0, i.e. consider
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the conservative case where Pt � = � . First, Pt is compact in Cb(Ω) for all
t > 0 if and only if for all t, ε > 0 there exists a bounded set Ω ′ ⊂ Ω such
that p(t, x,Ω′) ≥ 1 − ε for all x ∈ Ω. Secondly, if there exists a positive
function ψ ∈ C2 such that

lim
|x|→∞

ψ(x) =∞, ∂ψ

∂ν
(x) = 0, x ∈ ∂Ω, Aψ(x) ≤ −g(ψ(x)), x ∈ Ω,

where g : [0,∞[→ R is a convex function such that limx→∞ g(x) = ∞ and
1/g is integrable at ∞, then Pt is compact in Cb(Ω) for all t > 0.

4. Pointwise gradient estimates. In the whole section we assume
that V ≡ 0, which implies that Pt � = � for all t > 0 thanks to uniqueness.
Actually this is a necessary condition for the estimates that we are going to
prove. Indeed, taking f = � in (4.1) shows that Pt � = � .

Proposition 4.1. Suppose qij(x) ≡ δij for all i, j = 1, . . . , N . Then for
every p ≥ 1 and f ∈ C1

ν (Ω) we have

|∇Ptf(x)|p ≤ epk0tPt(|∇f |p)(x), t ≥ 0, x ∈ Ω.(4.1)

Proof. It is sufficient to prove the case p = 1. For p > 1, we observe
that since Pt � = � the measures p(t, x; dy) given by Proposition 3.2 are
probability measures, and then Jensen’s inequality yields

|∇Ptf(x)|p ≤ (ek0tPt(|∇f |)(x))p ≤ ek0ptPt(|∇f |p)(x).

Let f ∈ C1
ν (Ω) and let ε > 0 be fixed. Set u(t, x) = Ptf(x) and define

the function

w(t, x) = (|∇u(t, x)|2 + ε)1/2, t > 0, x ∈ Ω.
From Propositions 3.6 and 3.7 it follows that w is bounded and continuous
in [0,∞[×Ω. Since u ∈ C1+α/2,2+α

loc (]0,∞[×Ω) (see Theorem 3.1), we find
that w ∈ C0,1(]0,∞[ × Ω). Finally, from [12, Theorem 8.12.1] we deduce
that w ∈ C1,2(]0,∞[×Ω). From Lemma 2.4 it follows that
∂w

∂ν
(t, x) =

1
2

(|∇u(t, x)|2 + ε)−1/2 ∂

∂ν
|∇u|2(t, x) ≤ 0, t > 0, x ∈ ∂Ω.

A straightforward computation shows that w satisfies the equation

wt(t, x)−Aw(t, x) = g1(t, x) + g2(t, x)

where

g1 = (|∇u|2 + ε)−1/2
N∑

i,j=1

(DiFj)(Diu)(Dju)

g2 = (|∇u|2 + ε)−3/2
N∑

i=1

( N∑

j=1

(Dju)(Diju)
)2
− (|∇u|2 + ε)−1/2

N∑

i,j=1

(Diju)2.



Gradient estimates 241

We now estimate the functions g1 and g2. Since

(|∇u|2 + ε)−3/2
N∑

i=1

( N∑

j=1

DjuDiju
)2
≤ (|∇u|2 + ε)−3/2|∇u|2

N∑

i,j=1

(Diju)2

≤ (|∇u|2 + ε)−1/2
N∑

i,j=1

(Diju)2,

it follows that g2 ≤ 0. On the other hand using (2.3) we obtain

g1(t, x) ≤ k0(|∇u(t, x)|2 + ε)−1/2|∇u(t, x)|2

= k0w − k0ε(|∇u(t, x)|2 + ε)−1/2.

If k0 ≥ 0 we immediately have

g1(t, x) ≤ k0w,

whereas if k0 < 0, we have

g1(t, x) ≤ k0w − k0
√
ε.

In any case we obtain

wt −Aw ≤ k0(w − δε) where δε =
{

0 k0 ≥ 0,√
ε k0 < 0.

Therefore the function v = w − δε satisfies




vt(t, x)−Av(t, x) ≤ k0v(t, x), t > 0, x ∈ Ω,
∂v

∂ν
(t, x) ≤ 0, t > 0, x ∈ ∂Ω,

v(0, x) = (|∇f(x)|2 + ε)1/2 − δε, x ∈ Ω.

On the other hand, the function

z(t, x) = ek0tPt((|∇f |2 + ε)1/2)(x), t > 0, x ∈ Ω,
solves the problem





zt(t, x)−Az(t, x) = k0z(t, x), t > 0, x ∈ Ω,
∂z

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω,

z(0, x) = (|∇f(x)|2 + ε)1/2, x ∈ Ω.

Therefore Proposition 2.1 applied to v−z and to the operator A+k0I yields
v ≤ z, that is,

(|∇u(t, x)|2 + ε)1/2 − δε ≤ ek0tPt((|∇f |2 + ε)1/2)(x), t ≥ 0, x ∈ Ω.
Letting ε→ 0 yields estimate (4.1) with p = 1.
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We now consider the case of variable second order coefficients. Under the
assumption

N∑

i,j=1

(∇qij(x) · ξ)2 ≤ q0µ(x)|ξ|2, x ∈ Ω, ξ ∈ RN ,(4.2)

which is slightly stronger than (2.2), we generalize the previous result when
p > 1.

Proposition 4.2. Suppose that (4.2) holds. Then

|∇Ptf(x)|p ≤ eσptPt(|∇f |p)(x), t ≥ 0, x ∈ Ω,(4.3)

for all p > 1 and f ∈ C1
ν (Ω), where

σp =





pk0 +
p

4
q0 if p ≥ 2,

pk0 +
p

4(p− 1)
q0 if 1 < p < 2.

Proof. Let f ∈ C1
ν (Ω) be fixed. We first prove the statement for p = 2.

Consider the function

w(t, x) = |∇u(t, x)|2, t > 0, x ∈ Ω,
where u(t, x) = (Ptf)(x); then w ∈ C([0,∞[ × Ω) ∩ C0,1(]0,∞[ × Ω) ∩
C1,2(]0,∞[×Ω), and from Lemma 2.4 we have

∂w

∂ν
(t, x) ≤ 0, t > 0, x ∈ ∂Ω.

Moreover it is readily seen that

wt(t, x)−Aw(t, x) = f0(t, x),

where

f0 = 2
(∑

i,j,k

DkqijDkuDiju+
∑

j,k

DkFjDkuDju−
∑

i,j,k

qijDikuDjku
)
.

From (4.2) it follows that

N∑

i,j,k=1

Dkqij(x)DkuDiju ≤
( N∑

i,j=1

(Diju)2
)1/2( N∑

i,j=1

(∇qij · ∇u)2
)1/2

(4.4)

≤
( N∑

i,j=1

(Diju)2
)1/2

(q0µ(x)|∇u|2)1/2

≤ µ(x)
N∑

i,j=1

(Diju)2 +
1
4
q0|∇u|2,
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and then using (2.3) we get

f0(t, x) ≤ 2
(
µ(x)

N∑

i,j=1

(Diju)2 +
1
4
q0|∇u|2 + k0|∇u|2 − µ(x)

N∑

i,j=1

(Diju)2
)

= (2k0 + q0/2)|∇u|2 = σ2|∇u|2.
On the other hand the function

z(t, x) = eσ2tPt(|∇f |2)(x), t > 0, x ∈ Ω,
is the solution of the problem




zt(t, x)−Az(t, x) = σ2z(t, x), t > 0, x ∈ Ω,

∂z

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω,

z(0, x) = |∇f(x)|2, x ∈ Ω.

Using Proposition 2.1 we can conclude that w ≤ z, which is (4.3) with p = 2.
Now the case p > 2 follows easily by applying Jensen’s inequality:

|∇Ptf(x)|p ≤ (eσ2tPt(|∇f |2)(x))p/2 ≤ eσptPt(|∇f |p)(x), t > 0, x ∈ Ω.
Assume 1 < p < 2. Fix ε > 0 and define the function

w(t, x) = (|∇u(t, x)|2 + ε)p/2,

where u(t, x) = (Ptf)(x). Then w ∈ C([0,∞[ × Ω) ∩ C0,1(]0,∞[ × Ω) ∩
C1,2(]0,∞[×Ω), and from Lemma 2.4 we have
∂w

∂ν
(t, x) =

p

2
(|∇u(t, x)|2 + ε)p/2−1 ∂

∂ν
|∇u(t, x)|2 ≤ 0, t > 0, x ∈ ∂Ω.

Moreover it turns out that

wt(t, x)−Aw(t, x) = f1(t, x) + f2(t, x),

where

f1 = p(|∇u|2 + ε)(p− 2)/2f0,

f2 = p(2− p)(|∇u|2 + ε)(p−4)/2
∑

i,j,k,h

qijDkuDjkuDhuDihu.

Taking into account (4.4) for all δ > 0 we have

f1 ≤ p(|∇u|2 + ε)(p−2)/2
(
δµ(x)

N∑

i,j=1

(Diju)2

+
1
4δ
q0|∇u|2 + k0|∇u|2 −

N∑

i,j,k=1

qijDjkuDiku

)
.

As far as f2 is concerned, we set Akh =
∑N

i,j=1 qijDjkuDihu and we observe
that, since the matrix A = (Akh) is symmetric and nonnegative definite,
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we have
∑N

k,h=1AkhDhuDku ≤ Tr(A)|∇u|2, where Tr(A) denotes the trace
of A. Therefore

f2 = p(2− p)(|∇u|2 + ε)(p−4)/2
N∑

k,h=1

AkhDkuDhu

≤ p(2− p)(|∇u|2 + ε)(p−2)/2
N∑

i,j,k=1

qijDjkuDiku.

Choosing δ = p− 1 we get

f1 + f2 ≤ p(|∇u|2 + ε)(p−2)/2
(

(p− 1)µ(x)
N∑

i,j=1

(Diju)2

+
(

q0

4(p− 1)
+ k0

)
|∇u|2 + (1− p)

N∑

i,j,k=1

qijDjkuDiku

)

≤
(
pk0 +

p

4(p− 1)
q0

)
(|∇u|2 + ε)(p−2)/2|∇u|2

= σpw − εσp(|∇u|2 + ε)(p−2)/2,

which implies
wt −Aw ≤ σp(w − δε),

where

δε =
{

0 if σp ≥ 0,

εp/2 if σp < 0.

Now the conclusion of the proof is the same as in Proposition 4.1: applying
Proposition 2.1 to compare with z(t, x) = eσptPt((|∇f |2 + ε)p/2) we deduce
that

(|∇u(t, x)|2 + ε)p/2 − δε ≤ eσptPt((|∇f |2 + ε)p/2)(x), t ≥ 0, x ∈ Ω,
and then (4.3) follows by letting ε→ 0.

In the following proposition we deduce from (4.3) another type of point-
wise gradient estimate. The basic idea of the proof is taken from [3] where
the case p = 2 is considered.

Proposition 4.3. Assume that (4.2) holds. Then for all f ∈ Cb(Ω) we
have

|∇Ptf(x)|p ≤
(

σ2µ
−1
0

2(1− e−σ2t)

)p/2
Pt(|f |p)(x), t > 0, x ∈ Ω,(4.5)

for all p ≥ 2, and

|∇Ptf(x)|p ≤ cpµ
−1
0 σp

tp/2−1(1− e−σpt) Pt(|f |
p)(x), t > 0, x ∈ Ω,(4.6)



Gradient estimates 245

for all 1 < p < 2, where cp = 2p/(p(p − 1))p/2 and σp is given by Proposi-
tion 4.2. When σp = 0 in (4.5) and (4.6), we replace σp/(1− e−σpt) by 1/t.

Proof. We prove that Tn(t)f satisfies estimates (4.5) and (4.6) for
x ∈ Ωn, for all n ∈ N; then the conclusion follows by letting n → ∞. Fix
n ∈ N and set Tt = Tn(t), for simplicity. Note that Tt satisfies estimate (4.3)
for all the functions in C1

ν (Ωn).
First we consider the case p = 2. Let f ∈ Cb(Ω), fix t > 0 and set

Φ(s) = Ts((Tt−sf)2), 0 ≤ s ≤ t− ε,
where ε > 0. From the analyticity of Tt it follows that g = Tt−sf ∈ Dn(A)
for all 0 ≤ s ≤ t − ε (we recall that Dn(A) is the domain of the generator
of Tt, defined in (3.1)). Moreover from a direct calculation it is readily seen
that g2 ∈ Dn(A) and

Φ′(s) = ATs(g2)− 2Ts(gAg) = Ts(A(g2)− 2gAg) = 2Ts(Q[∇g]),

where Q is defined in (1.10). Thus

Φ(t− ε)− Φ(0) = Tt−ε((Tεf)2)− (Ttf)2 = 2
t−ε�

0

Ts(Q[∇Tt−sf ]) ds.

Now, applying Proposition 4.2 to Tt−sf we obtain

Ts(Q[∇Tt−sf ]) ≥ µ0Ts(|∇Tt−sf |2) ≥ µ0e
−σ2s|∇Ttf |2,

so that

Tt−ε((Tεf)2)− (Ttf)2 ≥ 2µ0|∇Ttf |2
t−ε�

0

e−σ2s ds

=
2µ0(1− e−σ2(t−ε))

σ2
|∇Ttf |2,

and then

|∇Ttf |2 ≤
σ2µ

−1
0

2(1− e−σ2(t−ε))
(Tt−ε((Tεf)2)− (Ttf)2)

≤ σ2µ
−1
0

2(1− e−σ2(t−ε))
Tt−ε((Tεf)2).

Letting ε→ 0 we obtain our claim.
If p > 2, using Jensen’s inequality we get

|∇Ttf |p ≤
(

σ2µ
−1
0

2(1− e−σ2t)
Tt(f2)

)p/2
≤
(

σ2µ
−1
0

2(1− e−σ2t)

)p/2
Tt(|f |p).

Now assume 1 < p < 2. Let first f ∈ Cb(Ω) with f ≥ δ for some δ > 0.
Fix t, ε > 0 and define the function

Ψ(s) = Ts((Tt−sf)p), 0 ≤ s ≤ t− ε.
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Then g = Tt−sf ≥ δ > 0 and a straightforward computation shows that

A(gp) = pgp−1Ag + p(p− 1)gp−2Q[∇g],
∂gp

∂ν
= pgp−1 ∂g

∂ν
,

which implies that gp ∈ Dn(A), since g ∈ Dn(A). Moreover

Ψ ′(s) = Ts(A(gp)− pgp−1Ag) = p(p− 1)Ts((Tt−sf)p−2Q[∇Tt−sf ]),

and hence

Tt−ε((Tεf)p)− (Ttf)p = p(p− 1)
t−ε�

0

Ts((Tt−sf)p−2Q[∇Tt−sf ]) ds.(4.7)

Applying Proposition 4.2 and Hölder’s inequality we get, for all β ∈ R,

|∇Ttf |p= |∇TsTt−sf |p ≤ eσpsTs(|∇Tt−sf |p)
= eσpsTs(|∇Tt−sf |p(Tt−sf)−β(Tt−sf)β)

≤ µ−1
0 eσps{Ts(Q[∇Tt−sf ](Tt−sf)−2β/p)}p/2{Ts(Tt−sf)2β/(2−p)}1−p/2.

Choosing β = p(2 − p)/2 and using Jensen’s and Young’s inequalities we
get, for all η > 0,

|∇Ttf |p ≤ µ−1
0 eσps{Ts(Q[∇Tt−sf ](Tt−sf)p−2)}p/2{Ts(Tt−sf)p}1−p/2

≤ µ−1
0 eσps{Ts(Q[∇Tt−sf ](Tt−sf)p−2)}p/2{Tt(fp)}1−p/2

≤ µ−1
0 eσps

{
p

2
η2/pTs(Q[∇Tt−sf ](Tt−sf)p−2)

+
(

1− p

2

)
η2/(p−2)Tt(fp)

}
,

so that

µ0e
−σps|∇Ttf |p ≤

p

2
η2/pTs(Q[∇Tt−sf ](Tt−sf)p−2)+

(
1− p

2

)
η2/(p−2)Tt(fp).

Integrating from 0 to t− ε and using (4.7) we get

µ0(1− e−σp(t−ε))
σp

|∇Ttf |p

≤ p

2
η2/p

t−ε�

0

Ts(Q[∇Tt−sf ](Tt−sf)p−2) ds+
(

1− p

2

)
η2/(p−2)(t− ε)Tt(fp)

=
p

2
η2/p Tt−ε((Tεf)p)− (Ttf)p

p(p− 1)
+
(

1− p

2

)
η2/(p−2)(t− ε)Tt(fp)

and then, letting ε→ 0,

|∇Ttf |p ≤
µ−1

0 σp
1− e−σpt Tt(f

p)
(
p

2
η2/p 1

p(p− 1)
+
(

1− p

2

)
η2/(p−2)t

)
.
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Taking the optimal choice η = {p(p− 1)t}p(2−p)/4 we finally obtain

|∇Ttf |p ≤
µ−1

0 σp

[p(p− 1)]p/2tp/2−1(1− e−σpt) Tt(f
p).(4.8)

If f ∈ Cb(Ω) and f ≥ 0 then (4.8) follows by approximating f with f + 1/n
and using Proposition 3.2. If f ∈ Cb(Ω) then

|∇Ttf |p = |∇Tt(f+ − f−)|p ≤ 2p−1(|∇Tt(f+)|p + |∇Tt(f−)|p)

≤ 2p−1µ−1
0 σp

[p(p− 1)]p/2tp/2−1(1− e−σpt) (Tt((f+)p) + Tt((f−)p))

≤ 2pµ−1
0 σp

[p(p− 1)]p/2tp/2−1(1− e−σpt) Tt(|f |
p),

which concludes the proof.

Remark 4.4. If Ω = RN , we can consider the case of operators with
locally Hölder continuous but nondifferentiable coefficients. In the case of
differentiable coefficients, (2.2) and (2.3) are consequences of

|qij(x)− qij(y)| ≤Mµ(x)|x− y|, x, y ∈ Ω,(4.9)

(F (x)− F (y)) · (x− y) ≤ (βV (x) + k0)|x− y|2, x, y ∈ Ω.(4.10)

Assume that the coefficients qij and Fi belong to Cαloc(RN ) and satisfy (4.9)
and (4.10), and assume that V ∈ C1+α

loc (RN ) and it satisfies (2.4). If one
considers a standard family of mollifiers (ζε)ε>0 and defines qεij = qij ∗ ζε
and F εi = Fi ∗ ζε, then the functions qεij and F εi are regular and satisfy (4.9)
and (4.10) with the same constants q0, β, k0 for all ε > 0. Therefore qεij and
F εi satisfy (2.2) and (2.3); if Aε denotes the operator with coefficients qεij ,
F εi and V , and if P εt denotes the associated semigroup, then P εt satisfies
all the gradient estimates that we have proved, with the same constants for
all ε > 0. As ε → 0 we get the gradient estimates for the semigroup Pt
associated with the operator with coefficients qij , Fi and V . Indeed, from
the interior estimates [13, Theorem IV.10.1] it follows that P ε

t f → Ptf in
C1,2

loc ((0,∞)× RN ).

5. Consequences and counterexamples. The aim of this section is
to show on the one hand some consequences of the gradient estimates proved
so far, and on the other hand, two counterexamples to some of them.

We start by giving a new formulation of the uniform gradient esti-
mate (3.3): now we specify how the constant CT depends on the operator A.
This allows us to deduce a Liouville type theorem.

Corollary 5.1. Suppose that V ≡ 0 and (4.2) holds. Then for every
f ∈ Cb(Ω),
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‖∇Ptf‖∞ ≤
(

µ−1
0 σ2

2(1− e−σ2t)

)1/2

‖f‖∞, t > 0,

if σ2 6= 0, and

‖∇Ptf‖∞ ≤
(

1
2µ0t

)1/2

‖f‖∞, t > 0,

if σ2 = 0.

The proof is an easy consequence of Proposition 4.3 with p = 2.

Proposition 5.2. Suppose that V ≡ 0, (4.2) holds and σ2 = 2k0 + 1
2q0

≤ 0. If f ∈ D(A) is such that Af = 0 then f is constant.

Proof. Let f ∈ D(A) and Af = 0. Then Ptf = f for all t ≥ 0. Applying
Corollary 5.1 and letting t → ∞ shows that ∇f ≡ 0 and consequently f is
constant.

Now we assume that (Pt)t≥0 extends to a contractive semigroup in
L1
µ(Ω) = L1(Ω,µ) for some measure µ. Then, by interpolation, Pt extends

to a contractive semigroup in Lpµ(Ω) for all 1 ≤ p < ∞. In particular, one
may take as µ the invariant measure of Pt (when it exists), which is, by
definition, a Borel probability measure such that

�

Ω

Ptf dµ =
�

Ω

f dµ

for all t ≥ 0 and f ∈ Cb(Ω) (for more details see [6]).
In this situation, the pointwise gradient estimates of §4 imply global

gradient estimates with respect to the Lp-norm. Moreover, if (Ap,D(Ap))
denotes the generator of Pt in Lpµ(Ω), we deduce that D(Ap) embeds con-
tinuously in W 1,p

µ (Ω).

Proposition 5.3. Suppose that V ≡ 0 and that (4.2) holds. For all
f ∈ Lpµ(Ω), we have Ptf ∈W 1,p

µ (Ω) and

‖∇Ptf‖p ≤
(

µ−1
0 σ2

2(1− e−σ2t)

)1/2

‖f‖p, t > 0, p ≥ 2,(5.1)

‖∇Ptf‖p ≤ t1/p−1/2
(
cpµ
−1
0 σp

1− e−σpt
)1/p

‖f‖p, t > 0, 1 < p < 2.(5.2)

In the case where σp = 0, σp/(1− e−σpt) is replaced by 1/t.

Proof. Fix p ≥ 2. If f ∈ Cb(Ω)∩Lpµ(Ω) then integrating (4.5) entails that
Ptf ∈ W 1,p

µ (Ω) and it satisfies (5.1). If f ∈ Lpµ(Ω), take a sequence (fn) ⊂
Cb(Ω)∩Lpµ(Ω) that converges to f in Lpµ(Ω). Writing (5.1) for fn−fm implies
that Ptfn is a Cauchy sequence in W 1,p

µ (Ω). Therefore Ptf ∈ W 1,p
µ (Ω) and

it satisfies (5.1). The case 1 < p < 2 follows similarly from (4.6).
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Corollary 5.4. Suppose that V ≡ 0. For all p > 1 and ω > 0 there
exists C = C(p, ω) > 0 such that

‖∇Ptf‖p ≤ C
eωt√
t
‖f‖p, t > 0,(5.3)

for every f ∈ Lpµ. Consequently , D(Ap) ⊂ W 1,p
µ (Ω) and for all ω > 0 there

exists Mω > 0 such that

‖∇u‖p ≤Mω‖u‖1/2p ‖(Ap − ω)u‖1/2p(5.4)

for all u ∈ D(Ap).

Proof. Fix T > 0. From Proposition 5.3 it follows that ‖∇Ptf‖p ≤
CT t

−1/2‖f‖p for every t ∈ ]0, T [ and f ∈ Lpµ(Ω) for some constant CT > 0.
Therefore arguing as in Corollary 3.3 we get (5.3).

For the second statement, fix ω, λ > 0. Let f ∈ Cb(Ω) ∩ Lpµ(Ω) and set
u = R(λ+ ω,A)f . Then

∇u(x) =
∞�

0

e−(λ+ω)t(∇Ptf)(x) dt, x ∈ Ω.

As in Proposition 3.5, with estimate (3.10) replaced by (5.3), we deduce that

‖∇u‖p ≤Mω‖u‖1/2p ‖(Ap − ω)u‖1/2p .

Since Cb(Ω)∩Lpµ(Ω) is dense in Lpµ(Ω), we see that R(λ,A)(Cb(Ω)∩Lpµ(Ω))
is a core for (Ap,D(Ap)). Thus, the general case u ∈ D(Ap) easily follows
from the previous step by approximation.

Example 5.5. This example shows that Proposition 4.3 fails in general
for p = 1. Consider the heat semigroup in R,

Ptf(x) =
1

(4πt)1/2

�

R
e−(x−y)2/(4t)f(y) dy, t > 0, x ∈ R,

generated by the operator Au(x) = u′′(x). The derivative is given by

DPtf(x) =
1

2t(4πt)1/2

�

R
(y − x)e−(x−y)2/(4t)f(y) dy, t > 0, x ∈ R.

Fix R > 0. Let f ∈ Cb(R) be such that 0 ≤ f ≤ 1, f(x) = 0 for x < R−R−1

and f(x) = 1 for x > R. Then

Ptf(0) ≤ 1
(4πt)1/2

∞�

R−R−1

e−|y|
2/(4t) dy,

DPtf(0) ≥ 1
2t(4πt)1/2

∞�

R

ye−|y|
2/(4t) dy.
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Therefore

DPtf(0) ≥ cRPtf(0), cR =
1
2t

∞�

R

ye−|y|
2/(4t) dy

( ∞�

R−R−1

e−|y|
2/(4t) dy

)−1
.

Using the De L’Hôspital rule, it is readily seen that cR → ∞ as R → ∞.
This means that no pointwise estimate similar to (4.5) can hold for p = 1.

With the next counterexample we show that the gradient estimate (3.3)
is not true in general without assuming the dissipativity condition (2.3). In
particular we show an example in which D(A) is not contained in C1

ν (Ω).

Example 5.6. Consider in Ω = R the operator

Au(x) = u′′(x) +B′(x)u′(x) = e−B(x)(eB(x)u′(x))′, x ∈ R,
where B ∈ C2(R) is such that Q(x) = eB(x) � x

0 e
−B(t) dt ∈ L1(R). Then in

particular eB ∈ L1(R). Let D(A) = {u ∈ C2(R) ∩ Cb(R) : Au ∈ Cb(R)}. It
follows from [22, page 242] (see also [18, Proposition 2.1]) that (A,D(A))
is the generator of a semigroup in Cb(R) having eB(x)dx as its invariant
measure.

If f ∈ Cb(R), then the function

u(x) = C1 +
x�

0

e−B(t)
(
C2 +

t�

0

f(s)eB(s) ds
)
dt,(5.5)

for arbitrary C1, C2 ∈ R, is the general solution of the equation Au = f .
Assuming that

∞�

−∞
f(t)eB(t) dt = 0,(5.6)

and setting

C2 = −
∞�

0

f(t)eB(t) dt =
0�

−∞
f(t)eB(t) dt,

we see that (5.5) gives, for x > 0,

u(x) = C1 −
x�

0

e−B(t)
∞�

t

f(s)eB(s) ds dt

= C1 −
∞�

0

eB(s)f(s)
s∧x�

0

e−B(t) dt ds.

It follows that

|u(x)| ≤ |C1|+ ‖f‖∞
∞�

0

Q(s) ds, x > 0,

which implies that u is bounded at∞. Similarly, since Q ∈ L1(]−∞, 0[), u is
bounded at −∞. Since Au = f , we conclude that u ∈ D(A). The derivative
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of u is given by

u′(x) = −e−B(x)
∞�

x

f(s)eB(s) ds, x ∈ R.

We claim that we can choose the functions B and f so that Q ∈ L1(R),
(5.6) holds but u′ is not bounded. To this end, take

B(x) = −x4 + log h(x),

where h ∈ C2(R) satisfies




h(x) = εn if x = n− δn/2, n ∈ N,

εn ≤ h(x) ≤ 1 if n− δn < x < n, n ∈ N,

h(x) = 1 otherwise,
with

εn =
1
n
e(n−1/2)4−(n+1/2)4

, δn =
e−n

4

n2 εn.

As a consequence of this choice

Q(x) =





e−x
4
x�

0

et
4
dt, x < 0,

h(x)e−x
4
x�

0

et
4

h(t)
dt, x > 0.

Using the De L’Hôspital rule one sees that limx→−∞ x3Q(x) = 1/4 and
hence that Q ∈ L1(]−∞, 0[). If x > 0 then

Q(x) ≤ e−x4
x�

0

et
4

h(t)
dt ≤ e−x4

x�

0

et
4
dt+ e−x

4
[x]+1∑

n=1

n�

n−δn

en
4

εn
dt

≤ e−x4
x�

0

et
4
dt+ e−x

4
∞∑

n=1

δne
n4

εn
= e−x

4
x�

0

et
4
dt+ e−x

4
∞∑

n=1

1
n2 ,

which shows that Q ∈ L1(]0,∞). Let f ∈ Cb(R) be such that f(x) = 1 for
all x > 0 and (5.6) holds. Then

u′(x) = − ex
4

h(x)

∞�

x

h(t)e−t
4
dt, x > 0,

and in particular, at xn = n− δn/2,

|u′(xn)| = ex
4
n

εn

∞�

xn

h(t)e−t
4
dt

≥ e(n−1/2)4

εn

n+1/2�

n

e−t
4
dt ≥ e(n−1/2)4

2εn
e−(n+1/2)4

=
n

2
,

which implies that u′(x) is unbounded at ∞.
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Therefore we have shown that the function u belongs to D(A) but not
to C1

b(R). This means that the gradient estimate (3.3) cannot be true. We
note that in this situation the dissipativity assumption (2.3) fails since B ′′

is unbounded from above.

Example 5.7. We now exhibit an example of a Neumann problem in a
domain Ω with Lipschitz continuous boundary. In spite of the lower regu-
larity of ∂Ω, the associated semigroup satisfies the gradient estimate (4.1).
Consider the Ornstein–Uhlenbeck operator

Au(x) =
1
2
∆u(x)− x · ∇u(x), x ∈ RN .

If we set

N(m,σ2)(y) =
1

(
√

2π σ)N
e−|y−m|

2/(2σ2), σ > 0, m, y ∈ RN ,

Γ (t, x, y) = N(e−tx, 1− e−2t)(y), t > 0, x, y ∈ RN ,
then the Ornstein–Uhlenbeck semigroup in Cb(RN ) is given by the formula

(Utf)(x) =
�

RN
f(y)Γ (t, x, y) dy, t > 0, x ∈ RN .

We fix k ∈ N, 0 ≤ k < N , and consider the domain Ω = {x ∈ RN :
xk+1, . . . , xN > 0}. We now define the Ornstein–Uhlenbeck operator in Ω
with Neumann boundary conditions. For k+ 1 ≤ j ≤ N consider the reflec-
tions

θj : RN → RN , θjx = (x1, . . . , xj−1,−xj , xj+1, . . . , xN ), x ∈ RN ,
and the family

Λ = {θ = θi1 ◦ · · · ◦ θin : k + 1 ≤ ij ≤ N, ij < ih if j < h, 1 ≤ n ≤ N − k}.
Moreover if f ∈ Cb(Ω) we define the extension Ef ∈ Cb(RN ) by

(Ef)(x) = f(x1, . . . , xk, |xk+1|, . . . , |xN |), x ∈ RN .
The Ornstein–Uhlenbeck semigroup in Ω is given by the formula

(Ptf)(x) = (UtEf)(x) =
�

RN
(Ef)(y)Γ (t, x, y) dy, t > 0, x ∈ Ω.

With the change of variable y′ = θy and using the identity Γ (t, x, θy) =
Γ (t, θx, y) for all θ ∈ Λ, we get

(Ptf)(x) =
�

Ω

f(y)
{
Γ (t, x, y) +

∑

θ∈Λ
Γ (t, x, θy)

}
dy(5.7)

=
�

Ω

f(y)
{
Γ (t, x, y) +

∑

θ∈Λ
Γ (t, θx, y)

}
dy.
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The Neumann boundary condition can be verified in the following way.
Let x ∈ ∂Ω be such that xj = 0 for some j ∈ {k + 1, . . . , N} and xi 6= 0
for all i ∈ {k + 1, . . . , N}, i 6= j. Then the outward unit normal vector is
ν(x) = −ej . For all θ ∈ Λ the normal derivative of the function Γ (t, θx, y)
is

∂

∂xj
Γ (t, θx, y) =

(±yj − e−txj)e−t
1− e−2t Γ (t, θx, y), t > 0, x, y ∈ Ω,

where on the right hand side we have the + sign if θ does not contain the
reflection θj and the − sign otherwise. Let now θ ∈ Λ be such that it does
not contain the reflection θj and let θ′ = θj ◦ θ ∈ Λ; then if xj = 0 we have
θx = θ′x and

∂

∂xj
Γ (t, θx, y) +

∂

∂xj
Γ (t, θ′x, y)

=
yj

1− e−2t Γ (t, θx, y)− yj
1− e−2t Γ (t, θ′x, y) = 0

for all t > 0 and y ∈ Ω. Thus the Neumann boundary condition for Ptf
follows by coupling in the sum in formula (5.7) all the maps θ ∈ Λ that do
not contain the reflection θj with the respective maps θ′ = θj ◦ θ. In this
way all the terms of the sum are considered and the normal derivative turns
out to be zero.

Since ∇UtEf(x) = e−tUt(∇Ef)(x) for all x ∈ RN , we have

|∇Ptf(x)| ≤ e−tUt(|∇Ef |)(x) = e−tPt(|∇f |)(x), t ≥ 0, x ∈ Ω,
that is, Pt satisfies the gradient estimate (4.1) for p = 1 and hence for all
p ≥ 1.
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[10] S. Itô, Fundamental Solutions of Parabolic Differential Equations and Boundary
Value Problems, Japan J. Math. 27 (1957), 55–102.
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