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Entropy pairs of Z2 and their directional properties

by

Kyewon Koh Park and Uijung Lee (Suwon)

Abstract. Topological and metric entropy pairs of Z2-actions are defined and their
properties are investigated, analogously to Z-actions. In particular, mixing properties are
studied in connection with entropy pairs.

1. Introduction. Properties of measurable and topological dynamics
have often been studied together. It is known that there are strong similari-
ties and also sharp differences between them. Ergodicity and strong mixing
property in ergodic theory correspond respectively to transitivity and strong
mixing in topological dynamics. It is well known that a K-system in mea-
surable dynamics (with completely positive entropy) is strongly mixing of
all orders. Many of the K-properties are well understood for Z-actions and
Z2-actions [7, 8]. It has been an open question if in the topological setting,
there exists a topological property of entropy which implies topological mix-
ing, and topological mixing of all orders.

There is a well known notion of completely positive entropy (CPE) in
topological dynamics: every nontrivial factor of a system has positive en-
tropy. There are examples of topological CPE, but without transitivity. This
contrasts with measurable dynamics where CPE implies mixing of all orders,
hence ergodicity.

The notion of entropy pairs was introduced by F. Blanchard in order to
study a topological analogue of the K-mixing property [2]. He introduced the
notion of uniformly positive entropy (UPE) of Z-actions, where every pair
(x, y) ∈ X ×X with x 6= y is an entropy pair. By the definition of entropy
pairs it is clear that UPE implies CPE. Blanchard showed that UPE implies
weak mixing [1]. However he constructed an interesting example which has
UPE but is not strongly mixing. There are also weakly mixing flows with
CPE, but without UPE [1].
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We investigate the parallel properties for Z2-actions. We show that UPE
also implies weak mixing, but UPE does not necessarily imply strong mixing.
That is, there is not much relation between UPE and mixing properties for
Z2-actions.

We define Property P in the Z2-setting. We prove that Property P im-
plies UPE and we construct an example which has Property P but is not
strongly mixing. We will skip the details in the explanation of some of the
examples here when they are analogous to those for Z-actions. We construct
an example of a Z2-action which is not strongly mixing but every directional
Z-action, (X,Φ(i,j)), is strongly mixing.

Entropy pairs for a Z-action (X,T, µ) were defined in [4]: (x, y) ∈ X×X
with x 6= y is a µ-entropy pair if any measurable partition {Q,Qc} such
that x ∈ int(Q) and y ∈ int(Qc) has positive entropy. It is shown in [4] that
every µ-entropy pair is a topological entropy pair and the converse is true
if (X,T ) is uniquely ergodic. Moreover it is shown that every topological
entropy pair is a µ-entropy pair for some invariant measure µ. The proof
requires the study of the relation between entropy of covers and entropy of
partitions.

In Sections 4 and 5 we extend the results based on [3] and [4]. We prove
the variational principle for entropy pairs for Z2-actions. First we show that
µ-entropy pairs in a topological dynamical system (X,Φ) are always topolog-
ical entropy pairs for any invariant measure. Moreover, we show that there
exists a measure µ ∈ M(X,Φ) such that Eµ(X,Φ) = E(X,Φ). We mention
that most of our arguments work for Zn for any n ≥ 2.

The notion of directional entropy was introduced by Milnor [15] to study
the Cellular Automaton map together with the Bernoulli shift. Many of
its properties are further studied in [6, 13, 17]. Directional systems can
be regarded as non-cocompact subgroup actions and hence the directional
entropy is a useful tool to investigate zero entropy Z2-actions. In the last
section, we look into the properties of directional entropy pairs for the case
of E(X,Φ) = ∅. We study the behavior of directional entropy pairs through
several examples.

Recently sequence entropy pairs, relative entropy pairs and entropy n-
tuples have been introduced and studied in [9, 11, 18]. We believe that most
of these notions can be extended to Zn-actions.

2. Definitions and notations. We consider a topological dynamical
system (TDS) (X,Φ), where X is a compact metric space and Φ denotes a

Z2-action. We assume that Φ(1,0) = T and Φ(0,1) = S are homeomorphisms.
We denote a dynamical system with measurable structure by (X,B, µ, Φ),
where

µ(Φ−gA) = µ(A) for all g ∈ Z2.
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We now define the measure-theoretic and topological entropies of a Z2-
action.

Let {Fn} be an increasing sequence of parallelograms whose module
tends to infinity. Throughout the paper we assume that {Fn} satisfies the
Føllner condition, that is,

| gFn4 Fn |
|Fn |

→ 0 for all g ∈ Z2.

1. Entropy of a partition P with respect to a measure µ. Given a mea-
surable partition P of X with finitely many elements Pi, we define some
notions and definitions related to entropy.

Let Hµ(P) = −∑i µ(Pi) logµ(Pi), where Pi ∈ P. The metric entropy
of Φ with respect to the partition P is defined by

hµ(Φ,P) = lim
n→∞

1

|Fn|
Hµ

( ∨

g∈Fn
Φ−gP

)
, hµ(Φ) = sup

P
hµ(Φ,P).

It is well known that hµ(Φ,P) is independent of the choice of the sequence
{Fn} (see [16]).

2. Topological entropy of an open cover U . Given any cover U of X,
define

N(U) := min
{
|C| :

⋃
C ⊃ X, C ⊂ U

}
,

where
⋃ C denotes the union of all members of C. Then we define Htop(U) =

logN(U) and the topological entropy of U is

htop(Φ,U) = lim
n→∞

1

|Fn|
Htop

( ∨

g∈Fn
Φ−gU

)
, htop(Φ) = sup

U
htop(Φ,U).

3. Combinatorial entropy. Let U be a finite, not necessarily open, cover
of X. The following definition was introduced in [3]. Set

Hc(U) = logN(U)

The combinatorial entropy of U is

hc(Φ,U) = lim
n→∞

1

|Fn|
Hc

( ∨

g∈Fn
Φ−gU

)
.

Note that if U is a finite open cover, then this definition coincides with
that of the topological entropy htop(Φ,U).

We review some of the definitions for the case of Z2-actions.

Definition 1. (i) A TDS (X,Φ) is transitive (ergodicity in measure
theory) if for any two nonempty open sets U, V ⊂ X, there is g ∈ Z2

such that Φ−gU ∩ V 6= ∅.
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(ii) A TDS (X,Φ) is weakly mixing if the cartesian product (X × X,
Φ× Φ) is transitive.

(iii) A TDS (X,Φ) is strongly mixing if for any two nonempty open sets
U, V ⊂ X, there is n0 ∈ N such that Φ−gU ∩ V 6= ∅ for ‖g‖∞ ≥ n0.

We use the L∞ norm to make our proofs simple.
The following definitions and notations were introduced by F. Blanchard

[1] for Z-actions, and can be naturally extended to Z2-actions.

Definition 2. Let (X,Φ) be a TDS. A pair (x, x′) ∈ X×X \4 is called
a topological entropy pair of (X,Φ) if for every open cover U = {U, V } with
x ∈ V c, x′ ∈ U c, the entropy htop(U) is positive. Denote by E(X,Φ) the set
of topological entropy pairs of (X,Φ).

Definition 3. (i) A TDS (X,Φ) has uniformly positive entropy (UPE)
if E(X,Φ) = X×X \4. In other words, for any nondense open cover
{U, V } of X, htop({U, V }) is positive.

(ii) A TDS (X,Φ) has completely positive entropy (CPE) if every non-
trivial factor of (X,Φ) has positive entropy.

3. Properties of Z2-actions. The definition of Property P for a Z2-
action, analogous to that in [1], is as follows.

Definition 4. We say that (X,Φ) has Property P if for any two non-
empty open subsets U0 and U1 of X there is an integer N with the following
property. For every natural number k ≥ 2, i 6= j ∈ [1, k] and every s =

(s(1), . . . , s(k)) ∈ {0, 1}k, if ‖gi − gj‖∞ ≡ 0 mod N, then

k⋂

i=1

Φ−giUs(i) 6= ∅, where g1 = (0, 0).

It is clear that Property P in the case of a Z2-action implies UPE. We
have the following properties whose proofs are similar to those for Z-actions.

Proposition 3.1 ([1]). Let (X,Φ) be a Z2-action.

(i) UPE implies CPE.
(ii) UPE implies weak mixing.
(iii) Property P implies UPE.

Proposition 3.1(i) follows from the definitions of CPE and UPE. But the
converse is not true:

Example 1. Let X = {0, 1}Z2 ∪ {1, 2}Z2
. Since X is not transitive, it

is not UPE by Proposition 3.1(ii). We know that a nontrivial factor of a
Bernoulli system has positive entropy. Note that every factor of (X,Φ) is
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the union of those of {0, 1}Z2
and {1, 2}Z2

. Since {0, 1}Z2
and {1, 2}Z2

are
CPE, so is (X,Φ).

Let W denote the set of all allowed rectangular blocks of X.

Proposition 3.2. A subshift X on an alphabet A has Property P if for
any integer p belonging to some infinite strictly increasing sequence, there
exists an integer N(p) such that

(3.1)

k⋂

i=0

Φ−giWi 6= ∅ if ‖gi − gj‖∞ ≡ 0 mod N(p)

for arbitrary k and Wi ∈ W ∩ Ap×p for 0 < i ≤ k.

Example 2. We construct a Z2-action having Property P and therefore
UPE, but not strongly mixing.

We modify the construction of Example 5 in [1]. We will choose strictly
increasing sequences of positive integers {h(n)}n≥1 and {g(n)}n≥1. Using
these sequences we will construct a decreasing sequence of subshifts of finite
type (Xn)n≥1 on A = {0, 1}. This sequence of subshifts converges to a non-
strongly mixing subshift X.

First, for n = 1 choose g(1) ∈ 2N and

h(1) ∈ {1, 2, . . . , g(1)− 1} mod (1 + g(1)).

Let P = {x : x(0,0) = 1} and

E1 =
⋃

{(i,j) : ‖(i,j)‖∞=h(1)}
P ∩ Φ−(i,j)P.

We define X1 by forbidding E1. Note that X1 satisfies the condition (3.1)
in the above proposition for p = 1, N(p) = g(1).

For the nth step we choose an even number

g(n) ≥ sup{h(n− 1) + 1, 2(n− 1 + g(n− 1)) + n}
and h(n) satisfying the following conditions:

h(n) ∈ {n, . . . , g(n)− 1} mod (n+ g(n)),

h(n) ∈ {n− 1, . . . , g(n− 1)− 1} mod (n− 1 + g(n− 1)),

...

h(n) ∈ {1, . . . , g(1)− 1} mod (1 + g(1)).

Let

En =
⋃

{(i,j) : ‖(i,j)‖∞=h(n)}
P ∩ Φ−(i,j)P, Fn =

n⋃

j=1

Ej .
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We let Xn be the subshift of finite type defined by forbidding Fn. Clearly
Xn satisfies (3.1) for p = k, N(p) = g(k), k = 1, . . . , n. Moreover, Xn

is decreasing and nonempty, hence X =
⋂
Xn is nonempty and closed. If

‖(i, j)‖∞ = h(n), then P∩Φ(i,j)P = ∅. Since {h(n)}n≥1 is strictly increasing,
X is not strongly mixing.

Note that if (X,Φ) is Z2-strongly mixing then so is (X,Φ(i,j)) for every
(i, j) ∈ Z2. However we have the following.

Example 3. There exists a Z2-action (X,Φ) with the following proper-
ties:

(i) Φ(i,j) is a strongly mixing Z-action for each (i, j) ∈ Z2.
(ii) Φ is not strongly mixing.

We modify the construction of the previous example so that it is strongly
mixing for every Z-action Φ(i,j) and each (i, j) ∈ Z2.

We choose g(n) and h(n) as in the above example. Let Dn = P ∩
Φ−(1,h(n))P and Yn be the set defined by forbidding

⋃n
j=1Dj. Then Yn sat-

isfies (3.1) for p = 1, . . . , n and N(p) = g(p). We let Y =
⋂
Yn. Then Y has

Property P, hence UPE. Since P ∩Φ−(1,h(n))P = ∅ and {h(n)}n≥1 is strictly
increasing, Y is not strongly mixing. However, given a direction (i, j) if there
exists n0 such that P ∩Φ−n0(i,j)P = ∅, then it is clear that P ∩Φ−n(i,j)P 6= ∅
for |n| > n0. Hence it is easy to see that Φ(i,j) is strongly mixing.

4. Measure entropy pairs, topological entropy pairs and rela-
tions between them in Z2. The following Propositions 4.1, 4.2 and 4.5
hold for a Z-action (see [2, 3]). The proofs are independent of the structure
of the group.

Proposition 4.1. Let (X,Φ) be a Z2-action.

(i) If (X,Φ) has positive entropy , then it has an entropy pair.
(ii) For any cover U = (U, V ) of X with htop(U , Φ) > 0, there is an

entropy pair (x, x′), where x ∈ U c, x′ ∈ V c.
(iii) E(X,Φ) = ∅ if and only if htop(Φ) = 0.
(iv) E(X,Φ) ∪4 is a nonempty closed invariant subset of X ×X.

Proposition 4.2. Let (X,Φ) and (Y,Σ) be Z2-actions. Let φ : (X,Φ)→
(Y,Σ) be a factor map.

(i) If (x, x′) ∈ E(X,Φ) and y = φ(x) 6= φ(x′) = y′, then (y, y′) is an
entropy pair of (Y,Σ).

(ii) Conversely , if (y, y′) ∈ E(Y,Σ), then there exists (x, x′) ∈ X × X
such that

φ(x) = y, φ(x′) = y′, (x, x′) ∈ E(X,Φ).
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Definition 5. Let (X,Φ) be a Z2-action and M(X,Φ) be the set of
Φ-invariant measures. Let µ ∈ M(X,Φ). We call a pair (x, x′) ∈ X × X a
µ-entropy pair if hµ({Q,Qc}) > 0 for every Q ∈ B with x ∈ int(Q) and x′ ∈
int(Qc). The set of µ-entropy pairs of (X,Φ) is denoted by Eµ(X,Φ).

Definition 6. A two-set partition {Q,Qc} is called replete if neither
int(Q) nor int(Qc) is empty.

We assume that all of our partitions are replete.

Proposition 4.3. Let (X,Φ) be a TDS , and µ ∈M(X,Φ).

(i) Let A, B be nonempty disjoint closed subsets of X. If hµ({Q,Qc})
> 0 for every partition with A ⊂ Q, B ⊂ Qc, then

(A×B) ∩ Eµ(X,Φ) 6= ∅.
(ii) Eµ(X,Φ) = ∅ if and only if hµ(Φ) = 0.
(iii) Eµ(X,Φ) ∪4 is a closed invariant subset of X ×X.

As in the topological case (Proposition 4.2), we have

Proposition 4.4. Let φ : (X,Φ) → (Y,Σ) be a factor map, µ ∈
M(X,Φ) and ν = µ ◦ φ−1.

(i) If (x, x′) ∈ Eµ(X,Φ) and φ(x) 6= φ(x′), then (φ(x), φ(x′)) is an
entropy pair of (Y,Σ).

(ii) Conversely , if (y, y′) ∈ Eν(Y,Σ), then there exists (x, x′) ∈ X ×X
such that

φ(x) = y, φ(x′) = y′, (x, x′) ∈ Eµ(X,Φ).

Note that Proposition 4.4(i) directly follows from the definitions. But
the proof of (ii) needs a little more work. Although we need the variational
principle for open covers of Z2-actions in Section 5, its proof is similar to
that for Z-actions (see [3]). We will just state it here instead of proving.

Let α be a partition of X and set

α−Φ =
( ∨

i≤−1,−∞≤j≤∞
Φ−(i,j)α

)
∨
( ∨

j≤−1

Φ−(0,j)α
)
,

αFn =
∨

(i,j)∈Fn
Φ−(i,j)α, αΦ =

∨

(i,j)∈Z2

Φ−(i,j)α.

Let

Pmk,nk(α)=
( ∞∨

i=mk

Φ−(i,0)
( ∞∨

j=−∞
Φ−(0,j)α

))
∨
(mk−1∨

i=0

Φ−(i,0)
( ∞∨

j=nk

Φ−(0,j)α
))
.
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It is easy to see that
⋂
k Pmk,nk(α) is independent of the chosen sequence

(mk, nk)→ (∞,∞) and it is invariant under Φ(0,1). Moreover
∞∨

i=−∞
Φ−(i,0)

( ∞⋂

k=0

Pmk,nk(α)
)

is the Pinsker algebra relative to α, which is invariant under Φ, that is, the
largest σ-algebra Pµ(α) for which the entropy of Φ is 0 (see [7]).

For a finite partition α and an integer k, let

Pk(α) = Pk,k(α).

Then

Pµ(α) =

∞∨

i=−∞
Φ−(i,0)

( ∞⋂

k=0

Pk(α)
)

is the Pinsker σ-algebra relative to α. In particular, if α is a generating
partition, then Pµ(α) is the Pinsker σ-algebra with respect to µ, denoted by
Pµ (see [7]).

Proposition 4.5 ([8]). Let F be a set of finite partitions of X.

(i) h(α,Φ) ≤ H(α) for α ∈ F .
(ii) h(α ∨ β, Φ) ≤ h(α,Φ) + h(β, Φ) for α, β ∈ F .
(iii) Hµ(αFn)−Hµ(βFn) = Hµ(αFn |βFn)−Hµ(βFn |αFn).
(iv) h(α,Φ) = H(α |α−Φ ) for α ∈ F .

(v) h(α ∨ β, Φ) = h(α,Φ) +H(β |β−Φ ∨ αΦ) for α, β ∈ F .

We denote by Pµ the Pinsker σ-algebra of (X,B, Φ, µ).

Definition 7. Let µ ∈M(X,Φ) and A, B be two disjoint subsets of X.
A pair (A,B) has Property S(µ) if hµ({Q,Qc}) > 0 for every replete parti-
tion A ⊂ Q, B ⊂ Qc.

Lemma 4.6 ([3, 4]). Let U = {U, V } be a Borel cover , and set A = V c,
B = U c, C = U ∩ V .

(i) The pair (A,B) has Property S(µ) if and only if

E(1A | Pµ)(x)E(1B | Pµ)(x) 6= 0 µ-a.e. x.

(ii) For the measurable partitions α = {A,B,C} and β = {A ∪ B,C},
we have

0 ≤ hµ(α)− hµ(β) ≤ hc(U).

We denote by Φm an mZ×mZ-action.

Lemma 4.7. The Pinsker σ-algebras of Φ and Φm are the same.

The above lemma says that for any partition α, hµ(α,Φ) = 0 if and only
if hµ(α,Φm) = 0.



Entropy pairs of Z2-actions 263

Lemma 4.8. For any finite partition α,

H(α |α−Φ ) = H(α |α−Φ ∨ Pµ).

Proof. Let β be a finite Pµ-measurable partition. By Proposition 4.5(v),

H(α ∨ β |α−Φ ∨ β−Φ ) = H(α |α−Φ ) +H(β |β−Φ ∨ αΦ).

By the definition of entropy,

H(α ∨ β |α−Φ ∨ β−Φ ) = H(α |α−Φ ∨ β−Φ ) +H(β |α−Φ ∨ β−Φ ∨ αΦ).

Since β ⊂ β−Φ ,
H(α |α−Φ ∨ β−Φ ) = H(α |α−Φ ).

If we choose a sequence of finite partitions βn with βn ↗ Pµ, then the
Martingale Convergence Theorem tells us that

H(α |α−Φ ∨ Pµ) = H(α |α−Φ ).

Proposition 4.9 ([4]). Let X = (X,B, Φ, µ) be a measurable dynamical
system. Suppose U = {U, V } is a measurable cover such that every mea-
surable two-set partition γ = {P,P c} which (as a cover) is finer than U
satisfies hµ(γ, Φ) > 0. Then hc(U , Φ) > 0.

Proof. Let α and β be the same partitions as in Lemma 4.6(ii). By that
lemma,

(4.1) 0 ≤ hµ(α,Φ)− hµ(β, Φ) ≤ hc(U , Φ).

Applying (4.1) to the Φm-action, for any m ∈ N, we get

(4.2) 0 ≤ hµ(α,Φm)− hµ(β, Φm) ≤ hc(U , Φm).

Now we need to show that hµ(α,Φm) − hµ(β, Φm) > 0 for some m. By
Proposition 4.5(iv), Lemma 4.7 and Lemma 4.8, we have

hµ(α,Φm)− hµ(β, Φm) = Hµ(α |α−Φm)−Hµ(β |β−Φm)

= Hµ(α |α−Φm ∨ Pµ)−Hµ(β |β−Φm ∨ Pµ)

≥ Hµ(α | Pm(α) ∨ Pµ)−Hµ(β |β−Φm ∨ Pµ)

≥ Hµ(α | Pm(α) ∨ Pµ)−Hµ(β | Pµ).

Now, we take the limit on both sides; since limm→∞ Pm(α) ⊂ ⋂m Pm(α)
⊂ Pµ, the Martingale Convergence Theorem implies that Hµ(α | Pm∨Pµ)→
Hµ(α | Pµ). Hence

(4.3) lim
m→∞

hµ(α,Φm)− hµ(β, Φm) ≥ Hµ(α | Pµ)−Hµ(β | Pµ).

Since the set C belongs to both α and β, we have
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H(α | Pµ)−H(β | Pµ)

= −
� (∑

D∈α
E(1D | Pµ) log(E(1D | Pµ))

−
∑

D∈β
E(1D | Pµ) log(E(1D | Pµ))

)
dµ

= −
�
(E(1A | Pµ) log(E(1A | Pµ)) + E(1B | Pµ) log(E(1B | Pµ))

− E(1A∪B | Pµ) log(E(1A∪B | Pµ))) dµ.

By Lemma 4.6(i) there exists a subset F ∈ B with µ(F ) > 0 such that
for every x ∈ F both E(1A | Pµ)(x) and E(1B | Pµ)(x) are positive. By the
convexity of the function φ(x) = −x log x, the last integral is positive on F
and it follows that

H(α | Pµ)−H(β | Pµ) > 0.

From (4.2) and (4.3) we conclude that hc(U , Φm) > 0 for some m, and
therefore also hc(U , Φ) > 0.

Theorem 4.10 ([4]). Every measure entropy pair is a topological entropy
pair.

Proof. Let (x, x′) ∈ Eµ(X,Φ) and U = {U, V } be a measurable cover
of X with x ∈ int(U c), x′ ∈ int(V c). Then every partition which is finer
than U has positive entropy. Since this cover has positive combinatorial
entropy by Proposition 4.9, (x, x′) is also a topological entropy pair.

5. The variational principle. Let A denote a set of finite symbols
and W be the set of configurations on the alphabet A in finite rectangular
blocks. Moreover, denote by Wm×n the set of rectangular configurations of
size m × n on A. Given W ∈ Wm×n, and a rectangular configuration α of
size k × l, we define the map p(α |W ) on Wm×n by

p(α |W ) =
1

(m− k + 1)(n− l + 1)

· card{(i, j) : (i, j) ∈ [0,m− k + 1]× [0, n− l + 1],

W(i+p,j+q) = α(p+1,q+1), (p, q) ∈ [0, k)× [0, l)},
where k ≤ m and l ≤ n.

Note that p(α |W ) is the relative frequency of the occurrence of α in W .
Using this frequency, we define the entropy of W . Fix a rectangular block
W ∈ Wm×n and m > k, n > l. Let

Hk×l(W ) =
∑

α∈Ak×l
φ(p(α |W )),

where φ(x) = −x log x.
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Lemma 5.1 ([3]). For any h > 0, ε > 0, any integers k, l ≥ 1 and
sufficiently large integers m and n,

card{W ∈ Am×n : Hk×l(W ) ≤ klh} ≤ exp(mn(h+ ε)).

Proof. First assume that k = l = 1. We clearly have

card{W ∈ Am×n : H1×1(W ) ≤ h} =
∑

~q∈Q

(mn)!

q1! · · · qs!
,

where Q is the set of integer vectors ~q = (q1, . . . , qs) ∈ Ns+ satisfying

s∑

i=1

qi = mn,

s∑

i=1

φ

(
qi
mn

)
≤ h.

By Stirling’s formula, there exists a constant Cs such that for every ~q ∈ Q,

(mn)!

q1! · · · qs!
≤ Cs exp

(
mn

s∑

i=1

φ

(
qi
mn

))
≤ Cs exp(mnh).

Hence

card{W ∈ Am×n : Hk×l(W ) ≤ h} ≤ (mn+ 1)sCs exp(mnh)

≤ exp(mn(h+ ε))

for sufficiently large m and n, as asserted.
Now we will show that the statement is true for k > 1 or l > 1 using the

above result. For every rectangular block W of size m×n on the alphabet A,
and for an integer pair (u, v) ∈ [0, k)× [0, l), we let mu and nv be the integer
parts of (m− u)/k, (n− v)/l respectively. Given W , we denote by W (u,v)

the rectangular block of size mu × nv with the following property: for each

i = 0, . . . ,mu − 1 and j = 0, . . . , nv − 1, W
(u,v)
i,j is the rectangular subblock

of size k × l of W starting at (u + ik, v + jl). That is, W
(u,v)
i,j ∈ Ak×l for

i = 0, . . . ,mu − 1, j = 0, . . . , nv − 1 and W (u,v) is an element of Dmu×nv ,
where D = Ak×l. Since p(D |W (u,v)) is the relative frequency of D in W (u,v),
we have

∣∣∣∣p(D |W )− 1

kl

∑

(u,v)∈[0,k)×[0,l)

p(D |W (u,v))

∣∣∣∣ ≤
kl

nm− (k − 1)(l − 1)
.

Since the function φ(x) = −x log x is uniformly continuous, for sufficiently
large m, n and for every rectangular block of size m× n on A,

∑

D∈D

∣∣∣∣φ(p(D |W ))− φ
(

1

kl

∑

(u,v)∈[0,k)×[0,l)

p(D |W (u,v))

)∣∣∣∣ ≤
ε

2
,
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and by the convexity of φ,

1

kl

∑

(u,v)∈[0,k)×[0,l)

∑

D∈D
φ(p(D |W (u,v)))

≤
∑

D∈D
φ

(
1

kl

∑

(u,v)∈[0,k)×[0,l)

p(D |W (u,v))

)
.

Hence

1

kl

∑

(u,v)∈[0,k)×[0,l)

H1×1(W (u,v)) =
1

kl

∑

(u,v)∈[0,k)×[0,l)

∑

D∈D
φ(p(D |W (u,v)))

≤ ε/2 +
∑

D∈D
φ(p(D |W )) = ε/2 +Hk×l(W ).

Thus if Hk×l(W ) ≤ klh, there exists a pair (u, v) such that

H1×1(W (u,v)) ≤ klh+ ε/2.

Now given (u, v) and a word B of size mu × nv on the alphabet D, there
exist at most smn−muk·nvl rectangular blocks W of size m × n on A such
that W (u,v) = B. Thus for sufficiently large m and n, as in the first part of
the proof,

card{W ∈ Am×n : Hk×l(W ) ≤ klh}
≤ smn−muk·nvl

·
∑

(u,v)∈[0,k)×[0,l)

card{W (u,v) ∈ Dmu×nv : H1×1(W (u,v)) ≤ ε/2 + klh}

≤ s(k+l)(m+n)
∑

(u,v)∈[0,k)×[0,l)

exp(munv(ε+ klh))

≤ s(k+l)(m+n)kl exp

(
mn

(
ε

kl
+ h

))
≤ exp(mn(h+ ε)).

We denote by W (Pl,M ×N,x) a rectangular block name on the alpha-
bet {1, . . . , s} satisfying W (Pl,M × N,x)g = k if Φ−gx ∈ Pk, for each g ∈
[0,M)× [0, N), 1 ≤ k ≤ s, where s denotes the number of elements of Pl.

Lemma 5.2 ([3]). Let U be a cover of X, h = htop(U , Φ), K ≥ 1 an
integer , and (Pl : 1 ≤ l ≤ K) a finite sequence of partitions of X, all finer
than U . For every ε > 0 and sufficiently large M and N there exists x ∈ X
such that

Hm×n(W (Pl,M ×N,x)) ≥ mn(h− ε)
for every l,m, n with 1 ≤ l,m, n ≤ K.
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Proof. We can assume that all the partitions Pl have the same number
of elements s. Let A = {1, . . . , s}. For 1 ≤ l,m, n ≤ K and M,N ≥ K, we
let

Ω(M ×N,m× n) = {W ∈ AM×N : Hm×n(W ) < mn(h− ε)}.
We let ω(M × N,m × n) = card(Ω(M × N,m × n)). By Lemma 5.1, for
sufficiently large M and N ,

ω(M ×N,m× n) ≤ exp(MN(h− ε/4)) for all m,n ≤ K.
Choose M and N so that K3 < exp(MNε/8). For 1 ≤ m,n ≤ K, let

Z(m× n, l) = {x ∈ X : W (Pl,M ×N,x) ∈ Ω(M ×N,m× n)}.
The set Z(m×n, l) is the union of ω(M×N,m×n) elements of (Pl)[0,M)×[0,N).
Note that (Pl)[0,M)×[0,N) is finer than the cover U[0,M)×[0,N), and hence
Z(m×n, l) is covered by ω(M ×N,m×n) elements of U[0,M)×[0,N). Finally,⋃

1≤l,m,n≤K Z(m× n, l) is covered by

K3ω(M ×N,m× n) < K3 exp(MN(h− ε/4)) < exp(MN(h− ε/8))

elements of U[0,M)×[0,N). Hence
⋃

1≤l,m,n≤K
Z(m× n, l) + X.

This completes the proof of the lemma.

Theorem 5.3 (The variational principle for open covers [3]). Let (X,Φ)
be a TDS , and U an open cover of X. There exists a measure µ ∈M(X,Φ)
such that hµ(P, Φ) ≥ htop(U , Φ) for all Borel partitions P finer than U .

Proof. Let U = {U1, . . . , Us} be an open cover of X. It is sufficient to
consider Borel partitions P of X of the form

P = {P1, . . . , Ps} with Pi ⊂ Ui for 1 ≤ i ≤ s.
Assume first X is a Cantor set. The set of partitions finer than U consisting
of clopen sets is countable; we denote it by {Pl : l ≥ 1}. By Lemma 5.2, there
exist sequences of integers (MK) and (NK) tending to ∞ and a sequence
{xK} of elements of X such that

Hm×n(W (Pl,MK ×NK , xK)) ≥ mn(h− 1/K)

for every 1 ≤ m,n, l ≤ K. Let

µK =
1

MKNK

∑

g∈[0,MK)×[0,NK)

δΦgxK .

Since the set of probability measures is compact, there exists a subsequence
{µKi} of {µK} that converges weak* to a probability measure µ. The mea-
sure µ is clearly Φ-invariant. Fix m,n > 1, and let E be an atom of the
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partition (Pl)[0,MK)×[0,NK), with name W ∈ {1, . . . , s}m×n. For every K one
has

|µK(E)− p(W |W (Pl,MK ×NK , xK)) | ≤ 2mn/K.

For a clopen set E,

µ(E) = lim
i→∞

µKi(E) = lim
i→∞

p(W |W (Pl,MKi ×NKi , xKi)),

hence
φ(µ(E)) = lim

i→∞
φ(p(W |W (Pl,MKi ×NKi , xKi))),

and summing over W ∈ {1, . . . , s}m×n, one gets

Hµ

( ∨

g∈[1,m]×[1,n]

Φ−gPl
)

= lim
i→∞

Hm×n(W (Pl,MKi ×NKi , xKi)) ≥ mnh.

Finally, by sending m and n to infinity one obtains hµ(Pl, Φ) ≥ h.
Now, as X is a Cantor set, the family (Pl) of partitions is dense in the

collection of Borel partitions with respect to the distance associated with
L1(µ) (see [10]). Thus, hµ(Pl) ≥ h for every partition finer than U .

As in the case of a Z-action, it is known that for a Z2-action there
exists a Cantor set Y and π : Y → X such that π ◦ Σ = Φ ◦ π. Let
V = π−1(U) = {π−1(U1), . . . , π−1(Us)} be the pre-image of U under π. One
has htop(V) = htop(U) = h. By the first step, there exists ν ∈ M(Y,Σ)
such that hν(Q, Φ) ≥ h for every Borel partition Q of Y finer than V. Let
µ = ν ◦π−1 be the image of ν under π. One has µ ∈M(X,Φ) and, for every
Borel partition P of X finer than U , π−1(P) is a Borel partiton of Y which
is finer than V with

hν(P, Σ) = hν(π
−1(P), Σ) ≥ h.

This completes the proof of the theorem.

Theorem 5.4 ([3]). Let (X,Φ) be a topological dynamical system. There
exists a measure µ ∈M(X,Φ) such that

Eµ(X,Φ) = E(X,Φ).

Proof. We already know that Eµ(X,Φ) ⊂ E(X,Φ). We need to prove
the other direction. Let {(xn, yn)} be a countable dense subset of E(X,Φ).
Let Uxn,rn and Vyn,rn be closed balls with centers xn, yn respectively and
radius rn = d(xn, yn)/4. Then for each cover (U c

Xn,r
, V c

Xn,r
) there exists a

measure µn,r that satisfies the conclusion of Theorem 5.3. Let

µ =
∑

n

∑

r

2−n−rµn,r.

Then µ is as required.

Corollary 5.5. Let (X,Φ) be a uniquely ergodic Z2-action with a
unique invariant measure µ. Then E(X,Φ) = Eµ(X,Φ).
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6. Directional entropy pairs. Let C be the set of all countable covers
of X with finite entropy. Let ~v = (η, ξ) be a fixed vector of R2 and let Γ be
the set of bounded subsets of R2. For a cover U ∈ C we put

htop(Φ~v,U) = sup
B∈Γ

lim
t→∞

1

t
logN

( ∨

g∈B+[0,t)~v

Φ−gU
)
.

It is not hard to show that

htop(Φ~v,U) = sup
B∈Γ

lim
t→∞

1

t
logN

( ∨

g∈B+[0,t)~v

Φ−gU
)

= lim
m→∞

lim
t→∞

1

t
logN

( ∨

g∈R(m,~v,t)

Φ−gU
)
,

where

R(m,~v, t) =

{ {(i, j) : 0 ≤ j ≤ [tξ],−m+ jη/ξ ≤ i ≤ m+ jη/ξ} if ξ 6= 0,

{(i, j) : −m ≤ j ≤ m, 0 ≤ i ≤ [tη]} if ξ = 0.

The quantity htop(Φ~v,U) is said to be the directional entropy of Φ with
respect to U in direction ~v. And the quantity

htop(Φ~v) = sup
U∈C

htop(Φ~v,U)

is said to be the directional entropy of Φ in direction ~v.
We define entropy pairs for directional systems for TDS. For a given

direction ~v a pair (x, x′) ∈ X × X is called a ~v-entropy pair if every non-
dense cover U = (U, V ) with x ∈ int(U c) and x′ ∈ int(V c) has positive
(possibly ∞) entropy for this direction ~v. Denote by E(X,Φ~v) the set of
all ~v-entropy pairs. They have the following properties, similar to those of
entropy pairs of Φ.

Proposition 6.1. Let (X,Φ) be a TDS and ~v be a direction vector.
Then

htop(Φ~v) = 0 iff E(X,Φ~v) = ∅.

Proposition 6.2. Let φ : (X,Φ)→ (Y,Σ) and φ ◦Φ(i,j) = Σ(i,j) ◦ φ for
each (i, j) ∈ Z2.

(i) If (x, x′) ∈ E(X,Φ~v) and φ(x) 6= φ(x′), then (φ(x), φ(x′)) is an
entropy pair of (Y,Σ~v).

(ii) Conversely , if (y, y′) ∈ E(Y,Σ~v), then there exists (x, x′) ∈ X×X\4
such that

φ(x) = y, φ(x′) = y′, (x, x′) ∈ E(X,Φ~v).

If E(X,Φ~v)∪4 = X×X for a given ~v, we say that (X,Φ) has ~v-uniformly
positive entropy (~v-UPE).
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We will give an example with uniformly positive entropy as a Z2-action,
hence (X,Φ) is ~v-UPE for every direction ~v (Example 4).

We now define the sequence entropy of a Z2-action. Let A = {an}∞n=1 be
a sequence of elements of Z2. For a cover U ∈ C we put

hA(Φ,U) = lim
n→∞

1

n
H
( n∨

i=1

Φ−aiU
)
.

The quantity

hA(Φ) = sup
U∈C

hA(Φ,U)

is said to be the sequence entropy of Φ along A.
The following proposition explains the relation between the sequence

entropy and directional entropy of Z2-actions. It is known for measurable
dynamical systems [13].

Proposition 6.3. For a direction ~v = (η, ξ):

(i) htop(Φ~v) = |ξ|hA(Φ), where A = ([nη/ξ], n) if ξ 6= 0,

(ii) htop(Φ~v) = |η|hA(Φ), where A = ([nη], 0) if ξ = 0.

We note that Proposition 6.3 also holds for an irrational direction ~v =
(η, ξ) if A = ([[nη/ξ]], n), where [[t]] denotes the nearest integer to t ∈ R \Q
(cf. [13, 14]).

Definition 8. For a given sequence A a pair (x, x′) ∈ X ×X is called
an A-sequence entropy pair if every nondense open cover U = (U, V ) with
x ∈ int(U c) and x′ ∈ int(V c) has positive entropy along A. Denote by
SEA(X,Φ) the set of sequence entropy pairs along A.

Proposition 6.4. Let A = {an} = {([[nη]], n)} and B = {bn} =
{([nη], n)} be sequences in Z2 and suppose that η is irrational. Then

SEA(X,Φ) = SEB(X,Φ).

Proof. It is enough to show that for any nondense open cover U = (U, V ),
hA(Φ,U) is positive if and only if hB(Φ,U) is positive. Let Cn = An ∩ Bn,
where An = {a1, . . . , an} and Bn = {b1, . . . , bn}. Clearly limCn = C is a
subsequence of A and B. Since η is irrational, the positivity of hA(Φ,U) or
hB(Φ,U) is equivalent to the positivity of hC(Φ,U).

Remark 1. It is not clear yet that for a given nondense open cover U ,
hA(Φ,U) = hB(Φ,U).

Proposition 6.5. For a direction ~v = (η, ξ) and a sequence A =
([nη/ξ], n),

E(X,Φ~v) = SEA(X,Φ).



Entropy pairs of Z2-actions 271

Proof. We simply note that for each cover U , h(Φ~v,U) is positive if and
only if hA(Φ,U) is positive.

Definition 9. For a TDS (X,Φ), (x1, x2) ∈ X×X\4 is a weakly mixing
pair if for every open neighborhood Ui of xi, i = 1, 2, there is (m,n) ∈ N×N
such that U1 ∩ Φ−(m,n)U1 6= ∅ and U1 ∩ Φ−(m,n)U2 6= ∅. We denote by
WM(X,Φ) the set of weakly mixing pairs.

We can define sequence entropy pairs along A analogously to the Z-case.
Namely, a pair (x, y) is a sequence entropy pair for a Z2-action if for any
open cover U there is a sequence {(in, jn)} in Z2 such that the entropy of
the cover along the sequence is nonzero. We have the following lemma whose
proof is similar to one for Z-actions [12].

Lemma 6.6. Every sequence entropy pair is a weakly mixing pair in Z2.

Proposition 6.7. Every directional entropy pair is a weakly mixing
pair.

Proof. A directional entropy is a sequence entropy for a Z2-action. Now
apply Lemma 6.6.

Corollary 6.8. If (X,Φ) has ~v-uniformly positive entropy for a direc-
tion ~v, then WM(X,Φ) = X ×X \ 4, that is, (X,Φ) is weakly mixing.

7. Examples. We will give some examples and also find their entropy
pairs or directional entropy pairs. The 2-dimensional golden mean shift
which is an analogue to the 1-dimensional golden mean shift is a nontrivial
example having UPE.

Example 4 (Golden mean shift). Let A = {0, 1}, and X be the subset

of arrays in AZ
2

such that there are never two 1’s adjacent either horizontally
or vertically. This is called the 2-dimensional golden mean shift. We want
to show that this is a UPE system. Since every cover (or partition) can be
approximated by a union of rectangular configurations (resp. cylinder sets)
it is enough to show that a cover of cylinder sets has positive entropy. Now
we take two clopen sets U and V which have different configurations with
size N × N . Let U = (U c, V c) and KN be the number of square configu-
rations which are allowed in X of size N × N . We note that rectangular
blocks are independent unless they are adjacent. Hence for integers m > N
and n > N , it is not hard to see that the cardinality of a minimal sub-

cover of
∨

(i,j)∈[0,m]×[0,n] Φ
−(i,j)U is at least K

[m−N
N+1

][n−N
N+1

]

N . We are interested

in positivity of entropy, and not in its exact value. We have

htop(Φ,U) ≥ lim
n→∞

lim
m→∞

1

nm

[
m−N
N + 1

][
n−N
N + 1

]
logKN > 0.



272 K. K. Park and U. Lee

This holds for all N , hence every cover has positive entropy, and UPE fol-
lows.

Ledrappier’s example has zero entropy as a Z2-action, therefore E(X,Φ)
= ∅. However it has the following property.

Example 5 (Ledrappier’s example). Let A = {0, 1} and

X = {x ∈ AZ2
: xi,j + xi,j+1 + xi+1,j = 0(mod2), ∀(i, j) ∈ Z2}.

We will show that every two-set open cover has positive entropy in every
direction ~v = (i, j). Let U = (U c, V c) be the same cover as in Example 4
and KN be the number of square configurations which are allowed in X with
size N ×N . It is not hard to see that the cardinality of a minimal subcover
of
∨
g∈R(m,~v,t) Φ

−gU is at least




2m2(i+j)(t−2) if 0 ≤ j/i <∞,

2m2j(t−2) if −∞ < j/i ≤ −1,

2m2−i(t−2) otherwise.

Therefore h(Φ~v,U) > 0. Since this is true for all N , every open cover has
positive entropy, hence the system has UPE for all directions.

Example 6. Let X = {0, 1}Z and Y = [0, 1). Let T be the shift map in
X and S(x) = αx an irrational rotation by α in Y . We define Φ : X × Y →
X × Y by

Φ(i,j)(x, y) = T iSj(x, y) = (T ix, αjy).

It is obvious that E(X × Y, Φ(0,1)) = ∅, because (Y, S) has zero entropy.
Note that (Y, Sj) is minimal and (X,T i) is UPE for any i and j. By Propo-
sition 3.1 in [5],

E(X × Y, Φ(i,j)) ∪4X×Y = {((x, y), (x′, y)) : x, x′ ∈ X, y ∈ Y }.
For an irrational direction ~v it is not hard to show that the set of entropy
pairs of E(X × Y, Φ~v) is the same as in the rational case.

The following example shows different behaviors of directional entropy
pairs in the case that Y is not minimal.

Example 7. Let (X,T ) have UPE and Y be the compact space Z∪{∞}
with S being translation by 1 on Y . Let Φ : X × Y → X × Y be defined by

Φ(i,j)(x, n) = (T ix, n+ j).

Then the set of directional entropy pairs is

E(X×Y, Φ~v)∪4X×Y =





∅ if ~v = (0, 1),

{((x, y), (x′, y)) : x, x′ ∈ X, y ∈ Y } if ~v = (1, 0),

(X × {∞})× (X × {∞}) otherwise.
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We will prove the third case. Suppose U = (U, V ) is a standard cover of X
and ~v = (p, q), pq 6= 0, i ∈ Y \ {∞}. Let U ′ = (U c × {i})c, V ′ = (V c × {i})c

and R = (U ′, V ′). We will show that the cover R has zero entropy for every
i ∈ Z. Note that for (x, n) ∈ X × Y ,

(x, n) ∈ (T pSq)−k(U ′ ∩ V ′) whenever qk + n 6= i.

If qk + n = i for some k, then either

(x, n) ∈ (T pSq)−kU ′ or (x, n) ∈ (T pSq)−kV ′.

LetRm =
∨m−1
j=0 (T pSq)−jR. If n satisfies qk+n = i and (x, n) ∈ (T pSq)−kU ′

then

(x, n) ∈ U ′ ∩ (T pSq)−1U ′ ∩ (T pSq)−2U ′ ∩ · · · ∩ (T pSq)−m+1U ′.

Otherwise

(x, n) ∈ V ′ ∩ (T pSq)−1V ′ ∩ (T pSq)−2V ′ ∩ · · · ∩ (T pSq)−m+1V ′.

Hence the cardinality of a minimal subcover of Rm is 2, and therefore
((x, i), (x′, i)) is not a directional entropy pair for any i ∈ Y \ {∞}. We take
an open cover QN = ((U c × [N,−N ])c, (V c × [N,−N ])c). It is not hard to

see that the cardinality of a minimal subcover of QNm =
∨m−1
j=0 (T pSq)−jQN

is the same as the cardinality of a minimal subcover of
∨m−1
j=0 (T p)−jU on X,

hence h(T pSq,QN ) > 0 for all N and ((x,∞), (x′,∞)) ∈ E(X × Y, Φ~v) for
all x′ 6= x ∈ X.

The case of an irrational direction is the same as that of a rational
direction. Hence

E(X × Y, Φ~v) ∪4X×Y = (X × {∞})× (X × {∞}).
Example 8 ([6]). Let T : X → X be an expansive homeomorphism

with h(T ) > 0. There is a natural Z2-action α on X × Z given by

Φ(i,j)((x, n)) = (T ix, j + n).

Let Y = (X×Z)∪{∞} be the one-point compactification of X×Z. It is not
hard to see that the set of directional entropy pairs is E(Y, Φ~v) = ∅ except
~v = (ξ, 0) with ξ 6= 0 (cf. Example 7).

Remark 2. Let X = [0, 1) and Φ : X → X be defined by Φ(i,j)(x) =
αiβjx, where α and β are two irrational numbers. Clearly none of the di-
rectional systems has entropy pairs.
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