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The range of a derivation on a Jordan–Banach algebra

by

M. Brešar (Maribor) and A. R. Villena (Granada)

Abstract. The questions when a derivation on a Jordan–Banach algebra has quasi-
nilpotent values, and when it has the range in the radical, are discussed.

1. Introduction. In 1955 I. M. Singer and J. Wermer [35] proved that
a continuous derivation on a commutative Banach algebra has the range in
the (Jacobson) radical of the algebra. Another related result was obtained
just a little later independently by D. C. Kleinecke [21] and F. V. Shirokov
[32]. One possible way to state this result is the following (cf. [20]): If D
is a continuous derivation of a Banach algebra A and a ∈ A is such that
D(a)a = aD(a), then D(a) is quasinilpotent (in the literature this result
is more often stated only for inner derivations so that the condition reads
(ab− ba)a = a(ab− ba) for some a, b ∈ A). Both these classical results, the
Singer–Wermer theorem and the Kleinecke–Shirokov theorem, were conjec-
tured by I. Kaplansky who was inspired by results in [17, 31, 41, 42]. Let us
remark that the second result, although it deals only with some local prop-
erty of a derivation, clearly implies the first one which describes a global
property of derivations. Another way of generalizing the Singer–Wermer
theorem to noncommutative algebras was that by A. M. Sinclair [33]: Ev-
ery continuous derivation of a Banach algebra leaves primitive ideals of the
algebra invariant.

The question whether the continuity assumption is redundant in these
results has been of permanent interest for almost 50 years now, and it has
been one of the leading motives for the development of the theory of au-
tomatic continuity. Already in [35] Singer and Wermer wrote that it seems
probable that the hypothesis of continuity in their theorem is superfluous.
B. E. Johnson [18] proved this for semisimple algebras, but it took more
than 30 years before this classical Singer–Wermer conjecture was finally set-
tled for any commutative Banach algebra by M. P. Thomas [36]. For the
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other two results, the Kleinecke–Shirokov theorem and Sinclair’s theorem,
the question concerning continuity is still open. The conjecture that every
(not necessarily continuous) derivation of a Banach algebra leaves primitive
ideals invariant is known as the noncommutative Singer–Wermer conjec-
ture. It is known that for each derivation there can only be finitely many
noninvariant primitive ideals each of which is of finite codimension [37], but
whether such derivations and ideals actually exist is still an open question.

A number of authors have extended the results mentioned above in var-
ious directions (see [24] for a full account). Let us mention here only two
more results, connected with the present paper. In [8] the first author and
J. Vukman proved a kind of a global Kleinecke–Shirokov theorem: If a con-
tinuous derivation D of a Banach algebra A is such that D(a)a− aD(a) lies
in the radical for every a ∈ A, then D maps A into its radical. The con-
jecture that the continuity is superfluous in this result is equivalent to the
noncommutative Singer–Wermer conjecture (see [24]). On the other hand,
if one assumes that D(a)a − aD(a) is 0 for each a, or even slightly more
generally, that D(a)a − aD(a) is always a central element, then one can
prove that D maps into the radical without assuming the continuity. This
was done by M. Mathieu and V. Runde [26].

It is our aim in the present paper to treat analogous problems in the
context of Jordan–Banach algebras. A very rough summary of the results
mentioned could be that derivations of Banach algebras are rather rare on
commutative algebras, and that only in some special cases can they satis-
fy certain commuting relations. Note that the concepts of a commutative
Banach algebra and an associative Jordan–Banach algebra coincide. There-
fore, by analogy one might expect that derivations of Jordan–Banach al-
gebras can only exceptionally satisfy some “associating” relations. This is
the main idea behind the present paper. In the study of derivations on non-
commutative Banach algebras the concept of the commutator of elements,
i.e. [a, b] = ab − ba, plays an important role. A similar role in the present
paper will be played by the associator of elements in the Jordan–Banach
algebra, i.e. [a, b, c] = (a · b) · c− a · (b · c) (here, · denotes the product in the
Jordan–Banach algebra). Let us remark that in the case of a special Jor-
dan algebra the commutator and the associator are closely related, namely,
[a, b, c] = 1

4 [[c, a], b].
In Section 2 we review some facts concerning Jordan–Banach algebras

and also fix the notation and terminology. Section 3 treats local properties of
derivations on Jordan–Banach algebras. Some of the conditions treated can
be viewed as Jordan analogues of the condition appearing in the Kleinecke–
Shirokov theorem. Let us mention that the second author has recently ob-
tained an extension of this celebrated theorem to Jordan–Banach algebras
[40]. In Section 4 we prove two theorems on global properties of deriva-
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tions. We remark that the second one (Theorem 4.14) generalizes the result
of Mathieu and Runde [26] mentioned above. Finally, in Section 5 we treat
what we call the Singer–Wermer conjecture for Jordan–Banach algebras (see
Section 2). In particular, a number of assertions equivalent to the truthful-
ness of this conjecture are found.

In most of the paper we deal with derivations without assuming that they
are continuous. A standard approach when treating possibly discontinuous
derivations is to consider their separating spaces (which are closed ideals),
and often it is also necessary to treat separating spaces of their powers
(which do not have such nice algebraic structure). In the present paper we
certainly also deal with them, but what seems to be new is the introduction
of the closed ideal generated by the separating spaces of all powers of a
derivation, which turns out to be quite useful.

Since every Banach algebra can be transformed into a Jordan–Banach
algebra (see below), all results obtained in this paper make sense also in the
associative context; moreover, many of them seem to be new. As a matter
of fact, one of our main reasons for treating derivations on nonassociative
algebras is that we believe that this may prove to be useful for understand-
ing derivations on associative algebras. Let us try to justify this admittedly
somewhat speculative idea by an analogy. As already mentioned at the very
beginning, both the Kleinecke–Shirokov theorem and Sinclair’s theorem im-
ply the Singer–Wermer theorem. On the other hand, Thomas’ theorem on
derivations on commutative Banach algebras [36] can be deduced from an-
other theorem of Thomas [37] which treats a local property of derivations
on any (possibly noncommutative) Banach algebra. Therefore, the results
and especially the methods of the theory of noncommutative algebras have
proved to be useful in the study of commutative algebras. Perhaps, similarly
it may turn out that the study of derivations on nonassociative algebras will
give a better understanding of derivations on noncommutative associative
algebras, especially in the cases where, as in attempts to prove the non-
commutative Singer–Wermer conjecture, standard approaches have failed
to produce the final conclusion.

2. Jordan algebra preliminaries. A Jordan algebra is a nonassocia-
tive algebra J whose product satisfies

a · b = b · a and (a · b) · a2 = a · (b · a2)
for all a, b ∈ J . Such algebras were introduced in 1934 by P. Jordan,
J. von Neumann, and E. Wigner motivated by quantum mechanics [19].
The knowledge of the structure of Jordan algebras became fairly complete
when E. I. Zel’manov [44] provided his characterization of prime nondegen-
erate Jordan algebras. A Jordan–Banach algebra is a real or complex Jordan
algebra J whose underlying linear space is a Banach space with respect to
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a norm ‖ · ‖ satisfying ‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ J . Every associative
algebra A becomes a Jordan algebra, denoted by A+, with respect to the
product a · b = 1

2(ab+ ba). Moreover A+ is a Jordan–Banach algebra in the
case where A is a Banach algebra. For an account of how Jordan structures
arise in analysis we refer the reader to [29].

Let J be a Jordan algebra. By L(J) we denote the associative algebra of
all linear operators on J . We write R ◦S for the compositon of R,S ∈ L(J),
and [R,S] for R◦S−S◦R. For each a ∈ J , we define the operator Ra ∈ L(J)
by Ra(b) = b · a for all b ∈ J . The unital multiplication algebra of J is the
subalgebra M1(J) of L(J) generated by the identity operator and all the
multiplication operators Ra (a ∈ J). It should be noted that M1(J) is a
subalgebra of the Banach algebra BL(J) of all bounded linear operators on
J in the case where J is a Jordan–Banach algebra.

Every nonunital Jordan algebra J can be embedded into a unital Jordan
algebra J1 by externally adjoining an identity. The standard concept of
invertibility in associative algebras was extended to the context of Jordan
algebras by N. Jacobson. An element a in a unital Jordan algebra J is said
to be invertible if there exists b ∈ J such that a · b = 1 and a2 · b = a. This
is equivalent to the invertibility of the operator Ua from J to itself given
by Uax = 2a · (a · x) − a2 · x for all x ∈ J . An element a in a nonunital
Jordan algebra J is said to be quasi-invertible if 1 − a is invertible in its
unitization J1.

The standard spectral theory and analytic functional calculus can be
extended to the context of complex Jordan–Banach algebras. This follows
from the fact that if J is a complex Jordan–Banach algebra and a ∈ J ,
then there exists a closed associative subalgebra A of J1 containing 1 and a.
Therefore the spectral theory and analytic functional calculus run as in the
associative case. The spectrum Sp(a) of an element a in a complex Jordan–
Banach algebra J is defined as in the associative case and it is a nonempty
compact subset of the complex plane. The spectral radius of a is given by
r(a) = max{|λ| : λ ∈ Sp(a)} = lim ‖an‖1/n. The element a is said to be
quasinilpotent if r(a) = 0. By Q(J) we denote the set of all quasinilpotent
elements in J . For each function f which is analytic in a neighbourhood Ω of
Sp(a) we can define the element f(a) of J1 by (2πi)−1

�
γ f(λ)(λ− a)−1 dλ,

where γ is any positively oriented curve contained in Ω and surrounding
Sp(a). For a discussion of this theory we refer the reader to [1].

K. McCrimmon [27] proved that in each Jordan algebra J there exists
the largest ideal consisting of quasi-invertible elements. This ideal is called
the Jacobson–McCrimmon radical of J and will be denoted by Rad(J). Of
course, Rad(J) ⊂ Q(J). We say that J is semisimple if Rad(J) = 0. If A is
an associative algebra, then Rad(A+) coincides with the classical Jacobson
radical of A [27].
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E. I. Zel’manov [43] introduced the notion of primitiveness for unital
Jordan algebras to derive his characterization of prime Jordan algebras.
This concept was extended to nonunital Jordan algebras by L. Hogben and
K. McCrimmon [15]. A linear subspace I of J is said to be an inner ideal
of J if UI(J1) ⊂ I. We call an ideal P of J primitive if it is the largest
ideal of J contained in a maximal-modular inner ideal of J (see [15] for the
definition of modularity). It turns out that Rad(J) is the intersection of all
primitive ideals of J and that the classical primitive ideals of an associative
algebra A are primitive ideals of the Jordan algebra A+ [15]. Primitive ideals
of Jordan–Banach algebras are closed [11]. We also make frequent use of the
fact that

Sp(a) = Sp(πRad(J)(a)) =
⋃

P primitive

Sp(πP (a))

for any element a in a Jordan–Banach algebra J [40, Lemma 1], where
πRad(J) and πP denote the corresponding quotient maps. In general, when-
ever we arrive at a closed subspace M of a Banach space X, we write πM
for the quotient map from X onto the quotient Banach space X/M .

A linear map D from a Jordan algebra J to itself is said to be a derivation
on J if it satisfies

D(a · b) = D(a) · b+ a ·D(b)

for all a, b ∈ J . Derivations of the Jordan algebra A+, where A is an associa-
tive algebra, are called Jordan derivations of A. I. N. Herstein [13] showed
that any Jordan derivation on a prime ring of characteristic different from
2 is a derivation. J. M. Cusack [10] extended this result to 2-torsion free
semiprime rings (see also [3]). From the Jordan algebra axioms it can be
deduced that if a, c ∈ J , then the map [Rc, Ra] is a derivation on J . We
write

[a, b, c] = [Rc, Ra](b) = (a · b) · c− a · (b · c)
for the associator of elements a, b, c ∈ J . Note that for any fixed a, c ∈ J ,
the set {b ∈ J : [a, b, c] = 0}, being a kernel of a derivation [Rc, Ra], is a
subalgebra of J . Further, note that every derivation D on J satisfies

D([a, b, c]) = [D(a), b, c] + [a,D(b), c] + [a, b,D(c)]

for all a, b, c ∈ J . Hence we see at once that ifM andN are subsets of J which
are both invariant under D, then so are the sets {a ∈ J : [a,M,N ] = 0} and
{a ∈ J : [M,a,N ] = 0}. This observation will be frequently used (without
explicit reference) in the next section. Let us also mention another useful
formula

RD(a) = [D,Ra],

which will play a very important role. In particular, it implies that for any
R ∈ M1(J), ∆(R) = [D,R] lies in M1(J). Indeed, the formula shows this



182 M. Brešar and A. R. Villena

for the generators Ra of the algebra M1(J), and so from ∆(R1 ◦ R2) =
∆(R1) ◦ R2 + R1 ◦ ∆(R2) it can be easily deduced that it holds for any
R ∈M1(J). Thus, ∆ is a derivation on the algebra M1(J).

We can measure the continuity of a linear map T from a Banach space X
to a Banach space Y by considering its separating subspace which is defined
as the subspace S(T ) of those y ∈ Y for which there exists a sequence (xn)
in X such that limxn = 0 and limT (xn) = y. The closed graph theorem
shows that T is continuous if and only if S(T ) = 0.

Let D be a derivation on a complex Jordan–Banach algebra J . Suppose
that I is a closed ideal of J which is invariant under D. Then we can define a
derivation DI on the quotient Jordan–Banach algebra J/I by DI(πI(a)) =
D(πI(a)). Studying derivations DI for appropriate invariant ideals I is often
very useful. Namely, DI usually inherits some properties of the original
derivation D, but the quotient algebras J/I may be more tractable than
the algebra J . We shall be primarily concerned with the case when I is a
primitive ideal. It turns out that the invariance of primitive ideals under a
derivation D is closely related to the closed ideal of J generated by {S(Dn) :
n ∈ N}. We denote this ideal by I(D). It is easy to check that I(D) is the
closure in J of the linear subspace of J generated by {R(a) : R ∈ M1(J),
a ∈ S(Dn), n ∈ N}.

In the following result we summarize some basic properties of derivations
on Jordan–Banach algebras, proved by the second author [39].

Theorem 2.1. Let J be a complex Jordan–Banach algebra and let D be
a derivation on J . Then:

(i) A primitive ideal P of J is invariant under D if and only if I(D)
⊂ P .

(ii) D(P ) ⊂ P for each primitive ideal P of J except possibly finitely
many exceptional primitive ideals. Moreover , if P is an exceptional primi-
tive ideal then J/P is simple and either it is finite-dimensional or it is the
Jordan–Banach algebra of a continuous nondegenerate symmetric bilinear
form f on a complex Banach space X of dimension greater than one.

(iii) If D is continuous, then D(P ) ⊂ P for each primitive ideal P of J .
(iv) If J is semisimple, then D is automatically continuous.

It is well known that for linear operators R and T between Banach spaces
we have RS(T ) = S(RT ) provided that R is continuous [34, Lemma 1.3].
Using this, we see that the first assertion of Theorem 2.1 is just another way
to formulate [39, Theorem 6]. The other assertions are stated more explicitly
in [39].

Can the exceptional primitive ideals described in Theorem 2.1 really
exist? For us, this is the principal open question concerning derivations of
Jordan–Banach algebras. It seems appropriate to call the conjecture that
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there are no exceptional primitive ideals, that is, that any derivation of
any Jordan–Banach algebra J leaves each primitive ideal of J invariant,
the Singer–Wermer conjecture for Jordan–Banach algebras. We remark that
since every primitive ideal of a Banach algebra A is also a primitive ideal
of the Jordan–Banach algebra A+, the truthfulness of this conjecture would
imply the truthfulness of the noncommutative Singer–Wermer conjecture.

3. Local properties. Let D be a derivation on a Jordan–Banach alge-
bra J . Suppose that T is an associative subalgebra of J which is invariant
under D. Then there exists a closed associative subalgebra A(T ) of J which
contains T and is also invariant under D. This follows immediately from [40,
Lemmas 3 and 4]. The proof is algebraic and elementary. More concretely,
A(T ) is constructed as follows: one first defines the sets C1(T ) = {x ∈ J :
[x, T, T ] = 0} and C2(T ) = {u ∈ J : [u, T,C1(T )] = [u,C1(T ), T ] = 0}, and
then introduces A(T ) as {a ∈ J : [a,C1(T ), C2(T )] = [a,C2(T ), C1(T )] = 0}.
Then one can check that A(T ) has all the properties described. Now, being
a closed associative subalgebra of a Jordan–Banach algebra, A(T ) is actu-
ally a commutative Banach algebra. Therefore, by Thomas’ theorem [36],
D maps the algebra A(T ) into its (Jacobson) radical. Therefore, D(A(T ))
consists of quasinilpotent elements. In particular, D(T ) ⊂ Q(J).

Using this we can now easily derive our first theorem.

Theorem 3.1. Let J be a complex Jordan–Banach algebra and let D be
a derivation on J . If a ∈ J is such that [D(a), J, J ] = 0, then D(a) ∈ Q(J).

Proof. Let T be the subalgebra of J generated by a and all b ∈ J such
that [b, J, J ] = 0. It is easy to check that T is an associative subalgebra of J .
Moreover, it is invariant under D since [D(a), J, J ] = 0. But then, in view
of the discussion above, D(T ) ⊂ Q(J). In particular, D(a) ∈ Q(J).

Let us point out that we did not assume in Theorem 3.1 that D is contin-
uous. If we do assume the continuity of D, then the conclusion D(a) ∈ Q(J)
follows even from a milder assumption [D(a), J, J ] ⊂ Rad(J). Indeed, from
Theorem 2.1 we deduce, since D is continuous, that D(Rad(J)) ⊂ Rad(J)
and so we can consider the derivationDRad(J) on the Jordan–Banach algebra
J/Rad(J) which clearly satisfies [DRad(J)(πRad(J)(a)), J/Rad(J), J/Rad(J)]
= 0. Since r(D(a)) = r(πRad(J)(D(a))) = r(DRad(J)(πRad(J)(a))), it follows
that there is no loss of generality in assuming that Rad(J) = 0. Therefore,
Theorem 2.1 can be applied. Let us record this observation:

Corollary 3.2. Let J be a complex Jordan–Banach algebra and let D
be a continuous derivation on J . If a ∈ J is such that [D(a), J, J ] ⊂ Rad(J),
then D(a) ∈ Q(J).
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Using a different approach, this result can be sharpened as follows.

Theorem 3.3. Let J be a complex Jordan–Banach algebra and let D be
a continuous derivation on J . If a ∈ J is such that [D(a), J, a] ⊂ Rad(J),
then D(a) ∈ Q(J).

Proof. As in the proof of the preceding corollary, we can assume without
loss of generality that Rad(J) = 0.

According to our assumption, we have [RD(a), Ra] = 0. Since RD(a) =
[D,Ra], we obtain [[D,Ra], Ra] = 0. The Kleinecke–Shirokov theorem (for
inner derivations) implies that RD(a) = [D,Ra] is a quasinilpotent operator
on J . For each n ∈ N we have

D(a)n+1 = RnD(a)(D(a))

and therefore
‖D(a)n+1‖ ≤ ‖RnD(a)‖ · ‖D(a)‖.

Consequently,

r(D(a)) = lim ‖D(a)n+1‖1/(n+1)

≤ lim(‖RnD(a)‖1/(n+1)‖D(a)‖1/(n+1))

= r(RD(a)) = 0.

Theorem 3.4. Let J be a complex Jordan–Banach algebra and let D
be a continuous derivation on J . Suppose that M and N are subsets of J
which are both invariant under D. If a ∈ M is such that D(a) ∈ N and
[M,a,N ] ⊂ Rad(J), then D(a) ∈ Q(J).

Proof. Again, there is no loss of generality in assuming that Rad(J) = 0.
Let

H = {x ∈ J : [M,x,N ] = 0}.
Note that H is a closed subalgebra of J . Further we set

A = {T ∈ BL(J) : T (H) ⊂ H}, I = {T ∈ A : T (H) = 0}.
Then A is a closed subalgebra of the Banach algebra BL(J), D ∈ A since M
and N are invariant under D, and I is a closed two-sided ideal of A. From
our initial assumption we see that a ∈ H. Since H is a subalgebra of J , it
follows that Ra ∈ A. Since D(a) ∈ N , we have [a,H,D(a)] = 0, which can
be written as [Ra, RD(a)] ∈ I. We thus get [πI(Ra), πI(RD(a))] = 0. Since
RD(a) = [D,Ra], the preceding equality becomes

[πI(Ra), [πI(D), πI(Ra)]] = 0.

Since A/I is a Banach algebra, the Kleinecke–Shirokov theorem implies that
πI(RD(a)) = [πI(D), πI(Ra)] is a quasinilpotent element of A/I. Let us show
that this yields D(a) is quasinilpotent. Since D(a) ∈ H, for all T ∈ I and
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n ∈ N we have

D(a)n+1 = RnD(a)(D(a)) = (RnD(a) + T )(D(a)),

whence
‖D(a)n+1‖ ≤ ‖RnD(a) + T‖ · ‖D(a)‖,

and so
‖D(a)n+1‖ ≤ inf

T∈I
‖RnD(a) + T‖ · ‖D(a)‖,

that is,

‖D(a)n+1‖ ≤ ‖πI(RnD(a))‖ · ‖D(a)‖ = ‖(πI(RD(a)))
n‖ · ‖D(a)‖.

Consequently,

r(D(a)) = lim ‖D(a)n+1‖1/(n+1)

≤ lim(‖(πI(RD(a)))
n‖1/(n+1)‖D(a)‖1/(n+1))

= r(πI(RD(a))) = 0.

Incidentally, by taking M = J and N = {a ∈ J : [J, J, a] ∈ Rad(J)}
we see that Theorem 3.4 also covers Corollary 3.2. However, another special
case when M = N = {Di(a) : i ≥ 0} seems to be of greater interest:

Corollary 3.5. Let J be a complex Jordan–Banach algebra and let D
be a continuous derivation on J . Suppose that a ∈ J is such that [Di(a), a,
Dj(a)] ∈ Rad(J) for all i, j ≥ 0. Then D(a) ∈ Q(J).

Let us point out that Theorem 3.1 is the only result in this section which
was proved without assuming the continuity of a derivation. In Section 5
we shall see that the problem whether the assumption of continuity can be
removed in the other results is intimately connected with the Singer–Wermer
conjecture for Jordan–Banach algebras.

4. Global properties. This section has two aims. The first one is to
consider derivations of Jordan–Banach algebras whose range is an associative
set, and the second one is to characterize derivations satisfying a (simplified
version of the) condition of Theorem 3.3, but for every element a in the al-
gebra. Throughout this section we assume that D is derivation of a complex
Jordan–Banach algebra J . It should be pointed out that we do not assume
that D is continuous.

Derivations whose range is associative. Our goal in this subsection is to
prove Theorem 4.6. We shall do this in a series of lemmas; some of them
may be of independent interest.

Lemma 4.1. Suppose that there exists a continuous linear map F from
J to a Banach space X such that F ◦D = 0. Then F (I(D)) = 0.
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Proof. It suffices to prove that F (R(S(Dn))) = 0 for all R ∈M1(J) and
n ≥ 1. Since for n = 0 this is trivially true, we may assume that, for some
n ≥ 0, F (R(S(Dn))) = 0 holds true for every R ∈ M1(J), and we have to
show that this yields F (R(S(Dn+1))) = 0 for every R ∈M1(J).

Let R ∈M1(J). Recall that ∆(R) = D◦R−R◦D also belongs to M1(J).
Since F ◦D = 0 by our assumption, we have F ◦∆(R)◦Dn = −F ◦R◦Dn+1.
Since F ◦∆(R) and F ◦R are continuous, [34, Lemma 1.3] gives

F (R(S(Dn+1))) = S(F ◦R ◦Dn+1) = S(−F ◦∆(R) ◦Dn)

= −F (∆(R)(S(Dn)) = 0.

Hence F (R(S(Dn+1))) = 0.

Lemma 4.2. Let M be a closed subspace of J such that

[D(J),D(J),D(J)] ⊂M.

Then
[D(J) + I(D),D(J) + I(D),D(J) + I(D)] ⊂M.

Proof. Let b, c ∈ D(J) and let F be a continuous linear map from J
to the quotient Banach space J/M given by F (a) = πM([a, b, c]) for each
a ∈ J . Since F ◦D = 0, the preceding lemma gives [I(D), b, c] ⊂M .

Now let b ∈ D(J) + I(D), c ∈ D(J), and let F : J → J/M be given by
F (a) = πM ([b, a, c]). By what was proved above it follows that F ◦D = 0,
and so the preceding lemma now gives [b, I(D), c] ⊂M .

Finally, let b, c ∈ D(J) + I(D) and define F : J → J/M by F (a) =
πM ([b, c, a]). Again we have F ◦ D = 0, and so [b, c, I(D)] ⊂ M by the
preceding lemma.

Lemma 4.3. Suppose that [D(J),D(J),D(J)] ⊂ Rad(J). Then D(P )
⊂ P for each primitive ideal P of J except possibly finitely many primitive
ideals each of which is 1-codimensional.

Proof. By Theorem 2.1, there may only be finitely many primitive ideals
of J which are not invariant under D. Suppose that P is such a primitive
ideal. By Theorem 2.1, I(D) 6⊂ P and πP (I(D)) = J/P . Further, from
Lemma 4.2 it follows that [I(D), I(D), I(D)] ⊂ Rad(J). Hence

[J/P, J/P, J/P ] = [πP (I(D)), πP (I(D)), πP (I(D))] = 0

and so J/P is a primitive commutative complex Banach algebra. Conse-
quently, J/P is isomorphic to C.

Lemma 4.4. Suppose that [D(J),D(J),D(J)] ⊂ Rad(J). If P is a prim-
itive ideal of J such that D(P ) ⊂ P , then πP (D2(J)) consists of quasi-nil-
potent elements.

Proof. Note that [DP (J/P ),DP (J/P ),DP (J/P )] = 0. Since DP is con-
tinuous according to Theorem 2.1, by taking M = N = DP (J/P ) we see
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that Theorem 3.4 shows that D2
P (J/P ) = πP (D2(J)) consists of quasinilpo-

tent elements.

Lemma 4.5. Suppose that [D(J),D(J),D(J)] = 0. Then

(i) D(I(D)) · I(D) ⊂ Rad(I(D)).
(ii) a4 ∈ Rad(I(D)) for all a ∈ S(Dn) and n ∈ N; accordingly S(Dn)

consists of quasinilpotent elements for each n ∈ N.
(iii) D(P ) ⊂ P for each primitive ideal P of J .

Proof. Let y ∈ I(D) and let d be the map from I(D) to itself given by
d(a) = D(a) · y for each a ∈ I(D). From Lemma 4.2 it follows immediately
that I(D) is a commutative Banach algebra and that d is a derivation on
I(D). Thomas’ theorem [36] gives d(I(D)) ⊂ Rad(I(D)), which proves the
first statement.

In order to prove the second statement, we pick a ∈ S(Dn) and a se-
quence (ak) in J such that lim ak = 0 and limDn(ak) = a. Then for each
k ∈ N we have

a · (a · (a ·Dn(ak))) = a · (a ·D(a ·Dn−1(ak)))− a · (a · (D(a) ·Dn−1(ak))).

It is clear that lim a · (a · (a · Dn(ak))) = a4. From the first statement we
deduce that a · (a ·D(a ·Dn−1(ak))) ∈ Rad(I(D)) for each k ∈ N. If n = 1,
then lima · (a · (D(a) · Dn−1(ak))) = 0 and therefore a4 ∈ Rad(I(D)). If
n > 1, then from Lemmas 4.2 and the first statement it may be concluded
that a · (a · (D(a) · Dn−1(ak))) = (a · D(a)) · (a · Dn−1(ak)) ∈ Rad(I(D)),
and hence a4 ∈ Rad(I(D)) in this case as well.

It remains to prove the last statement. To obtain a contradiction, suppose
there exists a primitive ideal P of J such that D(P ) 6⊂ P . Lemma 4.3 shows
that J/P is isomorphic to C. On the other hand, there exists n ∈ N such
that S(Dn) 6⊂ P and therefore πP (S(Dn)) = J/P , which contradicts the
second statement.

Theorem 4.6. Let J be a complex Jordan–Banach algebra and let D be a
derivation on J . Suppose that [D(J),D(J),D(J)] = 0. Then D2(J) ⊂ Q(J).

Proof. From Lemmas 4.4 and 4.5 it follows that πP (D2(J)) consists of
quasinilpotent elements for each primitive ideal P of J . Accordingly, D2(J)
consists of quasinilpotent elements.

Let us give two examples illustrating Theorem 4.6.

Example 4.7. Suppose J is a Jordan–Banach algebra of a continuous
symmetric bilinear form f on a nonzero complex Banach space X. That is,
J = C⊕X with the product given by (α, x) ·(β, y) = (αβ+f(x, y), βx+αy)
for all α, β ∈ C and x, y ∈ X. We remark that J is simple in the case
when dimX > 1 and f is nondegenerate. It is easy to see that a linear
map D : J → J is a derivation if and only if there exists a linear map
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T : X → X such that D(α, x) = (0, T (x)) and f(x, T (x)) = 0 for all α ∈ C
and x ∈ X. Suppose, in addition, that f(T (x), T (y)) = 0 for all x, y ∈ X
(concretely, we can take X = C4, f(x, y) = x1y3 − x2y4 + x3y1 − x4y2, and
T (x) = (x4, x3, 0, 0)). Note that in this case D(α, x) · D(β, y) = 0 for all
(α, x), (β, y) ∈ J . In particular, [D(J),D(J),D(J)] = 0. Further, linearizing
f(x, T (x)) = 0 we get f(x, T (y)) + f(y, T (x)) = 0 for all x, y ∈ X, which
together with f(T (x), T (y)) = 0 gives f(x, T 2(y)) = 0 for all x, y ∈ X. Using
this it is easy to see that D2(J) lies in the radical of J .

The next example is taken from [12].

Example 4.8. Let J be the Jordan algebra of all symmetric elements of
M2n(C), n ≥ 1, with respect to symplectic involution. If e1,n+1 denotes the
matrix with 1 in position (1, n+ 1) and 0’s elsewhere, then the derivation D
on J defined by D(a) = [a, e1,n+1] satisfies D(a) ·D(b) = 0 for all a, b ∈ J ,
[D(J),D(J),D(J)] = 0 and D2 = 0.

Let us mention, incidentally, that these two examples show that there
are nonzero derivations D on simple Jordan–Banach algebras J such that
D2(a) = 0 = D(a)2 for all a ∈ J . This shows that one cannot extend
a result of Posner [28] on the composition of derivations into the Jordan
context, as well as that, unlike the case of Banach algebras [38, 25], there
exist derivations on (even simple) Jordan–Banach algebras J whose range
consists of quasinilpotent elements but it does not lie in the radical.

We have been unable, however, to find an example of a derivation D on
a Jordan–Banach algebra J such that [D(J),D(J),D(J)] = 0 and D2(J) 6⊂
Rad(J). Therefore, we leave as an open question whether or not it is possible
to improve Theorem 4.6 by showing that D2(J) is actually contained in the
radical.

Derivations satisfying [D(a), J, a] = 0 for each a. Our next goal is to
prove Theorem 4.14. The proof consists of two rather different parts. One
part is the reduction to the case when J is primitive. Here, many arguments
are similar to those used in the proof of Theorem 4.6. Assuming that J is a
primitive algebra, it follows at once from Theorems 3.3 and 2.1 that D(a) is
quasinilpotent for each a ∈ J . However, as noted in the examples above, this
condition is not sufficient to conclude that D = 0. Therefore, some other
methods are also needed, and we shall rely heavily on the structure theory
for primitive Jordan–Banach algebras in the spirit of E. Zel’manov obtained
recently by M. Cabrera, A. Moreno and A. Rodŕıguez [9].

Lemma 4.9. Suppose there exists a continuous anti-symmetric bilinear
map G from J × J to a Banach space X such that G(D(a), a) = 0 for each
a ∈ J . Then G(I(D), J) = 0.
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Proof. Linearizing G(D(a), a) = 0 for each a ∈ J we get G(D(a), b) +
G(D(b), a) = 0 and therefore G(D(a), b) = G(a,D(b)) for all a, b ∈ J .
Letting Gb, for b ∈ J , denote the continuous linear map from J to X given
by Gb(a) = G(a, b), we see that the identity above can be written as Gb◦D =
GD(b) for every b ∈ J .

It suffices to prove that for each n ∈ N, G(R(S(Dn)), J) = 0 for all
R ∈ M1(J). Since this is trivially true when n = 0, we may assume that
it is true for some n ≥ 0 and we have to show that then it is also true for
n+ 1. Again involving the derivation ∆ on M1(J) we see that for any b ∈ J
we have

Gb◦R◦Dn+1 = Gb◦D◦R◦Dn−Gb◦∆(R)◦Dn = (GD(b)◦R−Gb◦∆(R))◦Dn.

Since the maps Gb◦R and GD(b)◦R−Gb◦∆(R) are continuous, [34, Lemma
1.3] implies that

Gb(RS(Dn+1)) = S(Gb ◦R ◦Dn+1) = S((GD(b) ◦R−Gb ◦∆(R)) ◦Dn)

= (GD(b) ◦R−Gb ◦∆(R))(S(Dn)) = 0,

because G(R(S(Dn)),D(b)) = G(∆(R)(S(Dn)), b) = 0 by our assumption.
Thus, Gb(RS(Dn+1)) = 0 for each b ∈ J and R ∈ M1(J), meaning that
G(R(S(Dn+1)), J) = 0.

Lemma 4.10. Suppose that there exists a closed subspace M of J such
that [D(a), J, a] ⊂M for each a ∈ J . Then [I(D), J, J ] ⊂M.

Proof. Let c ∈ J and let G be the continuous anti-symmetric bilinear
map from J × J to the quotient Banach space J/M given by G(a, b) =
πM ([a, c, b]) for all a, b ∈ J . Since G(D(a), a) = 0 for each a ∈ J , the
preceding lemma gives G(I(D), J) = 0 and therefore [I(D), c, J ] ⊂M .

Lemma 4.11. Suppose that [D(a), J, a] ⊂ Rad(J) for each a ∈ J . Then
D(P ) ⊂ P for each primitive ideal P of J except possibly finitely many
primitive ideals each of which is 1-codimensional.

Proof. Suppose that D(P ) 6⊂ P for some primitive ideal P of J . Then
I(D) 6⊂ P and therefore πP (I(D)) = J/P . On the other hand, from Lemma
4.10 it follows that [I(D), J, J ] ⊂ Rad(J). Hence

[J/P, J/P, J/P ] = [πP (I(D)), πP (J), πP (J)] = 0

and so J/P is a primitive commutative complex Banach algebra. Conse-
quently, J/P is isomorphic to C. The fact that there can only be finitely
many such exceptional ideals follows from Theorem 2.1.

Lemma 4.12. Suppose that [D(a), J, a] ⊂ Rad(J) for each a ∈ J and
that D(P ) ⊂ P for some primitive ideal P of J . Then D(J) ⊂ P .
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Proof. Replacing D by the derivation DP on J/P we see that there is
no loss of generality in assuming that J is primitive. Our goal is to show
that D = 0.

According to the structure theorem for primitive Jordan–Banach algebra
[9], there are four cases to consider.

Case 1. First we consider the case when J is the simple exceptional
27-dimensional complex Jordan–Banach algebra of all matrices of the form




λ x y

x µ z

y z ν




where λ, µ, ν ∈ C and x, y, z ∈ O, with product given by a · b = 1
2(ab + ab)

for all a, b ∈ J . Here, O denotes the complex octonions. Let eij , i, j =
1, 2, 3, denote the matrix with 1 in position (i, j) and 0’s elsewhere. From
D(e11) = D(e2

11) = 2e11 · D(e11) one can conclude that D(e11) must be of
the form 


0 x y

x 0 0

y 0 0




with x, y ∈ O. From the identity [D(e11), e22 +e33, e11] = 0 it follows at once
that D(e11) = 0. Similarly we see that D(e22) = D(e33) = 0. Now pick any
x ∈ O and set

a =




0 x 0

x 0 0

0 0 0


 .

Our goal is to show that D(a) = 0. Since a = 2a · e11 = 2a · e22, and
D(e11) = D(e22) = 0, it follows that D(a) = 2D(a) ·e11 = 2D(a) ·e22, which
implies that D(a) is of the form

D(a) =




0 w 0

w 0 0

0 0 0




for some w ∈ O. Linearizing [D(b), c, b] = 0 we get [D(b1), c, b2]+[D(b2), c, b1]
= 0 for all b1, b2, c ∈ J . Letting b1 = e11, c = e13 + e31, and b2 = a we thus
get [D(a), e13 + e31, e11] = 0, which immediately gives D(a) = 0. Similarly
we see that D vanishes on matrices of the form
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0 0 y

0 0 0

y 0 0


 and




0 0 0

0 0 z

0 z 0




with y, z ∈ O, and so D = 0 as claimed.

Case 2. Now we assume that J is a Jordan–Banach algebra of a con-
tinuous nondegenerate symmetric bilinear form f on a nonzero complex
Banach space X. Using the same notation as in Example 4.7, we thus have
[(0, T (x)), (β, y), (α, x)] = 0 for all α, β ∈ C and x, y ∈ X, where T is a linear
operator on X such that f(x, T (x)) = 0 for all x ∈ X. A direct computation
shows that this yields f(x, y)T (x) = f(y, T (x))x for all x, y ∈ X. Given
x 6= 0 in X and choosing y ∈ X so that f(x, y) 6= 0, we see that T (x) = λxx
for some λx ∈ C. A standard argument shows that λx does not depend on
x and therefore T = λI for some λ ∈ C. If λ were nonzero, f(x, T (x)) = 0
would yield f(x, x) = 0 for all x ∈ X, a contradiction. Thus λ = 0 and so
D = 0.

It should be pointed out that if J is a Jordan quadratic algebra then J
is the Jordan algebra of a symmetric bilinear form on some linear space X.
Indeed, there exist a linear functional τ : J → C and a functional µ : J → C
such that a2 − τ(a)a+ µ(a)1 = 0 for all a ∈ J . Let X = {a ∈ J : τ(a) = 0}.
It is easily checked that J is the Jordan algebra of the symmetric bilinear
form f on the linear space X given by f(x, y) = 1

2(−µ(x+ y) +µ(x) +µ(y))
for all x, y ∈ X.

Case 3. We consider the case when there is a complex Banach space X
and an associative subalgebra A of BL(X) acting irreducibly on X such that
J can be viewed as a Jordan subalgebra of BL(X) containing A as an ideal,
and the inclusion J ↪→ BL(X) is continuous. The identity [D(a), J, a] = 0
can now be written as [[D(a), a], J ] = 0, where [a, b] stands for ab− ba. We
claim that this implies that [D(a), a] = 0. On the one hand, this follows
from [4, Proposition 3.1], but a simple direct argument can also be given.
Namely, since J contains a subalgebra of BL(X) which acts irreducibly on
X, [[D(a), a], J ] = 0 implies that [D(a), a] must be a scalar multiple of
the identity. However, it is well known (and in fact it is a corollary to the
Kleinecke–Shirokov theorem) that the commutator of two bounded linear
operators cannot be a nonzero scalar multiple of the identity, so [D(a), a]
must be 0 for every a ∈ J .

Let D be the restriction of D to A. Then D is a Jordan derivation from A
to J . Now, Herstein’s theorem [13] is not directly applicable since it only tells
us that every Jordan derivation of A into itself is a derivation (of associative
algebras). However, just glancing through the proof given in [7] shows that
this conclusion also holds for Jordan derivations from A into BL(X). Thus,
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D is a derivation. Therefore, we have arrived at a similar situation to the
one in the well known result of Posner [28].

Linearizing [D(a), a] = 0 we get [D(a), b] + [D(b), a] = 0 for all a, b ∈ J .
Now replace b by ba and assume that a, b ∈ A. Then we get

0 = [D(a), ba] + [D(b)a+ bD(a), a]

= [D(a), b]a+ [D(b), a]a+ [b, a]D(a).

However, since [D(a), b] + [D(b), a] = 0, this reduces to [b, a]D(a) = 0. Re-
placing b by cb with b, c ∈ A and using [cb, a] = [c, a]b + c[b, a] we arrive
at [A, a]AD(a) = 0 for every a ∈ A. The irreducibility of A implies that
for each a ∈ A, either D(a) = 0 or a is a scalar multiple of the identity.
However, in the latter case we also have D(a) = 0. Thus, D = 0. Therefore,
[D(a), b] + [D(b), a] = 0 for all a, b ∈ J now yields [D(b), a] = 0 for all b ∈ J ,
so that D(J) consists of scalar multiples of the identity. However, D is a
derivation and it is easy to see that this is possible only when D = 0.

Let us mention that case 3 could also be handled in a similar way to case
4 below, and that perhaps the shortest proof could be given by applying the
results on functional identities (see e.g. [5]); however, invoking this theory
would make the paper less self-contained.

Case 4. Finally, we may assume that there exist a complex Banach
space X and an associative subalgebra A of BL(X) acting irreducibly on X
such that J can be viewed as a Jordan subalgebra of BL(X), the inclusion
J ↪→ BL(X) is continuous, the identity map on J extends to a linear algebra
involution ∗ on the subalgebraB ofBL(X) generated by J , A is a ∗-invariant
subset of B, H(A, ∗) is an ideal of J , and A is generated by H(A, ∗). There
is no loss of generality in assuming that J is not a quadratic algebra since
otherwise it would belong to the class of Jordan algebras already treated in
case 2. Therefore we have dimX > 2.

Set H = H(A, ∗) and let H2 be the linear span of all h2, h ∈ H (equiv-
alently, H2 is the linear span of all h1h2 + h2h1, h1, h2 ∈ H). Note that
D(H2) ⊂ H since H is an ideal of J (this is the main reason why we
deal with H2). We claim that the (associative) subalgebra generated by H2

contains a nonzero ideal of A. We shall prove this by using [6] (this could
probably also be extracted from the proofs of Herstein’s classical results [14]
on rings with involution but we have been unable to find an appropriate di-
rect reference). First note that, since dimX > 2, there exist elements in A
which are not algebraic over C of degree ≤ 2 (for example, pick three linearly
independent vectors x1, x2, x3 ∈ X and use the Jacobson density theorem to
obtain an element a ∈ A such that ax1 = x2 and ax2 = x3). Consequently,
it is clear from [6] that the following is true: If L is any nonzero subspace
of A such that ax + xa∗ ∈ L for all a ∈ A, x ∈ L, then the subalgebra
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generated by L contains a nonzero ideal of A. We claim that L = H2 has
this property. Since any element in A can be written as a sum h + k with
h∗ = h and k∗ = −k, it suffices to show that for any h′ ∈ H we have
hh′ 2 + h′ 2h ∈ H2 and kh′ 2 − h′ 2k ∈ H2. The first relation is clear, while
the second one is obvious from kh′ 2 − h′ 2k = (kh′ − h′k)h′ + h′(kh′ − h′k),
since kh′ − h′k ∈ H.

Therefore, the subalgebra of A generated by H2 also acts irreducibly on
X. This implies, in particular, that scalar multiples of the identity are the
only operators in BL(X) that commute with every element from H2. The
same conclusion of course holds for H and J .

In the course of the proof below we shall arrive at the point where the
concept of the extended centroid will be used. This concept was introduced
by W. S. Martindale [23] and we refer the reader to [2] for a full account. In
general, the extended centroid of a prime ring is a certain field containing the
centre of the ring. In our situation, considering the algebra A, the extended
centroid is just (isomorphic to) the complex field C. Namely, if we identify C
with the scalar multiples of the identity, it is obvious that C is contained in
the extended centroid of A. On the other hand, [2, Corollary 4.1.2] implies
that C contains the extended centroid of A. Thus, C is the extended centroid
of A.

We now have enough information to start to treat a derivation D on
J satisfying our condition. First, as in the proof of the preceding case one
shows that then [D(a), a] = 0 for every a ∈ J , which yields

[D(a), b] + [D(b), a] = 0

for all a, b ∈ J . Replacing b by b2 in this identity and using

[D(a), b2] = [D(a), b]b+ b[D(a), b],

[D(b)b+ bD(b), a] = [D(b), a]b+D(b)[b, a] + [b, a]D(b) + b[D(b), a],

together with [D(a), b] + [D(b), a] = 0, we arrive at

D(b)[b, a] + [b, a]D(b) = 0

for all a, b ∈ J . Let us rewrite this identity as

{−abD(b) + baD(b)}+ {D(b)ba−D(b)ab} = 0.

Now consider this relation for a fixed b ∈ H2 and an arbitrary a ∈ H. Since
D(b) ∈ H, [22, Lemma 3] can be applied. Therefore, we find that if b does not
lie in C, which is the extended centroid of A (again we used the identification
of C with the scalar multiples of the identity), thenD(b) ∈ C b+C. Of course,
if b ∈ C, then D(b) = 0, so that D(b) ∈ C b + C for any b ∈ H2. That is to
say, for any b ∈ H2 there is λb ∈ C such that D(b)− λbb ∈ C.

Our next goal is to show that λb can be chosen independently of b. The
argument is rather standard (see e.g. [22, pp. 2890–2891]), but we give it
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for the sake of completeness. Pick some b ∈ H2 such that b 6∈ C (such a
b certainly exists in view of the discussion above) and set λ = λb. Now, if
c ∈ H2 is such that [b, c] 6= 0, then we have

λ[b, c] = [D(b), c] = −[D(c), b] = λc[b, c]

and so λc = λ. On the other hand, if b and c commute, then we can pick
d ∈ H2 such that [b, d] 6= 0 since b 6∈ C, hence also [c + d, b] 6= 0, so
that λd+c = λd = λ. Thus, D(c + d) ∈ λ(c + d) + C. On the other hand,
D(c + d) = D(c) + D(d) ∈ λcc + λd + C. Comparing we see that λc = λ
unless c ∈ C. But then D(c) − λc lies in C for every c ∈ H2. Therefore,
the relation [D(c), a] + [D(a), c] = 0 with a ∈ J , c ∈ H2 can be written as
[D(a) − λa, c] = 0 for all a ∈ J , c ∈ H2. Consequently, µ(a) = D(a) − λa
lies in C for every a ∈ J . Now consider D(a2) with a ∈ J . On the one hand
this element is equal to λa2 + µ(a2), and on the other hand to 2aD(a) =
2λa2 + 2µ(a)a. Hence

λa2 + 2µ(a)a ∈ C
for every a ∈ J . However, since it is assumed that the algebra J is not
quadratic, it follows that λ = 0 and also µ(a) = 0 for every a ∈ J such that
a 6∈ C. Consequently, D(a) = 0 for every such a. Of course, if a ∈ C then
D(a) is certainly 0. Thus, D(J) = 0.

Lemma 4.13. Suppose that [D(a), J, a] = 0 for each a ∈ J . Then

(i) D(I(D)) · I(D) ⊂ Rad(I(D)).
(ii) a4 ∈ Rad(I(D)) for all a ∈ S(Dn) and n ∈ N; accordingly , S(Dn)

consists of quasinilpotent elements for each n ∈ N.
(iii) D(P ) ⊂ P for each primitive ideal P of J .

Proof. Just follow the proof of Lemma 4.5 and apply Lemmas 4.10 and
4.11 instead of Lemmas 4.2 and 4.3 at appropriate places.

Theorem 4.14. Let J be a complex Jordan–Banach algebra and let D
be a derivation on J . Suppose that [D(a), J, a] = 0 for each a ∈ J . Then
D(J) ⊂ Rad(J).

Proof. An immediate consequence of Lemmas 4.13 and 4.12.

5. On the Singer–Wermer conjecture for Jordan–Banach
algebras

Lemma 5.1. Let J be a Jordan algebra and let I, P1, . . . , Pn be pairwise
different ideals of J such that I 6⊂ Pi, J/Pi is simple and it has an identity
for each i ∈ {1, . . . , n}. Then the homomorphism a 7→ (a+ P1, . . . , a + Pn)
from I to J/P1 ⊕ . . .⊕ J/Pn is onto.

Proof. Let i, j ∈ {1, . . . , n} with i 6= j. We claim that I∩Pi+I∩Pj = I.
From the simplicity assumption, Pi and Pj are maximal ideals of J . Hence
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Pi +Pj = J and Pi + I = J . Since J/Pi has an identity, [39, Lemma 4] now
shows that Pi + I ∩ Pj = J , and so I ∩ Pi + I ∩ Pj = I.

On the other hand, for each i ∈ {1, . . . , n}, the map a + I ∩ Pi 7→
a+Pi is an isomorphism from I/I ∩ Pi onto J/Pi. Consequently, the ideals
I ∩ P1, . . . , I ∩ Pn of the Jordan algebra I satisfy the requirements of [39,
Lemma 5] and therefore the homomorphism a 7→ (a+ I ∩P1, . . . , a+ I ∩Pn)
from I to I/I ∩ P1 ⊕ . . .⊕ I/I ∩ Pn is onto, which completes the proof.

Theorem 5.2. Let J be a complex Jordan–Banach algebra and let D be
a derivation on J such that [D(J),D(J),D(J)] ⊂Rad(J). Then there are
pairwise orthogonal idempotents e1, . . . , en in J such that

D2(J) ⊂ C e1 + . . .+ C en +Q(J).

Proof. On account of Lemma 4.4, we may assume that there exist prim-
itive ideals of J which are not invariant under D. In view of Lemma 4.3
there are only finitely many such ideals P1, . . . , Pn each of which is 1-
codimensional. For each i ∈ {1, . . . , n} let φi be the character on J whose
kernel is Pi. By Lemma 5.1 with I = I(D) (taking into account Theorem
2.1) there exists u ∈ I(D) such that φi(u) = i for each i ∈ {1, . . . , n}.
From [40, Lemma 1] (cf. Section 2) we have Sp(u) ⊂ {0, 1, . . . , n}. For each
i ∈ {1, . . . , n} there is a function fi analytic on a neighbourhood of Sp(u)
which is identically 1 on a neighbourhood of {i} but identically 0 on a neigh-
bourhood of {0} ∪ (Sp(u) \ {i}). Hence the elements e1, . . . , en ∈ J1 given
by ei = fi(u) for each i ∈ {1, . . . , n} are pairwise orthogonal idempotents of
J1. We could explicitly take

ej =
1

2πi

�

|λ−j|=1/2

(λ− u)−1 dλ

for each j ∈ {1, . . . , n}. Since fi(0) = 0 it may be concluded that ei ∈ I(D)
for each i ∈ {1, . . . , n}. Furthermore, φj(ei) = fi(φj(u)) = fi(j) = δij for all
i, j ∈ {1, . . . , n} and therefore ei ∈ Pj if i 6= j.

Let a ∈ J . We claim that D2(a) −∑n
j=1 φj(D

2(a))ej is quasinilpotent.
Indeed, for each primitive ideal P such that D(P ) ⊂ P we have

πP

(
D2(a)−

n∑

j=1

φj(D2(a))ej
)

= πP (D2(a)),

which is quasinilpotent by Lemma 4.4. Further, for each i ∈ {1, . . . , n} we
have

φi

(
D2(a)−

n∑

j=1

φj(D2(a))ej
)

= 0.

Accordingly, we conclude from [40, Lemma 1] thatD2(a)−∑n
j=1 φj(D

2(a))ej
is quasinilpotent, as claimed.
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Theorem 5.3. Let J be a complex Jordan–Banach algebra and let D be
a derivation on J such that [D(a), J, a] ⊂ Rad(J) for each a ∈ J . Then
there are pairwise orthogonal idempotents e1, . . . , en in J such that

D(J) ⊂ Ce1 + . . .+ Cen + Rad(J).

Proof. A simple modification of the proof of Theorem 5.2.

We leave as an open question whether the appearance of idempotents
ei can be avoided in Theorems 5.2 and 5.3. Our next theorem shows, in
particular, that this question and the Singer–Wermer conjecture for Jordan–
Banach algebras are in fact equivalent problems.

Theorem 5.4. The following assertions are equivalent.

(i) Every derivation on a complex Jordan–Banach algebra leaves each
primitive ideal invariant.

(ii) Every derivation on the unitization of a radical complex Jordan–
Banach algebra leaves the radical invariant.

(iii) Every derivation D on a complex Jordan–Banach algebra J such
that [D(J),D(J),D(J)] ⊂ Rad(J) satisfies D2(J) ⊂ Q(J).

(iv) Every derivation D on a complex Jordan–Banach algebra such that
[D(a), J, a] ∈ Rad(J) for each a ∈ J satisfies D(J) ⊂ Rad(J).

(v) For every derivation D on a complex Jordan–Banach algebra J ,
D(a) ∈ Q(J) whenever a ∈ J is such that [D(a), J, J ] ⊂ Rad(J).

(vi) For every derivation D on a complex Jordan–Banach algebra J ,
D(a) ∈ Q(J) whenever a ∈ J is such that [D(a), J, a] ⊂ Rad(J).

(vii) For every derivation D on a complex Jordan–Banach algebra J ,
D(a) ∈ Q(J) whenever a ∈ J is such that [Di(a), a,Dj(a)] ∈ Rad(J) for all
i, j ≥ 0.

Proof. Assume that (i) holds. Let D be a derivation on a Jordan–Banach
algebra J such that [D(J),D(J),D(J)] ⊂ Rad(J). For each primitive ideal
P of J we clearly have [DP (J/P ),DP (J/P ),DP (J/P )] = 0, and so Theorem
4.6 shows that D2

P (J/P ) ⊂ Q(J/P ). Thus πP (D2(J)) ⊂ Q(J/P ) for each
primitive ideal P of J and hence [40, Lemma 1] yields D2(J) ⊂ Q(J).
Thus, (i) implies (iii). In a similar fashion, by applying results of previous
sections, we see that (i) also implies each of the assertions (iv)–(vii) (for the
proof of the last two implications one also has to use the fact (see Theorem
2.1) that derivations on primitive Jordan–Banach algebras are necessarily
continuous). It is trivial that (i) also implies (ii).

Next we claim that each of the assertions (iii)–(vii) implies (ii). Let D
be a derivation on the unitization J1 of a radical Jordan–Banach algebra J .
Note that [J1, J1, J1] ⊂ J = Rad(J1) = Q(J1). Using this we see that the
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validity of any of the assertions (iv)–(vii) implies immediately that D(J)
⊂ J , as desired. If we assume that (iii) holds, it first follows only that D2(J1)
⊂ J . However, from

(D(a))2 = 1
2D

2(a2)−D2(a) · a ∈ J
we can conclude that D(a) ∈ J for any a ∈ J in this case as well.

It remains to prove that (ii) implies (i). Suppose that there exists a
derivation D on some Jordan–Banach algebra J such that D(P ) 6⊂ P for
some primitive ideal P of J . Let P = P1, P2, . . . , Pn be the only primitive
ideals of J which are not invariant under D. For each i ∈ {1, . . . , n}, J/Pi is
simple and either it is finite-dimensional or it is the Jordan–Banach algebra
of a continuous nondegenerate symmetric bilinear form f on a complex
Banach space X of dimension greater than one (cf. Theorem 2.1). We claim
that there exists an idempotent element u of J/P such that Uu(J/P ) = Cu.
Indeed, if J/P is isomorphic to C then this is clear. If J/P is the Jordan
algebra of a nondegenerate symmetric bilinear form f on a nonzero linear
space X, then we can take u = (1/2, x) with x ∈ X and f(x, x) = 1/4.
Otherwise, on account of Albert’s theorem [16, Corollary V.6.2], J/P is
isomorphic to the matrix algebra {(aij) ∈ Mn(D) : (aji) = (aij)}, where
D is a composition algebra over C of dimension 1, 2, or 4 if n ≥ 4 and of
dimension 1, 2, 4 or 8 if n = 3. In this case we can take u to be the matrix
e11. By Lemma 5.1 there is a ∈ I(D) such that a + P = u and a ∈ Pi if
i 6= 1. Then Sp(a) ⊂ {0, 1} by [40, Lemma 1]. Let f be a function analytic
on a neighbourhood of {0, 1} which is identically 1 on a neighbourhood of 1
but identically 0 on a neighbourhood of 0. Hence e = f(a) is an idempotent
element in J1. We could explicitly take

e =
1

2πi

�

|λ−1|=1/2

(λ− a)−1 dλ.

Since f(0) = 0 it follows that e ∈ I(D) and πP (e) = f(u). Further,

f(u) =
1

2πi

�

|λ−1|=1/2

(λ− u)−1 dλ

and since
(λ− u)−1 = (λ− 1)−1u+ λ−1(1− u)

for each λ ∈ C\{0, 1}, it follows that f(u) = u. Moreover e ∈ I(D)∩P2∩. . .∩
Pn. Indeed, πI(D)(e) = f(πI(D)(a)) = f(0) = 0 and πPi(e) = f(πPi(a)) =
f(0) = 0 for each i 6= 1. Hence Ue(P ) ⊂ Rad(J). From [16, Lemma III.1(i)
and equality III.1.(5)] we deduce that Ue(J) is a unital Jordan–Banach al-
gebra with identity element e. Furthermore, Ue(P ) is an ideal of Ue(J). We
claim that the quotient map πP induces an isomorphism from Ue(J)/Ue(P )
onto Uu(J/P ) ∼= C. Indeed, it is clear that πP (Ue(J)) = Uu(J/P ) and if
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a ∈ Ue(J) is such that πP (a) = 0, then a = Ue(a) ∈ Ue(P ). Accordingly,
Ue(J) is the unitization of Ue(P ) which is a radical Jordan–Banach alge-
bra, because Ue(P ) ⊂ Rad(J). Consider the linear map De from Ue(J) to
itself defined by De(x) = Ue(D(x)) for each x ∈ Ue(J). By using the Peirce
decomposition of J relative to the idempotent e (see [16, Section III.1]) it
follows immediately that De is a derivation. On the other hand, for each
x ∈ P we have

Ue(D(Ue(x))) = Ue(2D(e) · (e · x) + 2e · (D(e) · x)−D(e) · x+ Ue(D(x)))

= Ue(2D(e) · (e · x) + 2e · (D(e) · x)−D(e) · x) + Ue(Ue(D(x))).

As 2D(e) ·(e ·x)+2e ·(D(e) ·x)−D(e) ·x ∈ P and Ue(Ue(D(x))) = Ue(D(x))
we see that πP (De(Ue(x))) = πP (Ue(D(x))) = Uu(πP (D(x))). Therefore

πP (De(Ue(P ))) = Uu(πP (D(P ))) = Uu(J/P ) = Cu.

Consequently, De does not map into the radical of Ue(J).

Analysis similar to that in the preceding proof together with some re-
sults of the previous section when restricted to Banach algebras shows the
following version of Theorem 5.4 for Banach algebras. Unfortunately, as far
as we know the following result does not follow directly from the preceding
one.

Theorem 5.5. The following assertions are equivalent.

(i) Every derivation on a complex Banach algebra leaves each primitive
ideal invariant.

(ii) Every derivation on the unitization of a radical complex Banach
algebra leaves the radical invariant.

(iii) Every derivation D on a complex Banach algebra A such that
[D(A),D(A)] ⊂ Rad(A) satisfies D(A) ⊂ Rad(A).

(iv) Every derivation D on a complex Banach algebra A such that
[D(a), a] ∈ Rad(A) for each a ∈ A satisfies D(A) ⊂ Rad(A).

(v) For every derivation D on a complex Banach algebra A, D(a) ∈
Rad(A) whenever a ∈ A is such that [D(a), A] ⊂ Rad(A).

(vi) For every derivation D on a complex Banach algebra A, D(a) ∈
Q(A) whenever a ∈ A is such that [D(a), a] ⊂ Rad(A).

(vii) For every derivation D on a complex Banach algebra A, D(a) ∈
Q(A) whenever a ∈ A is such that [Di(a),Dj(a)] ∈ Rad(A) for all i, j ≥ 0.

It should be mentioned that the equivalence between (i) and (ii) in The-
orem 5.5 is already known. Some authors [24, 30] refer to it as to an unpub-
lished result of M. Thomas.
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[29] A. Rodŕıguez, Jordan structures in analysis, in: Jordan Algebras (Oberwolfach,

1992), W. Kaup, K. McCrimmon, and H. Peterson (eds.), de Gruyter, Berlin, 1994,
97–186.

[30] V. Runde, Range inclusion results for derivations on noncommutative Banach al-
gebras, Studia Math. 105 (1993), 159–172.

[31] G. Shilov, On a property of rings of functions, Dokl. Akad. Nauk SSSR 58 (1947),
985–988 (in Russian).

[32] F. V. Shirokov, Proof of a conjecture of Kaplansky , Uspekhi Mat. Nauk 11 (1956),
no. 4, 167–168 (in Russian).

[33] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc.
29 (1969), 166–170.

[34] —, Automatic Continuity of Linear Operators, Cambridge Univ. Press, 1976.
[35] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math.

Ann. 129 (1955), 260–264.
[36] M. P. Thomas, The image of a derivation is contained in the radical , Ann. of Math.

128 (1988), 435–460.
[37] —, Primitive ideals and derivations on non-commutative Banach algebras, Pacific

J. Math. 159 (1993), 139–152.
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University of Maribor
2000 Maribor, Slovenia
E-mail: bresar@uni-mb.si

Departamento de Analisis Matematico
Facultad de Ciencias

Universidad de Granada
18071 Granada, Spain

E-mail: avillena@ugr.es

Received September 25, 2000 (4610)


