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A note on the Poincaré inequality

by

Alireza Ranjbar-Motlagh (Tehran)

Abstract. The Poincaré inequality is extended to uniformly doubling metric-measure
spaces which satisfy a version of the triangle comparison property. The proof is based on
a generalization of the change of variables formula.

1. Introduction. The purpose of this paper is to prove the Poincaré
type inequality for metric-measure spaces, that is, metric spaces (X, d) with
a measure µ (see [EG], [He] and [R] for the basic definitions). It is well-
known that the Poincaré inequality implies the Sobolev and isoperimetric
inequalities in doubling and smooth spaces; see for instance [HK] and [F].

Heinonen and Koskela [HeK] introduced the concept of upper gradient
and they proved the Poincaré type inequality for abstract spaces. Bour-
don and Pajot [BP] showed that there exist metrics on the boundary of
some hyperbolic buildings such that the Poincaré type inequality is valid
and the space is Ahlfors regular of non-integer dimension. Also, Laakso [L]
constructed Ahlfors regular spaces of any given dimension greater than one
such that the Poincaré type inequality is valid. Hanson and Heinonen [HH]
constructed, for any integer n ≥ 2, a space with topological dimension n
and Ahlfors regular of dimension n which supports the Poincaré type in-
equality, but has no manifold point. Jerison [J], Garofalo and Nheiu [GN],
and Lanconelli and Morbidelli [LM] obtained the Poincaré type inequal-
ity for Carnot–Carathéodory spaces. Semmes [Se] proved the Poincaré type
inequality for spaces which have “nice” families of curves. Moreover, Cheeger
[Ch] provided applications of the Poincaré type inequality for abstract spaces.
For more works about this topic on Riemannian manifolds, groups and
graphs see [B], [Li] and [VSC]. See also [HK] and the references therein.
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In this paper, we introduce a version of the triangle comparison property
on metric spaces and a strong version of the doubling property on metric-
measure spaces such that the Poincaré inequality is valid in such spaces.
Here, we use the definition of (extended) upper gradient on metric spaces
in order for the Poincaré inequality (the norm of derivative) to make sense
for abstract spaces. The proof is based on a generalization of the change of
variables formula.

2. The basic definitions. In this section, we introduce a sufficient
condition on metric-measure spaces which implies the Poincaré inequality.
First, we recall some basic definitions relating to metric-measure spaces.
For simplicity, we assume that all metric spaces are locally compact and all
(outer) measures are Radon (see [EG] for definitions). We denote the closed
ball of radius R > 0 with center at a by B(a,R) (in a metric space (X, d)).

Definition 2.1. Let (X, d, µ) be a metric-measure space. We say that
X is a doubling space if there is C0 > 0 such that

µ(B(x, 2r)) ≤ C0µ(B(x, r)) for all x ∈ X and r > 0.

A metric-measure space (X, d, µ) is called a uniformly doubling space if
there is C > 0 such that

µ(B(x, 2r)) ≤ Cµ(B(y, r)) for all x, y ∈ X and r > 0.

The constant C is called the (uniform) doubling constant of X. It is clear
that every uniformly doubling space is a doubling space.

Let (X, d, µ) be a metric-measure space. We say that X is Ahlfors regular
if there are K > 0 and n > 0 such that

K−1rn ≤ µ(B(x, r)) ≤ Krn for all x ∈ X and 0 < r < diam(X).

The number n is called the dimension of X.

The uniformly doubling condition is weaker than Ahlfors regularity and
stronger than the (usual) doubling condition.

Now, we introduce the spaces of bounded geometry; these spaces satisfy
a version of the conclusion of the Rauch (Toponogov) comparison theorem
for Riemannian manifolds.

Definition 2.2. Let (X, d) be a metric space. We say that X is a
geodesic space if for every x, y ∈ X, there is a geodesic γx,y : [0, 1] → X
(with velocity d(x, y)) from x to y, i.e. d(γx,y(s), γx,y(t)) = |s − t| d(x, y),
γx,y(0) = x and γx,y(1) = y. Suppose that a function Φ : X×X× [0, 1]→ X
satisfies

Φ(x, y, s) = Φ(y, x, 1− s) = γx,y(s)

for x, y ∈ X and s ∈ [0, 1], where γx,y is a geodesic from x to y. We say
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that the space X has bounded geometry if there is b > 0 such that for every
x, y, z ∈ X, we have

d(y, z) ≤ bd(Φ(x, y, t), Φ(x, z, t)) for all 1/2 ≤ t ≤ 1.

Next, we recall the definition of (extended) upper gradient which is a
generalization of the norm of gradient for smooth functions.

Definition 2.3. Let (X, d, µ) be a metric-measure space. Let Φ (as in
Definition 2.2) be a measurable mapping and let u be a (real-valued) function
on X. A non-negative Borel function g is said to be an (extended) upper
gradient for u if

|u(x)− u(y)| ≤ d(x, y)
1�

0

g(Φ(x, y, s)) ds for a.e. (x, y) ∈ X ×X.

Remark 2.4. The above definition of (extended) upper gradient is
slightly weaker than [HeK, Def. 2.9]. Compare [Ch, Def. 2.8].

Proposition 2.5. Let (X, d, µ) denote the Euclidean space Rn with the
usual Euclidean metric d and arbitrary (Borel) measure µ. Then:

(i) X has bounded geometry.
(ii) X is uniformly doubling if and only if it is Ahlfors regular of dimen-

sion n.

Proof. (i) This is obvious.
(ii) It is clear that every Ahlfors regular space is uniformly doubling.

Now, suppose (X, d, µ) is uniformly doubling. Since (X, d) is the usual Eu-
clidean space, it is clear that for any ball B of radius r, there are cubes D
and D′ with diameters, respectively, 2r and 2

√
2 r, such that

D ⊂ B ⊂ D′.
Therefore, without loss of generality, instead of balls we can consider cubes.
Since every cube with diameter s can be covered by 2mn cubes with diam-
eters s/2m, we obtain

2mn

K
µ(B(y, s/2m)) ≤ µ(B(x, s)) ≤ 2mnKµ(B(y, s/2m))

for any x, y ∈ X and positive number s, whereK is a constant which depends
on the (uniform) doubling constant of X. Hence,

µ(B(z, s))
sn

≤ K µ(B(w, r))
rn

for any z, w ∈ X and positive numbers r and s, where K is a constant which
depends on the doubling constant of X.
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Example 2.6. Let (Mn, g) be an n-dimensional Riemannian manifold
whose sectional curvature is bounded, |KM | ≤ K0 <∞, and whose injectiv-
ity radius is bounded from below, inj(M) ≥ i0 > 0. Then every ball of radius
less than i0/4 has bounded geometry as a metric space. This is a straightfor-
ward consequence of the Rauch comparison theorem. See for example [CE,
Thm. 1.28].

Proposition 2.7. Let (X, d, µ) be a uniformly doubling metric-measure
space which has bounded geometry. Let Φ (as in Definition 2.2) be a mea-
surable mapping. Let a ∈ X, R > 0 and t ∈ [1/2, 1]. Then for every (mea-
surable) subset F ⊂ B(a,R), we have

µ({z ∈ B(a,R) : Φ(a, z, t) ∈ F}) ≤Mµ(F ),

where M is a constant which depends on b and the (uniform) doubling con-
stant of X.

Proof. Since (X, d, µ) is a uniformly doubling space which has bounded
geometry, we have

(2.1) µ({z ∈ B(a,R) : Φ(a, z, t) ∈ B(w, r)}) ≤M µ(B(w, r))

for all B(w, r) ⊂ B(a,R), where M is a constant which depends on b and
the (uniform) doubling constant of X.

Let F be a (measurable) subset of B(a,R) and let δ > 0. By the Vitali
covering lemma (see for example [S, p. 9]), there is a sequence {Bi} of
mutually disjoint balls such that

F ⊂
⋃

i

B̂i and µ
(⋃

i

B̂i \ F
)
≤ δ,

where B̂i denotes the ball whose center is the same as Bi and whose radius
is 5 times the radius of Bi. Then, by (2.1), we have

µ({z ∈ B(a,R) : Φ(a, z, t) ∈ F}) ≤ µ
({
z ∈ B(a,R) : Φ(a, z, t) ∈

⋃

i

B̂i

})

≤ µ
(⋃

i

{z ∈ B(a,R) : Φ(a, z, t) ∈ B̂i}
)

≤
∑

i

µ({z ∈ B(a,R) : Φ(a, z, t) ∈ B̂i})

≤Mµ
(⋃

i

B̂i

)
≤M

∑

i

µ(B̂i) ≤M
∑

i

µ(Bi)

= Mµ
(⋃

i

Bi

)
≤Mµ

(⋃

i

B̂i

)
.
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By choosing δ small enough, we have

µ({z ∈ B(a,R) : Φ(a, z, t) ∈ F}) ≤Mµ(F ).

Remark 2.8. In Proposition 2.7, if we assume that µ is an outer mea-
sure, we can remove the assumption of measurablity of Φ (and of F ). See
[EG] for the relevant definitions.

3. The main results. In this section, we show that the Poincaré in-
equality is valid for uniformly doubling spaces which have bounded geome-
try.

We start with the following generalization of the change of variables
formula.

Lemma 3.1 (Generalized change of variables). Let (X, d, µ) be a uni-
formly doubling metric-measure space which has bounded geometry. Let g be
a non-negative Borel measurable function on X. Let Φ (as in Definition 2.2)
be a measurable mapping. Let a ∈ X and R > 0. Then, for a.e. a ∈ X, we
have

(3.1)
�

B(a,R)

( 1�

1/2

g(Φ(a, y, s)) ds
)
dµ(y) ≤M

�

B(a,R)

g(z) dµ(z),

where M is a constant which depends on b and the (uniform) doubling con-
stant of X.

Proof. Without loss of generality, we can assume that the mapping
h(y, s) := Φ(a, y, s) is measurable. Let ε be a small positive number. Since
X is a doubling space, we can construct a finite sequence {xi} ⊂ B(a,R)
with the following properties:

B(xi, ε) ∩B(xj , ε) = ∅ for all i 6= j, B(a,R) ⊂
⋃

i

B(xi, 2ε).

Then, by our assumptions,

d(xi, xj) ≤ bd(h(xi, t), h(xj, t))

for all 1/2 ≤ t ≤ 1, and some b > 0. Therefore, for every 1/2 ≤ t ≤ 1, we
get

(3.2) B(h(xi, t), b−1ε) ∩B(h(xj , t), b−1ε) = ∅
for all i 6= j. Since X is a uniformly doubling space, we obtain

(3.3)
∑

i

µ(B(xi, 2ε))g(h(xi, t)) ≤M
∑

i

µ(B(h(xi, t), b−1ε))g(h(xi, t)),
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where M is a constant which depends on b and the (uniform) doubling
constant of X. It is enough to show that

(3.4)
�

B(a,R)

g(h(y, t)) dµ(y) ≤M
�

B(a,R+2ε)

g(z) dµ(z)

for all 1/2 ≤ t ≤ 1 and ε > 0, where M is a constant which depends on b
and the (uniform) doubling constant of X.

The proof is based on the following statements:

(a) If (3.4) is valid for bounded measurable functions g, then it is valid
for all measurable functions g.

(b) If both g(·) and g(h(·, t)) are continuous, then (3.4) is valid.
(c) If (3.4) is valid for g continuous, then it is valid for g measurable.
(d) (3.4) is valid for g continuous.

Proof of (a). Suppose that (3.4) holds for all bounded functions. Let g
be any measurable function. Apply it to the bounded functions

gN (x) := g(x)χ{y:g(y)≤N}(x),

where χ denotes the characteristic function and N is a positive integer.
Letting N →∞ implies that (3.4) is valid for g.

From now on, we assume that 0 ≤ g(x) ≤ K for all x and some num-
ber K.

Proof of (b). This is an immediate consequence of (3.3). Note that we
have assumed that all metric spaces are locally compact, therefore, every
continuous function on a closed (and bounded) ball is uniformly continuous.
Also, it is easy to see that a doubling space is complete iff every closed (and
bounded) ball is compact.

Proof of (c). Suppose that (3.4) holds for all continuous functions and
let g be measurable. Let δ > 0. By the Luzin theorem (see [Ru, p. 55]) there
is a continuous function u such that

0 ≤ u(x) ≤ K, ∀x, and µ(A) ≤ δ,
where A := {x ∈ B(a,R) : u(x) 6= g(x)}. By Proposition 2.7, we have

µ({y ∈ B(a,R) : u(h(y, t)) 6= g(h(y, t))}) ≤Mδ,

where M is a constant which depends on b and the (uniform) doubling
constant of X (1/2 ≤ t ≤ 1 is a fixed number). Then, since (3.4) holds for
u, we have

−2K(Mδ) +
�

B(a,R)

g(h(y, t)) dµ(y) ≤M
( �

B(a,R)

g(z) dµ(z) +Kδ
)
.

Letting δ → 0 implies that g satisfies (3.4).
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Proof of (d). Let g be continuous and δ > 0. By the Luzin theorem
there is a continuous function v such that

0 ≤ v(x) ≤ K, ∀x, and µ(S) ≤ δ,
where S := {y ∈ B(a,R) : v(y) 6= g(h(y, t))}. Put U := B(a,R) \ S. Let ε
be a small positive number. We can choose a finite sequence {xi} ⊂ B(a,R)
satisfying the following conditions:

B(xi, ε) ∩B(xj , ε) = ∅ for all i 6= j, B(a,R) ⊂
⋃

i

B(xi, 4ε),

and
xj ∈ U or B(xj , ε) ∩ U = ∅

for all j. To do this, we choose a finite sequence {zi} ⊂ U such that

B(zi, ε) ∩B(zj , ε) = ∅ for all i 6= j, U ⊂
⋃

i

B(zi, 2ε).

Moreover, we choose a finite sequence {wi} ⊂ V := B(a,R) \ ⋃iB(zi, 4ε)
such that (if V 6= ∅)

B(wi, ε) ∩B(wj , ε) = ∅ for all i 6= j, V ⊂
⋃

i

B(wi, 2ε).

Then the sequence {xi} = {zi}∪{wi} is as required. Note that {xi} satisfies
(3.2) and (3.3). We have

�

B(a,R)

v(y) dµ(y) ≤
∑

i

�

B(xi,4ε)

v(y) dµ(y) ≤
∑

i

µ(B(xi, 4ε)) sup
B(xi,4ε)

v.

Also,
∑

i

µ(B(h(xi, t), b−1ε)) inf
B(h(xi,t),b−1ε)

g ≤
∑

i

�

B(h(xi,t),b−1ε)

g(z) dµ(z)

≤
�

B(a,R+b−1ε)

g(z) dµ(z).

Now, since g and v are uniformly continuous on closed (and bounded) balls
(and using inequality (3.3)), we have
∑

i

µ(B(xi, 4ε)) sup
B(xi,4ε)

v

≤
∑

xi∈U
µ(B(xi, 4ε)) sup

B(xi,4ε)
v +

∑

xi /∈U
µ(B(xi, 4ε)) sup

B(xi,4ε)
v

≤M
∑

xi∈U
µ(B(xi, ε)) sup

B(xi,4ε)
v +M

∑

xi /∈U
µ(B(xi, ε)) sup

B(xi,4ε)
v

≤M
[ ∑

xi∈U
µ(B(h(xi, t), b−1ε))[v(xi) + η]

]
+M

∑

xi /∈U
µ(B(xi, ε))K
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≤M
∑

xi∈U
µ(B(h(xi, t), b−1ε))v(xi)

+M
∑

xi∈U
µ(B(h(xi, t), b−1ε))η +MKµ(S)

≤ η +M
[ ∑

xi∈U
µ(B(h(xi, t), b−1ε))v(xi)

]
+MKµ(S)

≤ η +M
[ ∑

xi∈U
µ(B(h(xi, t), b−1ε))g(h(xi, t))

]
+MKδ,

where η ≥ 0 depends on g, v, B(a,R) and M . Moreover, η → 0 as ε → 0.
Therefore,

�

B(a,R)

v(y) dµ(y)

≤ η +M
[ ∑

xi∈U
µ(B(h(xi, t), b−1ε))g(h(xi, t))

]
+MKδ

≤ η +M
[ ∑

xi∈U
µ(B(h(xi, t), b−1ε))[ inf

B(h(xi,t),b−1ε)
g + η]

]
+MKδ

≤ η +M
[ ∑

xi∈U
µ(B(h(xi, t), b−1ε)) inf

B(h(xi,t),b−1ε)
g
]

+M
[ ∑

xi∈U
µ(B(h(xi, t), b−1ε))η

]
+MKδ

≤ η +M
[∑

i

µ(B(h(xi, t), b−1ε)) inf
B(h(xi,t),b−1ε)

g
]

+MKδ

≤ η +M
[ �

B(a,R+b−1ε)

g(z) dµ(z)
]

+MKδ.

This implies that
�

B(a,R)

g(h(y, t)) dµ(y) =
�

S

g(h(y, t)) dµ(y) +
�

U

g(h(y, t)) dµ(y)

=
�

S

g(h(y, t)) dµ(y) +
�

U

v(y) dµ(y) ≤ Kµ(S) +
�

B(a,R)

v(y) dµ(y)

≤ Kδ +
�

B(a,R)

v(y) dµ(y) ≤ η +MKδ +M
�

B(a,R+b−1ε)

g(z) dµ(z).
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Letting ε→ 0, we obtain
�

B(a,R)

g(h(y, t)) dµ(y) ≤MKδ +M
�

B(a,R)

g(z) dµ(z),

and letting δ → 0 yields
�

B(a,R)

g(h(y, t)) dµ(y) ≤M
�

B(a,R)

g(z) dµ(z)

for all 1/2 ≤ t ≤ 1.

Remark 3.2. In a quite general setting, the mapping Φ is (can be cho-
sen) measurable. In fact, by a construction due to Kuratowski and Ryll-
Nardzewski [AC, p. 90], we can construct a measurable selection.

Theorem 3.3 (Weak Poincaré inequality). Let (X, d, µ) be a uniformly
doubling metric-measure space which has bounded geometry. Let Φ (as in
Definition 2.2) be a measurable mapping. Let g be an (extended) upper gra-
dient for a measurable function u on X. Then

�

B(a,R)

�

B(a,R)

|u(x)− u(y)| dµ(x) dµ(y) ≤MR
�

B(a,3R)

g(z) dµ(z),

where a ∈ X, R > 0, and M is a constant which depends on b and the
(uniform) doubling constant of X.

Proof. By the definition of (extended) upper gradient, we have

|u(x)− u(y)| ≤ d(x, y)
1�

0

g(Φ(x, y, s)) ds

for a.e. (x, y) ∈ X×X, where Φ(x, y, s) is as in Definition 2.2. By integrating,
we have

�

B(a,R)

�

B(a,R)

|u(x)− u(y)| dµ(x) dµ(y)

≤ 2R
�

B(a,R)

�

B(a,R)

1�

0

g(Φ(x, y, s)) ds dµ(x) dµ(y)

= 2R
( �

B(a,R)

�

B(a,R)

1/2�

0

g(Φ(x, y, s)) ds dµ(x) dµ(y)

+
�

B(a,R)

�

B(a,R)

1�

1/2

g(Φ(x, y, s)) ds dµ(x) dµ(y)
)
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≤ 4R
�

B(a,R)

�

B(a,R)

1�

1/2

g(Φ(x, y, s)) ds dµ(y) dµ(x).

Hence,
�

B(a,R)

�

B(a,R)

|u(x)− u(y)| dµ(x) dµ(y)

≤ KR
�

B(a,R)

( �

B(x,2R)

1�

1/2

g(Φ(x, y, s)) ds dµ(y)
)
dµ(x)

for some constant K which depends on the doubling constant of X. Then,
by the generalized change of variables formula,

�

B(a,R)

�

B(a,R)

|u(x)− u(y)| dµ(x) dµ(y)

≤MR
�

B(a,R)

( �

B(x,2R)

g(z) dµ(z)
)
dµ(x) ≤MR

�

B(a,3R)

g(z) dµ(z)

for some constant M which depends on b and the (uniform) doubling con-
stant of X.

Remark 3.4. Under the notations and assumptions of Theorem 3.3, if
the ball B(a,R) is convex, then

�

B(a,R)

�

B(a,R)

|u(x)− u(y)| dµ(x) dµ(y) ≤MR
�

B(a,R)

g(z) dµ(z).
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