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LP(R™) boundedness for the commutator of a
homogeneous singular integral operator

by

GUOEN Hu (Zhengzhou)

Abstract. The commutator of a singular integral operator with homogeneous kernel
Q2(z)/|x|™ is studied, where (2 is homogeneous of degree zero and has mean value zero on
the unit sphere. It is proved that 2 € L(log L)**1(5™ 1) is a sufficient condition for the
kth order commutator to be bounded on LP(R™) for all 1 < p < co. The corresponding
maximal operator is also considered.

1. Introduction. We will work on R™, n > 2. Let {2 be a homogeneous
function of degree zero with mean value zero on the unit sphere S"~!. Define
the homogeneous singular integral operator 1" by

(x—y
Tfa)=pv. | LE" D po)ay
]Rn T = y|
For a positive integer £ and b € BMO(RR"™), define the kth order commutator
of the operator T' and b by

1) Tonf(e) = § (b(x) - b(y))
Rn
Coifman, Rochberg and Weiss [4] showed that if 2€Lip,(S" 1) (0<a<1),
then T3 is bounded on LP(R™) with bound C(n,p)|b|lsmon) for 1 <
p < oo. By a well-known result of Duoandikoetxea [5] and Watson [10], if
2 € L9(S"1) for some ¢ > 1, then for p > ¢’ (¢’ = ¢/(¢—1)) and w € A, g/,
the operator T is bounded on LP(R"™, w(z)dz) with bound depending only
on n, p and the A,/ constant of w, where A, is the weight function class
of Muckenhoupt (see [9, Chapter V] for the definition and properties of A,.).
This together with the Alvarez—Bagby—Kurtz—Pérez boundedness theorem
for the commutators of linear operators (see [2, Theorem 2.13]) tells us

r 2(x —y)

oo JWdy, e CERY.
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14 G. Hu

that if 2 € LI(S™ 1) for some ¢ > 1, then T} is a bounded operator on
LP(R™) for ¢ < p < oo, and then by standard duality and interpolation
argument, it is bounded on LP(R™) for all 1 < p < co. On the other hand,
if ¢ Uq>1 L9(8™1), then for any fixed 1 < p,q < oo, we do not know
whether the operator T' is bounded on LP(R", w(z)dx) for all w € A,, and
the Alvarez—Bagby—Kurtz—Pérez theorem does not apply. In this case, the
LP(R™) boundedness for T} 1 is not known. In [7], we have proved that if {2
satisfies the size condition

sp | 1200)]log” (

1
— |df < o0
cesnt o, 6 C|>

for some a > k + 1, then the commutator T} 4, is bounded on L?(R™). The
purpose of this paper is to give a size condition on {2 which is strictly weaker
than 2 € U, L9(S™1) and implies the LP(R™) boundedness of T}, for
all 1 < p < co. Furthermore, we will also consider the LP(R™) boundedness
for the corresponding maximal operator defined by

[ () — by 2=

() T =sw r—
le—y|>e Y

e>0

f(y) dy|.

Our main results can be stated as follows.

THEOREM 1. Let {2 be homogeneous of degree zero and have mean value
zero on the unit sphere, k be a positive integer and b € BMO(R™). If {2 €
L(log L)**1(S"=1), that is,

|12 log" ! (2 + | 2(2)]) da’ < o0,
Snfl
then for all 1 < p < oo, the commutator Ty ) defined by (1) is bounded on
LP(R™) with bound C’Hb||’]§MO(Rn).

THEOREM 2. Let 2 be homogeneous of degree zero and have mean value
zero on the unit sphere, k be a positive integer and b € BMO(R™). If {2 €
L(log L)k*+1(S"=1), then for all 1 < p < oo, the operator Ty, defined by (2)
is bounded on LP(R™) with bound CHbH%MO(R")'

Some Young functions will be useful in the proof of our theorems. For
positive integer k, let

ap(t) =log"(1+7), ap(r)=e" " —1.
Define the functions @, and ¥ by

B (t) = an(r) dr,  W(t) = \ax(r) dr.
0
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Then &, and ¥, are Young functions and ¥y is the complementary Young
function of @j. Therefore, for any 0 < t1,ts < o0,

tita < Pp(t1) + Wi(t2)

(see [1, Chap. 8] for details). By a straightforward computation, it follows
that

By(t) < tlogh(2+1), W(t) <te!" < kket”",
Thus, for 0 < t1,t2 < o0,

Throughout this paper, C' denotes constants that are independent of the
main parameters involved but whose values may differ from line to line. For
p > 1, p' denotes the dual exponent of p, that is, p’ = p/(p — 1). For a
measurable set F, xg denotes the characteristic function of E.

2. Proof of Theorem 1. We begin with some preliminary lemmas.

LEMMA 1. Let ¢ € C3°(R™) be a radial function such that supp ¢ C
{1/4< €] < 4} and

d P2l =1, ¢l #0.
lEZ
Define the multiplier operator S; by
5i7(©) = 0279 f(©).
and S? by S?f(x) = Si(Sif)(x). For b € BMO(R") and positive integer k,
denote by Spp i (resp. Sty ) the kth order commutator of Sy (resp. SF).
Then for 1 < p < oo,

/
0 [|( 18t ) | < €tk pbloree 171

leZ
. 1/2
@) [|( X 182) | < Clonkp)bllEnogn |1 £l
IEZ
/2

(i) || 2 Siaisi] < Cok D) blrogery (Z A7)
lez

Proof. Obviously, (iii) can be deduced from (i) directly. By the weighted
Littlewood-Paley theory, we see that for any 1 < p < oo and w € 4,,

H<Z‘Slf'2)l/2up +H< ‘Slf|) Hp,wSCHfup,w.

Note that the mappings
feASifthez, [ {Sifhez
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are linear; then (i) and (ii) follow from the last inequality and Theorem 2.13
of [2].

LEMMA 2. Let ms € CP(R™) (0 < § < 00) be a family of multipliers
such that suppms C {§/4 < [¢] < 40}. Suppose that for some positive
constant «,

|mslloo < Cmin{d, 6"},  [[Vms]leo < C.

Let Ts be the multiplier operator defined by
Tsf(€) = ms(©)F(©).
For b € BMO(R™) and positive integer k, denote by Ts.x the kth order

commutator of Ts. Then for any fived 0 < v < 1, there exists a positive
constant C = C(n,k,v) such that

|50, fll2 < Cmin{s”, 6~} [l Earo ) l1f12-
For the case of § < 1, Lemma 2 can be obtained from Lemma 2 of [7].

On the other hand, if § > 1, Lemma 2 was essentially proved in the proof
of Lemma 2.3 of [8].

LEMMA 3. Let §2 be homogeneous of degree zero and belong to the space
L>(S™1). For s > 1, define A\ by

Q 7]
Mg, = f{/\>0 ”A“l log® <2+’ H >§1}.
Then

(i) there exists a positive constant C = C,, s such that cHQ <
Agps < Ol oo
(1) Az o < Cal(2+ [1€20100) 7" + [1£2]11 o™ (2 + [12]]));
(iii) for any 1 < s,t < 0o, )\l/t H!2||1/t < Ag

Proof. Obviously, (i) follows dlrectly from the fact that
7 2|
1200 1 (5 121 < 150
192]loc 192
2 2|oo
121: e (. 12

192112 192112
As for (ii), note that

and
> > log®(2 + ]S"_1|_1).

W (5 1= )
2¢ 2] log™ (2 + | 2l]oc) 2+ 12e) !
T
" 2Dl o’ (2 + [ 2l)

g ((2+ [12]lo)?) < 1.
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It follows that
Ao S 2°((2+[1920]o0) ™" + 192]110g%(2 + [ 2]]o0))-
To prove (iii), by homogeneity, we may assume that A5 = 1. Then
12011 1og" (2 + [|2]|0) < 1

and so [|2||; < 1. A trivial computation gives

192111 st 92| St/ st >
ng 2+W < [1£2l; log™ (2 + [|42]| )
1 1

= (211 10g° (2 + [|2]]o))" < 1.
This in turn implies A5 , < HfZHl_t/ tl, and establishes the desired result.

LEMMA 4. Let 2 be homogeneous of degree zero, k be a positive integer
and b € BMO(R"). Define the operator Mg, , by

Mgy o f(@) =supr=  § |b(x) = b(y)[*|2(z - y)f(y)] dy.

0
i |lz—y|<r

If 2 € L®(S™Y), then the operator Mg, . is bounded on LP(R™) with
bound C\g kHbH]I%MO(R") forall 1 < p < 0.

Proof. We will employ an observation of Coifman, Rochberg and Weiss
(see [4, pp. 620-621]) which shows that certain weighted L?(R™) estimates
for linear operators imply the LP(R™) estimates for the corresponding com-
mutators. For each fixed 1 < p < 0o, we claim that there exist two positive
constants C7; and Cs depending only on n and p such that for real-valued
b € BMO(R"™) with ||b]|gmorn) = C1, the operator

(4) H(b, f)(z) =supr™ | @0 f(y)] dy

r>0 lz—y|<r
is bounded on LP(R™) with bound Cs. In fact, by the well-known John—
Nirenberg inequality, we know that there exist positive constants A and B

such that for any cube @,

1 [b(x) — bg| )
— \exp| ———— | dz < B,
Q) ch <A||b||BMO(]Rn)

where b is the mean value of b on the cube Q. Let C; = (Amax{p,p'})~".
Straightforward computation shows that for real-valued b € BMO(R™) with
bllBMO®n) = Ch,

1 1 /
— {erl@ =) g < B, — | e P @) ~ba) gy < B,
@) <5l -
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and so eP*(*) € A, with the A, constant no more that Cy = BP (see also
[9, Chap. V]). Therefore, by the weighted LP(R™) estimates with A, weights
for the Hardy—Littlewood maximal operator,

IH(®, H)IIE = | (supr*” | e*b(ynf(y)ydy)pepb(w) o

R® r>0 lz—y|<r

< C(n,p, G| f13-

Now we can prove Lemma 4. Without loss of generality, we may assume
that A5, = 1. It is obvious that

12][11og"(2 + [ 2]|0) < 1.
Let @ (t) = tlog"(2 +t) for t > 0. Then
124 (12))|: < 1.

We may also assume that b is real-valued and [|b||gmow») = C1. By the
inequality (3), we have

Mg, f(@) < supr™™ | &u(12(x = y))If (y)] dy

r>0 lz—y|<r
+Csupr=" | MO0 f(y) dy
r>0
|lz—y|<r
< sg}gr’” | 292 —y)Ify)dy
" |e—yl|<r

+Csupr" | PP f(y) | dy
r>0

|lz—y|<r
+Csupr | WO f(y)]dy
r>0
|lz—y|<r

= I(f) (@) + 1L(f) () + TI(f)(x).

Our claim says that

Ay < Clifllps Ty < ClF-

On the other hand, the method of rotation of Calderén and Zygmund [3]
states that L

LNy < Cllee(1 2Dl < Cllf -
Therefore,

Mgy, . fllp < ClLf -
This completes the proof of Lemma 4.

LEMMA 5. Let k be a positive integer and b € BMO(R™), 2 be homo-
geneous of degree zero and belong to L>(S™1). For j € Z, let o(x) =
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|$’_n§(x)X{2j<‘x|§2j+l}(CE). Denote by U; the convolution operator whose
kernel is o, and Ujy 1 the kth order commutator of Uj. Then

©  J(Zwas) ], < Curralbllsionn|| (1),

JEZL JEZL

forany 1 < p < 0.

Proof. By standard duality and interpolation argument, it suffices to
consider the case 2 < p < co. Let

Ujpaef(@) = | [b(@) = b(y)[**|oj(x — )| | £(y)| dy.
R?L
Note that L
Ujp.uf () < ClQ211Ujp,0x (| f?) ()

It follows from (iii) of Lemma 3 that for 2 < p < oo,

(S wias) ™ = | § S Uyt @) (o) d
JEZL

P ||h||( /2>/<1 =

<C|2);  sup S ZUijk |£i1)(@)[h(2)| da

Hh||<p/2)' lRn jez

< ||~(~2H1 sup S Z‘f] Q,b,zk h(z) dx

A H(p/2)’ S1gn jez

~ 1/22
<C|2] sup H(Z |fj‘2> HpHMfZ;b,2th(P/2)/
JEZ

1Rl 2y <1

B /212
< OB son 12| (S 1517) .-

JEZ

1/22
< CIbBsomn b, (S 1P)

JEZL
Proof of Theorem 1. Let ¢ € C§°(R™) be a radial function such that
0<¢<1suppg C {1/4 <[{] <4} and

d P2l =1, ¢ #0.

leZ
Define the multiplier operator S; by

~

SiIf(€) = (271 F(6).

Write )
X
W X{2i <|z|<2i+1}(T).

Kj(z) =
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Set ~
m;(€) = K;(€),  mj(€) = m;(€)e(27 7€)
Define the operator TJZ by

~

T1f(€) = m5(€) [ (€).
Let
Vif (@) = Y _((Si— T} 5= ) ().
JEZ

We know from [7, p. 65] that for f, h € C§°(R™),

\ h(@)Tyrf () de = | h(x)D> Vif(x)da.

Rn R™ leZ
Therefore,

1o fll < D IVifllp + D IIVifllp-

1<0 1>0

We first consider the term ), ||Vif||,. We claim that V; satisfies the
crude estimate -

(6) IViflly < Clblgno@n fllp, 1 €Z, 2 <p<co.

In fact, let By = {2’ € S"~ ! : |Q2(2')] <2} and Eg = {2’ € S 1 :2¢ <
|2(2")| < 29+1} for positive integer d. Denote by (24 the restriction of 2 to
Eg, that is, £24(2') = 2(2')xg,(z"). Our hypothesis on {2 now shows that
S as1 d¥FH24]11 < oo Let

Q4()
Kja(z) = T X {27 <|a|<2+1}(2)
and

mja(€) = Kja(€),  mf (&) = my;a(§)(2 7).
Define the operator TJ{ 4 by
T! (€)= m} 4(&)F (),
and the operator V; 4 by
Viaf(@) = ((Si—;T} 4Si—i)oxf) ().
JEZ
With the aid of the formula

k
(b(x) = b(y))* = D CF(b(w) = b(z))™(b(z) = b(y)*™,  @,y.z €R",
m=0
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straightforward computation shows that for f,h € C5°(R"),

| h@)Viaf (e dm—ZOk | 2(@) 3 S sk (T aSt o) ) de

R™ R™ JEL

Lemma 1 now tells us that

HVl df”p <C Z HbHBMO(R"

Set

(Z| JdSlmef|) H, 1 <p<oo.

JEZ

Tj ah(z) = Kjq* h(x).
For each m with 0 < m < k, write

( ]dSl ])bmf ZC T7db’b(Sl —7;b,m— zf)(x)

=0
By Lemmas 1 and 5, we have

[(Z Tasisnnnt?) ],

JEL
<03 Aouilliniogen || (S 152 sm-i)
i=0 JEL
< C/\Qd,meHgMO(Rn) fllps  1<p<oo
Consequently,
(7) Viafllp < CAe,kllblByo@e) I flp, 1 <p < oo.

This together with (ii) of Lemma 3 shows that

[o@)
k
IVifllo < IViaflly < ClolISmown I flps 1< p < oo,
d=0
and establishes our claim (6). Now our goal is to obtain a refined L?(R™)
estimate for V}, i.e., we want to show that there exists a positive constant
v = v, > 0 such that

(8) IVifll2 < C2”[IbllEao @ I fll2s £ <0.
If we can do this, interpolating the inequalities (6) and (8) yields
9) IVifll, < C27 BllEno@n 1 fll, 10, 1<p < oo,

where v = v, , > 0. So,

> IVifllp < Cllblamog 1f p-

1<0
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To prove (9), let T’Jl be the operator defined by

T}1() = m}(2 ) fE).
By the vanishing moment and integrability of {2, we have
K;(©) < Cl2el,  |[VES]lw < C2.
Thus,
Im5 27 )llee < €2, VM2 )l|oe < C.

This via Lemma 2 says that for any fixed [ < 0, 0 < v < 1 and positive
integer ¢,
Tl vl ]
1 Tj0,: 112 < C27|[bl[gao@ny 1 fll2,

which by dilation-invariance implies

(10) T} fll2 < C27 bl Bro@n) | fl2-
On the other hand, the Plancherel theorem tells us that
(11) T} fll2 < C2'|| f]2.

Write

(TLS1—i f)om f (@ Zcfn L i (Sijbm—if)(@).

It follows from (10), (11) and Lemma 1 that

|(S1tsi o) | < 22 Z 15050z D I1Sis0.m—if 113

jEL jEL
< 022Vl||b||BMO(]Rn)HfH§a [ <0.

Therefore, by a familiar argument involving Lemma 1, we can obtain

(S 1@sinr?) |,
JEZL

fH27 [ <0.

IVifll. < C Z [[fewrr

< C2yleHBMO(R")

Now we turn our attention to the term >, |[Vif|,. By the well-known
estimate of Duoandikoetxea and Rubio de Francia [6], we know that there
exists a positive constant ( such that

1K;,a(6)] < C||Qalloo min{1, [27¢| %}, | VEjalloo < C27(| 241
This gives

Imfallee < C277Rdlloe, 1V alloc < 27| 2alloc-
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Invoking Lemma 2 again, as in the proof of (10) and (11), we see that there
exists some constant 0 < v < 1 such that for non-negative integer m,

1T} apmll2 < Cll2alloc2” 10l B0 @ ./ ll2-

Similarly to (8), we can obtain

(X @asisrnnt) ],

< CHQdHooQ”IHbHBMO(Rn)Hsz'
Interpolating (7) and (12) shows that for ¥ =7, , > 0,
(13)  Vaaflp < Cll2alloo2™" [BllEnoer)

Let N be a large positive integer such that N > 237!, Combining (7)
and (13) gives

STViflly < D IViof e+ Y. D IWVaafle+ D> IViaflly

(12)  |Viafl:<C Z [y

fllpy, 1<p<oc.

1>0 1>0 d>00<I<Nd d>01>Nd
< CHb”lngO(Rn) Z 27HH £l + CHngMO(Rn) Z dAeq k[l fllp
1>0 d>0
+ ClblEmo@ 2% D 27| fllp
d>0 I>Nd

< CHb”]]%MO(R")HfH;D + CHngMO(R") Zd)\m,kaHp
d>0

< ClblIpto @ 1 f1lp-
This completes the proof of Theorem 1.

Proof of Theorem 2. We shall carry out the argument by induction on
the order k. If k = 0, Theorem 2 is the remarkable result of Calderén and
Zygmund [3]. Now let &k be a positive integer, and assume that the assertion
is true for all integers m with 0 < m < k — 1. Let K, K, 4, {25 and the
operator T 4 be the same as in the proof of Theorem 1. Define

Tonf@) = 5 0w - b)" T f() dy
29 <|z—y| <29+ Y
Write
Maaaf () =supr™ | [b(e) = 01920 — )] 1 )] dy
" lz—y|<r
< ZMQd;b,kf(IE)-

d=0



24 G. Hu

Lemma 4 now tells us that for all 1 < p < o0,

1Mo,k fllp < I0I5mo@ D A2wkllfllp < CllblEmog1f p-
d=0
Thus, it suffices to consider the LP(R™) norm of sup;cy | Z]Oiz Tjp i f ()]
Take n € S(R™) such that n(z) = 1 when |z| < 1. Let ¢; € S(R™) be such

that (31(5) = n(2!€). Denote by G; the convolution operator whose kernel is
@, and G the convolution operator whose kernel is K; — @; * K;. Write

0 -1
ZT';lka('r) =P * (Tb,kf - Z T';b,kf) (v)
=1

+ (iTj;b,kf(fﬁ) — Py (iTj?bv’“f> (x))
=l 7=l
=T,(f)(z) + IL(f) ().

Define the operator

My ih(x) = supr =™ Vo 1b(@) = b(y) ¥ |h(y)| dy.
" lz—y|<r

Observe that

‘él * i: Kl(x)‘ < CQinl/(l + ’27lx’)n+1

(see [6]) and
-1
Py ( Z Tj;b,kf)(w)
T -1
:(@l* Z ) ZCkGlbk m(z bmf)
j=—o0 j=—o0
It follows that
k—
SIIGIE‘IZ Z (Mo, = (To,m [)(@) + M g (Tp., f)(2))
m=0

+ C'Mb,kf( )+ CM(Tb,kf)(x)'

This shows that sup;cy [I;(f)(z)| is pointwise bounded by a function whose
LP(R™) norm is no more than CnvabH}I%MO(R”) forall 1 < p < oo. To estimate
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sup;ez |1 (f)(x)], write

IL f(x ZT bk f(x (451 * Z Tj>b kf(ﬂf)
=l ’
- i C?Gz;b,k—m(ZT';b,mf) (r)
m=0 7=l
—ZGlbkf ch Glb ko m(ZT,b,mf>

For each 0 < m < k‘ — 1, it is easy to see that

sup |Gip k— m(ZT,b,mf>( )‘ < OMyp g (T f) ().

leZ

Thus, the proof of Theorem 2 can be reduced to estimating the LP(R™)
norm for the term sup;c | Zjo ! G{b . f(2)|. Denote by G¥* the convolution
operator whose kernel is K; 4 — ®; * K .d- Let Ny be a positive integer which
will be chosen later. Write

SUP’ZGlbkf ‘ ZSUp’Gl ]bkf( )|

<D D swlGl,fle |+Zsup|Gl]bkf( )

d>00<j<N; d
+>0) SuplGl ot (@],
d>0]>N1d

Employing Lemma 4, we have

Z Z ||SUP|Gl]bkf|||p

d>00<j<Nyd
SOZ Z 1M ey0.5flp

d>00<j<Nd

k
+ Z Z Z ||Mb7m(MQd;b,k:—mf)||p

m=0d>00<j<N:d

<CY Aoyl flle < ClIfllp-

d>0
Now trivial computation gives

|K1,a(€) — 1 * K1,4(€)| < C||924]| oo min{277|2¢], [2€| 73,
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with 4 = p, > 0. This via the Plancherel theorem shows that for some
p> 0,

1/2 .
(14 NsuplGipl Il < [|(SD165HP) |, < 02 F 1241l
=
On the other hand, it is easy to see that for each fixed 1 < p < oo and
w e Ap,

l,d
(15) | sup G250 lp.w < CllLalloo 1Al a0,
and the constant C' depending only on n, p and the A, constant of w.

Interpolating the inequalities (14) and (15) with change of measures implies
that for each 1 < p < co and w € A,

l,d —37
(15) Isup |Gy Al lpw < C27°7)| 2all o1 Allp,w
leZ

Since the mapping f — {Gﬁfj f ez is linear, applying Theorem 2.13 of [2],
we can obtain

[ SUP |Gl —j.b, kbl llp < CHngMo(Rn)Q_MHQdHoloHp‘

Let Ny > 26 *1. We conclude the proof of Theorem 2 by noting that

Z | sup ’Gz —jsb, kSl < CHngMO(R") ZQidepr < CHbHIkBMO(]R")
j=0

[ fll

and

> SupH\G Lond s < CllblErome D 2° Z 2791 £l
d

d>0>Nd " d>0  j>N;
< CIbllpto @) | f1lp-
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