$L^p(\mathbb{R}^n)$ boundedness for the commutator of a homogeneous singular integral operator

by

Guoen Hu (Zhengzhou)

Abstract. The commutator of a singular integral operator with homogeneous kernel $\Omega(x)/|x|^n$ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that $\Omega \in L(\log L)^{k+1}(S^{n-1})$ is a sufficient condition for the kth order commutator to be bounded on $L^p(\mathbb{R}^n)$ for all 1 . The corresponding maximal operator is also considered.

1. Introduction. We will work on \mathbb{R}^n , $n \geq 2$. Let Ω be a homogeneous function of degree zero with mean value zero on the unit sphere S^{n-1} . Define the homogeneous singular integral operator T by

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) \, dy.$$

For a positive integer k and $b \in BMO(\mathbb{R}^n)$, define the kth order commutator of the operator T and b by

(1)
$$T_{b,k}f(x) = \int_{\mathbb{R}^n} (b(x) - b(y))^k \frac{\Omega(x-y)}{|x-y|^n} f(y) dy, \quad f \in C_0^{\infty}(\mathbb{R}^n).$$

Coifman, Rochberg and Weiss [4] showed that if $\Omega \in \operatorname{Lip}_{\alpha}(S^{n-1})$ $(0 < \alpha \le 1)$, then $T_{b,1}$ is bounded on $L^p(\mathbb{R}^n)$ with bound $C(n,p)\|b\|_{\operatorname{BMO}(\mathbb{R}^n)}$ for $1 . By a well-known result of Duoandikoetxea [5] and Watson [10], if <math>\Omega \in L^q(S^{n-1})$ for some q > 1, then for p > q' (q' = q/(q-1)) and $w \in A_{p/q'}$, the operator T is bounded on $L^p(\mathbb{R}^n, w(x) dx)$ with bound depending only on n, p and the $A_{p/q'}$ constant of w, where A_r is the weight function class of Muckenhoupt (see [9, Chapter V] for the definition and properties of A_r). This together with the Alvarez–Bagby–Kurtz–Pérez boundedness theorem for the commutators of linear operators (see [2, Theorem 2.13]) tells us

²⁰⁰⁰ Mathematics Subject Classification: 42B20, 42B25.

Key words and phrases: commutator, singular integral operator, BMO(\mathbb{R}^n), Fourier transform estimate.

The research was supported by the NSF of Henan Province.

that if $\Omega \in L^q(S^{n-1})$ for some q > 1, then $T_{b,k}$ is a bounded operator on $L^p(\mathbb{R}^n)$ for $q' , and then by standard duality and interpolation argument, it is bounded on <math>L^p(\mathbb{R}^n)$ for all $1 . On the other hand, if <math>\Omega \not\in \bigcup_{q>1} L^q(S^{n-1})$, then for any fixed $1 < p, q < \infty$, we do not know whether the operator T is bounded on $L^p(\mathbb{R}^n, w(x) dx)$ for all $w \in A_q$, and the Alvarez-Bagby-Kurtz-Pérez theorem does not apply. In this case, the $L^p(\mathbb{R}^n)$ boundedness for $T_{b,k}$ is not known. In [7], we have proved that if Ω satisfies the size condition

$$\sup_{\zeta \in S^{n-1}} \int_{S^{n-1}} |\varOmega(\theta)| \log^{\alpha} \left(\frac{1}{|\theta \cdot \zeta|} \right) d\theta < \infty$$

for some $\alpha > k+1$, then the commutator $T_{b,k}$ is bounded on $L^2(\mathbb{R}^n)$. The purpose of this paper is to give a size condition on Ω which is strictly weaker than $\Omega \in \bigcup_{q>1} L^q(S^{n-1})$ and implies the $L^p(\mathbb{R}^n)$ boundedness of $T_{b,k}$ for all $1 . Furthermore, we will also consider the <math>L^p(\mathbb{R}^n)$ boundedness for the corresponding maximal operator defined by

(2)
$$T_{b,k}^* f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| > \varepsilon} (b(x) - b(y))^k \frac{\Omega(x-y)}{|x-y|^n} f(y) \, dy \right|.$$

Our main results can be stated as follows.

Theorem 1. Let Ω be homogeneous of degree zero and have mean value zero on the unit sphere, k be a positive integer and $b \in BMO(\mathbb{R}^n)$. If $\Omega \in L(\log L)^{k+1}(S^{n-1})$, that is,

$$\int_{S^{n-1}} |\Omega(x')| \log^{k+1} (2 + |\Omega(x')|) \, dx' < \infty,$$

then for all $1 , the commutator <math>T_{b,k}$ defined by (1) is bounded on $L^p(\mathbb{R}^n)$ with bound $C||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k$.

Theorem 2. Let Ω be homogeneous of degree zero and have mean value zero on the unit sphere, k be a positive integer and $b \in BMO(\mathbb{R}^n)$. If $\Omega \in L(\log L)^{k+1}(S^{n-1})$, then for all $1 , the operator <math>T_{b,k}^*$ defined by (2) is bounded on $L^p(\mathbb{R}^n)$ with bound $C||b||_{BMO(\mathbb{R}^n)}^k$.

Some Young functions will be useful in the proof of our theorems. For positive integer k, let

$$a_k(\tau) = \log^k(1+\tau), \quad \tilde{a}_k(\tau) = e^{\tau^{1/k}} - 1.$$

Define the functions Φ_k and Ψ_k by

$$\Phi_k(t) = \int_0^t a_k(\tau) d\tau, \quad \Psi_k(t) = \int_0^t \widetilde{a}_k(\tau) d\tau.$$

Then Φ_k and Ψ_k are Young functions and Ψ_k is the complementary Young function of Φ_k . Therefore, for any $0 < t_1, t_2 < \infty$,

$$t_1 t_2 \le \varPhi_k(t_1) + \varPsi_k(t_2)$$

(see [1, Chap. 8] for details). By a straightforward computation, it follows that

$$\Phi_k(t) \le t \log^k(2+t), \quad \Psi_k(t) \le t e^{t^{1/k}} \le k^k e^{2t^{1/k}}.$$

Thus, for $0 < t_1, t_2 < \infty$,

(3)
$$t_1 t_2^k \le 2^k (\Phi_k(t_1) + \Psi_k((t_2/2)^k)) \le C_k(t_1 \log^k (2 + t_1) + e^{t_2}).$$

Throughout this paper, C denotes constants that are independent of the main parameters involved but whose values may differ from line to line. For $p \geq 1$, p' denotes the dual exponent of p, that is, p' = p/(p-1). For a measurable set E, χ_E denotes the characteristic function of E.

2. Proof of Theorem 1. We begin with some preliminary lemmas.

LEMMA 1. Let $\phi \in C_0^{\infty}(\mathbb{R}^n)$ be a radial function such that $\operatorname{supp} \phi \subset \{1/4 \leq |\xi| \leq 4\}$ and

$$\sum_{l \in \mathbb{Z}} \phi^3(2^{-l}\xi) = 1, \quad |\xi| \neq 0.$$

Define the multiplier operator S_l by

$$\widehat{S_l f}(\xi) = \phi(2^{-l}\xi)\widehat{f}(\xi),$$

and S_l^2 by $S_l^2 f(x) = S_l(S_l f)(x)$. For $b \in BMO(\mathbb{R}^n)$ and positive integer k, denote by $S_{l;b,k}$ (resp. $S_{l;b,k}^2$) the kth order commutator of S_l (resp. S_l^2). Then for 1 ,

(i)
$$\left\| \left(\sum_{l \in \mathbb{Z}} |S_{l;b,k} f|^2 \right)^{1/2} \right\|_p \le C(n,k,p) \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k \|f\|_p;$$

(ii)
$$\left\| \left(\sum_{l \in \mathbb{Z}} |S_{l;b,k}^2 f|^2 \right)^{1/2} \right\|_p \le C(n,k,p) \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k \|f\|_p;$$

(iii)
$$\left\| \sum_{l \in \mathbb{Z}} S_{l;b,k} f_l \right\|_p \le C(n,k,p) \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k \left\| \left(\sum_{l \in \mathbb{Z}} |f_l|^2 \right)^{1/2} \right\|_p$$
.

Proof. Obviously, (iii) can be deduced from (i) directly. By the weighted Littlewood–Paley theory, we see that for any $1 and <math>w \in A_p$,

$$\left\| \left(\sum_{l \in \mathbb{Z}} |S_l f|^2 \right)^{1/2} \right\|_{p,w} + \left\| \left(\sum_{l \in \mathbb{Z}} |S_l^2 f|^2 \right)^{1/2} \right\|_{p,w} \le C \|f\|_{p,w}.$$

Note that the mappings

$$f \mapsto \{S_l f\}_{l \in \mathbb{Z}}, \quad f \mapsto \{S_l^2 f\}_{l \in \mathbb{Z}}$$

are linear; then (i) and (ii) follow from the last inequality and Theorem 2.13 of [2].

LEMMA 2. Let $m_{\delta} \in C_0^{\infty}(\mathbb{R}^n)$ $(0 < \delta < \infty)$ be a family of multipliers such that supp $m_{\delta} \subset \{\delta/4 \leq |\xi| \leq 4\delta\}$. Suppose that for some positive constant α ,

$$||m_{\delta}||_{\infty} \le C \min\{\delta, \delta^{-\alpha}\}, \quad ||\nabla m_{\delta}||_{\infty} \le C.$$

Let T_{δ} be the multiplier operator defined by

$$\widehat{T_{\delta}f}(\xi) = m_{\delta}(\xi)\widehat{f}(\xi).$$

For $b \in BMO(\mathbb{R}^n)$ and positive integer k, denote by $T_{\delta;b,k}$ the kth order commutator of T_{δ} . Then for any fixed $0 < \nu < 1$, there exists a positive constant $C = C(n, k, \nu)$ such that

$$||T_{\delta;b,k}f||_2 \le C \min\{\delta^{\nu}, \delta^{-\alpha\nu}\} ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_2.$$

For the case of $\delta \leq 1$, Lemma 2 can be obtained from Lemma 2 of [7]. On the other hand, if $\delta > 1$, Lemma 2 was essentially proved in the proof of Lemma 2.3 of [8].

LEMMA 3. Let $\widetilde{\Omega}$ be homogeneous of degree zero and belong to the space $L^{\infty}(S^{n-1})$. For $s \geq 1$, define $\lambda_{\widetilde{\Omega},s}$ by

$$\lambda_{\widetilde{\Omega},s} = \inf\bigg\{\lambda > 0: \frac{\|\widetilde{\Omega}\|_1}{\lambda} \log^s \bigg(2 + \frac{\|\widetilde{\Omega}\|_\infty}{\lambda}\bigg) \leq 1\bigg\}.$$

Then

(i) there exists a positive constant $C = C_{n,s}$ such that $C^{-1} \|\widetilde{\Omega}\|_1 \le \lambda_{\widetilde{\Omega},s} \le C \|\widetilde{\Omega}\|_{\infty}$;

(ii)
$$\lambda_{\widetilde{\Omega},s} \leq C_s((2+\|\widetilde{\Omega}\|_{\infty})^{-1}+\|\widetilde{\Omega}\|_1\log^s(2+\|\widetilde{\Omega}\|_{\infty}));$$

(iii) for any
$$1 \leq s, t < \infty$$
, $\lambda_{\widetilde{\Omega}, st}^{1/t} \|\widetilde{\Omega}\|_{1}^{1/t'} \leq \lambda_{\widetilde{\Omega}, s}$.

Proof. Obviously, (i) follows directly from the fact that

$$\frac{\|\widetilde{\Omega}\|_1}{\|\widetilde{\Omega}\|_{\infty}}\log^s\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{\|\widetilde{\Omega}\|_{\infty}}\right)\leq C|S^{n-1}|$$

and

$$\frac{\|\widetilde{\Omega}\|_1}{\|\widetilde{\Omega}\|_1}\log^s\left(2+\frac{\|\widetilde{\Omega}\|_\infty}{\|\widetilde{\Omega}\|_1}\right) \ge \log^s(2+|S^{n-1}|^{-1}).$$

As for (ii), note that

$$\begin{split} \frac{\|\widetilde{\Omega}\|_{1}}{2^{s}\|\widetilde{\Omega}\|_{1}\log^{s}(2+\|\widetilde{\Omega}\|_{\infty})}\log^{s}\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{(2+\|\widetilde{\Omega}\|_{\infty})^{-1}}\right) \\ &\leq \frac{\|\widetilde{\Omega}\|_{1}}{2^{s}\|\widetilde{\Omega}\|_{1}\log^{s}(2+\|\widetilde{\Omega}\|_{\infty})}\log^{s}((2+\|\widetilde{\Omega}\|_{\infty})^{2}) \leq 1. \end{split}$$

It follows that

$$\lambda_{\widetilde{\Omega},s} \leq 2^{s}((2+\|\widetilde{\Omega}\|_{\infty})^{-1}+\|\widetilde{\Omega}\|_{1}\log^{s}(2+\|\widetilde{\Omega}\|_{\infty})).$$

To prove (iii), by homogeneity, we may assume that $\lambda_{\widetilde{\Omega},s}=1.$ Then

$$\|\widetilde{\Omega}\|_1 \log^s(2 + \|\widetilde{\Omega}\|_{\infty}) \le 1$$

and so $\|\widetilde{\Omega}\|_1 \leq 1$. A trivial computation gives

$$\frac{\|\widetilde{\Omega}\|_{1}}{\|\widetilde{\Omega}\|_{1}^{-t/t'}}\log^{st}\left(2+\frac{\|\widetilde{\Omega}\|_{\infty}}{\|\widetilde{\Omega}\|_{1}^{-t/t'}}\right) \leq \|\widetilde{\Omega}\|_{1}^{1+t/t'}\log^{st}(2+\|\widetilde{\Omega}\|_{\infty})$$
$$= (\|\widetilde{\Omega}\|_{1}\log^{s}(2+\|\widetilde{\Omega}\|_{\infty}))^{t} \leq 1.$$

This in turn implies $\lambda_{\widetilde{\Omega},st} \leq \|\widetilde{\Omega}\|_1^{-t/t'}$, and establishes the desired result.

LEMMA 4. Let $\widetilde{\Omega}$ be homogeneous of degree zero, k be a positive integer and $b \in \text{BMO}(\mathbb{R}^n)$. Define the operator $M_{\widetilde{\Omega}:b,k}$ by

$$M_{\widetilde{\Omega};b,k}f(x) = \sup_{r>0} r^{-n} \int_{|x-y| < r} |b(x) - b(y)|^k |\widetilde{\Omega}(x-y)f(y)| \, dy.$$

If $\widetilde{\Omega} \in L^{\infty}(S^{n-1})$, then the operator $M_{\widetilde{\Omega};b,k}$ is bounded on $L^p(\mathbb{R}^n)$ with bound $C\lambda_{\widetilde{\Omega},k} \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k$ for all 1 .

Proof. We will employ an observation of Coifman, Rochberg and Weiss (see [4, pp. 620–621]) which shows that certain weighted $L^p(\mathbb{R}^n)$ estimates for linear operators imply the $L^p(\mathbb{R}^n)$ estimates for the corresponding commutators. For each fixed $1 , we claim that there exist two positive constants <math>C_1$ and C_2 depending only on n and p such that for real-valued $b \in \text{BMO}(\mathbb{R}^n)$ with $||b||_{\text{BMO}(\mathbb{R}^n)} = C_1$, the operator

(4)
$$H(b,f)(x) = \sup_{r>0} r^{-n} \int_{|x-y| < r} e^{b(x)-b(y)} |f(y)| \, dy$$

is bounded on $L^p(\mathbb{R}^n)$ with bound C_2 . In fact, by the well-known John-Nirenberg inequality, we know that there exist positive constants A and B such that for any cube Q,

$$\frac{1}{|Q|} \int_{Q} \exp\left(\frac{|b(x) - b_{Q}|}{A||b||_{\mathrm{BMO}(\mathbb{R}^{n})}}\right) dx \le B,$$

where b_Q is the mean value of b on the cube Q. Let $C_1 = (A \max\{p, p'\})^{-1}$. Straightforward computation shows that for real-valued $b \in BMO(\mathbb{R}^n)$ with $||b||_{BMO(\mathbb{R}^n)} = C_1$,

$$\frac{1}{|Q|}\int\limits_{Q}e^{p(b(x)-b_Q)}\,dx\leq B, \quad \ \frac{1}{|Q|}\int\limits_{Q}e^{-p'(b(x)-b_Q)}\,dx\leq B,$$

and so $e^{pb(x)} \in A_p$ with the A_p constant no more that $C_2 = B^p$ (see also [9, Chap. V]). Therefore, by the weighted $L^p(\mathbb{R}^n)$ estimates with A_p weights for the Hardy–Littlewood maximal operator,

$$||H(b,f)||_p^p = \int_{\mathbb{R}^n} \left(\sup_{r>0} r^{-n} \int_{|x-y| < r} e^{-b(y)} |f(y)| \, dy \right)^p e^{pb(x)} \, dx$$

$$\leq C(n,p,C_2) ||f||_p^p.$$

Now we can prove Lemma 4. Without loss of generality, we may assume that $\lambda_{\widetilde{\Omega},k}=1$. It is obvious that

$$\|\widetilde{\Omega}\|_1 \log^k(2 + \|\widetilde{\Omega}\|_{\infty}) \le 1.$$

Let $\widetilde{\Phi}_k(t) = t \log^k(2+t)$ for t > 0. Then

$$\|\widetilde{\Phi}_k(|\widetilde{\Omega}|)\|_1 \le 1.$$

We may also assume that b is real-valued and $||b||_{BMO(\mathbb{R}^n)} = C_1$. By the inequality (3), we have

$$\begin{split} M_{\widetilde{\Omega};b,k}f(x) & \leq \sup_{r>0} r^{-n} \int\limits_{|x-y| < r} \widetilde{\Phi}_k(|\widetilde{\Omega}(x-y)|)|f(y)| \, dy \\ & + C \sup_{r>0} r^{-n} \int\limits_{|x-y| < r} e^{|b(x)-b(y)|}|f(y)| \, dy \\ & \leq \sup_{r>0} r^{-n} \int\limits_{|x-y| < r} \widetilde{\Phi}_k(|\widetilde{\Omega}(x-y)|)|f(y)| \, dy \\ & + C \sup_{r>0} r^{-n} \int\limits_{|x-y| < r} e^{b(x)-b(y)}|f(y)| \, dy \\ & + C \sup_{r>0} r^{-n} \int\limits_{|x-y| < r} e^{b(y)-b(x)}|f(y)| \, dy \\ & = \mathrm{I}(f)(x) + \mathrm{II}(f)(x) + \mathrm{III}(f)(x). \end{split}$$

Our claim says that

$$\|II(f)\|_p \le C\|f\|_p, \quad \|III(f)\|_p \le C\|f\|_p.$$

On the other hand, the method of rotation of Calderón and Zygmund [3] states that

$$\|\mathbf{I}(f)\|_p \le C \|\widetilde{\boldsymbol{\Phi}}_k(|\widetilde{\boldsymbol{\Omega}}|)\|_1 \|f\|_p \le C \|f\|_p.$$

Therefore,

$$||M_{\widetilde{\Omega};b,k}f||_p \le C||f||_p.$$

This completes the proof of Lemma 4.

LEMMA 5. Let k be a positive integer and $b \in BMO(\mathbb{R}^n)$, $\widetilde{\Omega}$ be homogeneous of degree zero and belong to $L^{\infty}(S^{n-1})$. For $j \in \mathbb{Z}$, let $\sigma_j(x) =$

 $|x|^{-n}\widetilde{\Omega}(x)\chi_{\{2^j<|x|\leq 2^{j+1}\}}(x)$. Denote by U_j the convolution operator whose kernel is σ_j , and $U_{j;b,k}$ the kth order commutator of U_j . Then

(5)
$$\left\| \left(\sum_{j \in \mathbb{Z}} |U_{j;b,k} f_j|^2 \right)^{1/2} \right\|_p \le C_{k,p} \lambda_{\widetilde{\Omega},k} \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k \left\| \left(\sum_{j \in \mathbb{Z}} |f_j|^2 \right)^{1/2} \right\|_p$$

for any 1 .

Proof. By standard duality and interpolation argument, it suffices to consider the case 2 . Let

$$\widetilde{U}_{j;b,2k}f(x) = \int_{\mathbb{R}^n} |b(x) - b(y)|^{2k} |\sigma_j(x - y)| |f(y)| dy.$$

Note that

$$|U_{j,b,k}f(x)|^2 \le C \|\widetilde{\Omega}\|_1 \widetilde{U}_{j;b,2k}(|f|^2)(x).$$

It follows from (iii) of Lemma 3 that for 2 ,

$$\begin{split} \left\| \left(\sum_{j \in \mathbb{Z}} |U_{j;b,k} f_{j}|^{2} \right)^{1/2} \right\|_{p}^{2} &= \sup_{\|h\|_{(p/2)'} \le 1} \left| \sum_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}} |U_{j,b,k} f_{j}(x)|^{2} h(x) \, dx \right| \\ &\le C \|\widetilde{\Omega}\|_{1} \sup_{\|h\|_{(p/2)'} \le 1} \sum_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}} \widetilde{U}_{j;b,2k} (|f_{j}|^{2})(x) |h(x)| \, dx \\ &\le \|\widetilde{\Omega}\|_{1} \sup_{\|h\|_{(p/2)'} \le 1} \sum_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}} |f_{j}(x)|^{2} M_{\widetilde{\Omega};b,2k} h(x) \, dx \\ &\le C \|\widetilde{\Omega}\|_{1} \sup_{\|h\|_{(p/2)'} \le 1} \left\| \left(\sum_{j \in \mathbb{Z}} |f_{j}|^{2} \right)^{1/2} \right\|_{p}^{2} \|M_{\widetilde{\Omega};b,2k} h\|_{(p/2)'} \\ &\le C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{2k} \|\widetilde{\Omega}\|_{1} \lambda_{\widetilde{\Omega},2k} \left\| \left(\sum_{j \in \mathbb{Z}} |f_{j}|^{2} \right)^{1/2} \right\|_{p}^{2}. \\ &\le C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{2k} \lambda_{\widetilde{\Omega},k}^{2} \left\| \left(\sum_{j \in \mathbb{Z}} |f_{j}|^{2} \right)^{1/2} \right\|_{p}^{2}. \end{split}$$

Proof of Theorem 1. Let $\phi \in C_0^{\infty}(\mathbb{R}^n)$ be a radial function such that $0 \le \phi \le 1$, supp $\phi \subset \{1/4 \le |\xi| \le 4\}$ and

$$\sum_{l \in \mathbb{Z}} \phi^3(2^{-l}\xi) = 1, \quad |\xi| \neq 0.$$

Define the multiplier operator S_l by

$$\widehat{S_l f}(\xi) = \phi(2^{-l}\xi)\widehat{f}(\xi).$$

Write

$$K_j(x) = \frac{\Omega(x)}{|x|^n} \chi_{\{2^j < |x| \le 2^{j+1}\}}(x).$$

Set

$$m_j(\xi) = \hat{K}_j(\xi), \quad m_j^l(\xi) = m_j(\xi)\phi(2^{j-l}\xi).$$

Define the operator T_i^l by

$$\widehat{T_j^lf}(\xi) = m_j^l(\xi)\widehat{f}(\xi).$$

Let

$$V_l f(x) = \sum_{j \in \mathbb{Z}} ((S_{l-j} T_j^l S_{l-j})_{b,k} f)(x).$$

We know from [7, p. 65] that for $f, h \in C_0^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} h(x) T_{b,k} f(x) dx = \int_{\mathbb{R}^n} h(x) \sum_{l \in \mathbb{Z}} V_l f(x) dx.$$

Therefore,

$$||T_{b,k}f||_p \le \sum_{l\le 0} ||V_lf||_p + \sum_{l>0} ||V_lf||_p.$$

We first consider the term $\sum_{l\leq 0} \|V_l f\|_p$. We claim that V_l satisfies the crude estimate

(6)
$$||V_l f||_p \le C ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_p, \quad l \in \mathbb{Z}, \ 2$$

In fact, let $E_0 = \{x' \in S^{n-1} : |\Omega(x')| \le 2\}$ and $E_d = \{x' \in S^{n-1} : 2^d < |\Omega(x')| \le 2^{d+1}\}$ for positive integer d. Denote by Ω_d the restriction of Ω to E_d , that is, $\Omega_d(x') = \Omega(x')\chi_{E_d}(x')$. Our hypothesis on Ω now shows that $\sum_{d>1} d^{k+1} \|\Omega_d\|_1 < \infty$. Let

$$K_{j,d}(x) = \frac{\Omega_d(x)}{|x|^n} \chi_{\{2^j < |x| \le 2^{j+1}\}}(x)$$

and

$$m_{j,d}(\xi) = \hat{K}_{j,d}(\xi), \quad m_{j,d}^l(\xi) = m_{j,d}(\xi)\phi(2^{j-l}\xi).$$

Define the operator $T_{j,d}^l$ by

$$\widehat{T_{i,d}^l}f(\xi) = m_{i,d}^l(\xi)\widehat{f}(\xi),$$

and the operator $V_{l,d}$ by

$$V_{l,d}f(x) = \sum_{j \in \mathbb{Z}} ((S_{l-j}T_{j,d}^{l}S_{l-j})_{b,k}f)(x).$$

With the aid of the formula

$$(b(x) - b(y))^k = \sum_{m=0}^k C_k^m (b(x) - b(z))^m (b(z) - b(y))^{k-m}, \quad x, y, z \in \mathbb{R}^n,$$

straightforward computation shows that for $f, h \in C_0^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} h(x) V_{l,d} f(x) dx = \sum_{m=0}^k C_k^m \int_{\mathbb{R}^n} h(x) \sum_{j \in \mathbb{Z}} S_{l-j;b,k-m} ((T_{j,d}^l S_{l-j})_{b,m} f)(x) dx.$$

Lemma 1 now tells us that

$$||V_{l,d}f||_p \le C \sum_{m=0}^k ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^{k-m} \left\| \left(\sum_{j \in \mathbb{Z}} |(T_{j,d}^l S_{l-j})_{b,m} f|^2 \right)^{1/2} \right\|_p, \quad 1$$

Set

$$T_{j,d}h(x) = K_{j,d} * h(x).$$

For each m with $0 \le m \le k$, write

$$(T_{j,d}^l S_{l-j})_{b,m} f(x) = \sum_{i=0}^m C_m^i T_{j,d;b,i} (S_{l-j;b,m-i}^2 f)(x).$$

By Lemmas 1 and 5, we have

$$\begin{split} \left\| \left(\sum_{j \in \mathbb{Z}} |(T_{j,d}^{l} S_{l-j} f)_{b,m}|^{2} \right)^{1/2} \right\|_{p} \\ &\leq C \sum_{i=0}^{m} \lambda_{\Omega_{d},i} \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{i} \left\| \left(\sum_{j \in \mathbb{Z}} |S_{l-j;b,m-i}^{2} f|^{2} \right)^{1/2} \right\|_{p} \\ &\leq C \lambda_{\Omega_{d},m} \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m} \|f\|_{p}, \quad 1$$

Consequently,

(7)
$$||V_{l,d}f||_p \le C\lambda_{\Omega_d,k} ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_p, \quad 1$$

This together with (ii) of Lemma 3 shows that

$$||V_l f||_p \le \sum_{d=0}^{\infty} ||V_{l,d} f||_p \le C ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_p, \quad 1$$

and establishes our claim (6). Now our goal is to obtain a refined $L^2(\mathbb{R}^n)$ estimate for V_l , i.e., we want to show that there exists a positive constant $\nu = \nu_n > 0$ such that

(8)
$$||V_l f||_2 \le C 2^{\nu l} ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_2, \quad l \le 0.$$

If we can do this, interpolating the inequalities (6) and (8) yields

(9)
$$||V_l f||_p \le C2^{\tilde{\nu}l} ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_p, \quad l \le 0, \ 1 where $\tilde{\nu} = \tilde{\nu}_{n,n} > 0$. So,$$

$$\sum_{l \in \Omega} \|V_l f\|_p \le C \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k \|f\|_p.$$

To prove (9), let \widetilde{T}_i^l be the operator defined by

$$\widehat{\widetilde{T}_j^lf}(\xi)=m_j^l(2^{-j}\xi)\widehat{f}(\xi).$$

By the vanishing moment and integrability of Ω , we have

$$|\widehat{K}_j(\xi)| \le C|2^j\xi|, \quad \|\nabla \widehat{K}_j\|_{\infty} \le C2^j.$$

Thus,

$$\|m_j^l(2^{-j}\cdot)\|_\infty \leq C2^l, \quad \|\nabla m_j^l(2^{-j}\cdot)\|_\infty \leq C.$$

This via Lemma 2 says that for any fixed $l \leq 0$, $0 < \nu < 1$ and positive integer i,

$$\|\widetilde{T}_{j;b,i}^{l}f\|_{2} \leq C2^{\nu l}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{i}\|f\|_{2},$$

which by dilation-invariance implies

(10)
$$||T_{j;b,i}^l f||_2 \le C2^{\nu l} ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^i ||f||_2.$$

On the other hand, the Plancherel theorem tells us that

(11)
$$||T_i^l f||_2 \le C2^l ||f||_2.$$

Write

$$(T_j^l S_{l-j} f)_{b,m} f(x) = \sum_{i=0}^m C_m^i T_{j;b,i}^l (S_{l-j;b,m-i} f)(x).$$

It follows from (10), (11) and Lemma 1 that

$$\left\| \left(\sum_{j \in \mathbb{Z}} |(T_j^l S_{l-j} f)_{b,m}|^2 \right)^{1/2} \right\|_2^2 \le C 2^{2\nu l} \sum_{i=0}^m \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^{2i} \sum_{j \in \mathbb{Z}} \|S_{l-j;b,m-i} f\|_2^2$$

$$\le C 2^{2\nu l} \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^{2m} \|f\|_2^2, \quad l \le 0.$$

Therefore, by a familiar argument involving Lemma 1, we can obtain

$$||V_{l}f||_{2} \leq C \sum_{m=0}^{k} ||b||_{\mathrm{BMO}(\mathbb{R}^{n})}^{k-m} \left\| \left(\sum_{j \in \mathbb{Z}} |(T_{j}^{l} S_{l-j})_{b,m} f|^{2} \right)^{1/2} \right\|_{2}$$

$$\leq C 2^{\nu l} ||b||_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} ||f||_{2}, \quad l \leq 0.$$

Now we turn our attention to the term $\sum_{l>0} ||V_l f||_p$. By the well-known estimate of Duoandikoetxea and Rubio de Francia [6], we know that there exists a positive constant β such that

$$|\widehat{K}_{j,d}(\xi)| \le C \|\Omega_d\|_{\infty} \min\{1, |2^j \xi|^{-\beta}\}, \quad \|\nabla \widehat{K}_{j,d}\|_{\infty} \le C 2^j \|\Omega_d\|_1.$$

This gives

$$||m_{j,d}^l||_{\infty} \le C2^{-\beta l} ||\Omega_d||_{\infty}, \quad ||\nabla m_{j,d}^l||_{\infty} \le 2^j ||\Omega_d||_{\infty}.$$

Invoking Lemma 2 again, as in the proof of (10) and (11), we see that there exists some constant $0 < \gamma < 1$ such that for non-negative integer m,

$$||T_{j,d;b,m}^l||_2 \le C||\Omega_d||_{\infty} 2^{-\gamma l} ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^m ||f||_2.$$

Similarly to (8), we can obtain

(12)
$$||V_{l,d}f||_{2} \leq C \sum_{m=0}^{k} ||b||_{\mathrm{BMO}(\mathbb{R}^{n})}^{k-m} \left\| \left(\sum_{j \in \mathbb{Z}} |(T_{j,d}^{l} S_{l-j} f)_{b,m}|^{2} \right)^{1/2} \right\|_{2}$$

$$\leq C ||\Omega_{d}||_{\infty} 2^{-\gamma l} ||b||_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} ||f||_{2}.$$

Interpolating (7) and (12) shows that for $\tilde{\gamma} = \tilde{\gamma}_{n,p} > 0$,

(13)
$$||V_{l,d}f||_p \le C ||\Omega_d||_{\infty} 2^{-\tilde{\gamma}l} ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_p, \quad 1$$

Let N be a large positive integer such that $N > 2\tilde{\gamma}^{-1}$. Combining (7) and (13) gives

$$\sum_{l>0} \|V_{l}f\|_{p} \leq \sum_{l>0} \|V_{l,0}f\|_{p} + \sum_{d>0} \sum_{0< l \leq Nd} \|V_{l,d}f\|_{p} + \sum_{d>0} \sum_{l>Nd} \|V_{l,d}f\|_{p}
\leq C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \sum_{l>0} 2^{-\mu l} \|f\|_{p} + C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \sum_{d>0} d\lambda_{\Omega_{d},k} \|f\|_{p}
+ C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \sum_{d>0} 2^{d} \sum_{l>Nd} 2^{-\mu l} \|f\|_{p}
\leq C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \|f\|_{p} + C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \sum_{d>0} d\lambda_{\Omega_{d},k} \|f\|_{p}
\leq C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \|f\|_{p}.$$

This completes the proof of Theorem 1.

Proof of Theorem 2. We shall carry out the argument by induction on the order k. If k=0, Theorem 2 is the remarkable result of Calderón and Zygmund [3]. Now let k be a positive integer, and assume that the assertion is true for all integers m with $0 \le m \le k-1$. Let K_j , $K_{j,d}$, Ω_d and the operator $T_{j,d}$ be the same as in the proof of Theorem 1. Define

$$T_{j;b,m}f(x) = \int_{2^{j} < |x-y| \le 2^{j+1}} (b(x) - b(y))^{m} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) dy.$$

Write

$$M_{\Omega;b,k}f(x) = \sup_{r>0} r^{-n} \int_{|x-y|< r} |b(x) - b(y)|^k |\Omega(x-y)| |f(y)| dy$$

$$\leq \sum_{d=0}^{\infty} M_{\Omega_d;b,k}f(x).$$

Lemma 4 now tells us that for all 1 ,

$$||M_{\Omega;b,k}f||_p \le ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k \sum_{d=0}^{\infty} \lambda_{\Omega_d,k} ||f||_p \le C ||b||_{\mathrm{BMO}(\mathbb{R}^n)}^k ||f||_p.$$

Thus, it suffices to consider the $L^p(\mathbb{R}^n)$ norm of $\sup_{l\in\mathbb{Z}} |\sum_{j=l}^{\infty} T_{j;b,k} f(x)|$. Take $\eta \in \mathcal{S}(\mathbb{R}^n)$ such that $\eta(x) \equiv 1$ when $|x| \leq 1$. Let $\Phi_l \in \mathcal{S}(\mathbb{R}^n)$ be such that $\widehat{\Phi}_l(\xi) = \eta(2^l \xi)$. Denote by G_l the convolution operator whose kernel is Φ_l and G_l^j the convolution operator whose kernel is $K_j - \Phi_l * K_j$. Write

$$\sum_{j=l}^{\infty} T_{j;b,k} f(x) = \Phi_l * \left(T_{b,k} f - \sum_{j=-\infty}^{l-1} T_{j;b,k} f \right) (x)$$

$$+ \left(\sum_{j=l}^{\infty} T_{j;b,k} f(x) - \Phi_l * \left(\sum_{j=l}^{\infty} T_{j;b,k} f \right) (x) \right)$$

$$= I_l(f)(x) + II_l(f)(x).$$

Define the operator

$$M_{b,k}h(x) = \sup_{r>0} r^{-n} \int_{|x-y| < r} |b(x) - b(y)|^k |h(y)| \, dy.$$

Observe that

$$\left| \Phi_l * \sum_{j=\infty}^{l-1} K_l(x) \right| \le C2^{-nl} / (1 + |2^{-l}x|)^{n+1}$$

(see [6]) and

$$\Phi_{l} * \left(\sum_{j=-\infty}^{l-1} T_{j;b,k} f\right)(x)
= \left(\Phi_{l} * \sum_{j=-\infty}^{l-1} K_{j}\right)_{b,k} f(x) - \sum_{m=0}^{k-1} C_{k}^{m} G_{l;b,k-m} \left(\sum_{j=-\infty}^{l-1} T_{j;b,m} f\right)(x).$$

It follows that

$$\sup_{l \in \mathbb{Z}} |I_l(f)(x)| \le \sum_{m=0}^{k-1} (M_{b,k-m}(T_{b,m}f)(x) + M_{b,k-m}(T_{b,m}^*f)(x)) + CM_{b,k}f(x) + CM(T_{b,k}f)(x).$$

This shows that $\sup_{l \in \mathbb{Z}} |I_l(f)(x)|$ is pointwise bounded by a function whose $L^p(\mathbb{R}^n)$ norm is no more than $C_{n,p} \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k$ for all 1 . To estimate

 $\sup_{l\in\mathbb{Z}} |\mathrm{II}_l(f)(x)|$, write

$$\Pi_{l}f(x) = \sum_{j=l}^{\infty} T_{j;b,k}f(x) - \left(\Phi_{l} * \sum_{j=l}^{\infty} T_{j}\right)_{b,k}f(x)
- \sum_{m=0}^{k-1} C_{k}^{m}G_{l;b,k-m}\left(\sum_{j=l}^{\infty} T_{j;b,m}f\right)(x)
= \sum_{j=l}^{\infty} G_{l;b,k}^{j}f(x) - \sum_{m=0}^{k-1} C_{k}^{m}G_{l;b,k-m}\left(\sum_{j=l}^{\infty} T_{j;b,m}f\right)(x)$$

For each $0 \le m \le k-1$, it is easy to see that

$$\sup_{l \in \mathbb{Z}} \left| G_{l;b,k-m} \left(\sum_{i=l}^{\infty} T_{j;b,m} f \right) (x) \right| \le C M_{b,k-m} (T_{b,m}^* f)(x).$$

Thus, the proof of Theorem 2 can be reduced to estimating the $L^p(\mathbb{R}^n)$ norm for the term $\sup_{l\in\mathbb{Z}}|\sum_{j=l}^{\infty}G_{l;b,k}^jf(x)|$. Denote by $G_l^{j,d}$ the convolution operator whose kernel is $K_{j,d}-\Phi_l*K_{j,d}$. Let N_1 be a positive integer which will be chosen later. Write

$$\sup_{l \in \mathbb{Z}} \left| \sum_{j=l}^{\infty} G_{l;b,k}^{j} f(x) \right| \leq \sum_{j=0}^{\infty} \sup_{l \in \mathbb{Z}} |G_{l-j;b,k}^{l} f(x)|$$

$$\leq \sum_{d>0} \sum_{0 < j \leq N_{1}d} \sup_{l \in \mathbb{Z}} |G_{l-j;b,k}^{l,d} f(x)| + \sum_{j=0}^{\infty} \sup_{l \in \mathbb{Z}} |G_{l-j;b,k}^{l,0} f(x)|$$

$$+ \sum_{d>0} \sum_{j>N_{1}d} \sup_{l \in \mathbb{Z}} |G_{l-j;b,k}^{l,d} f(x)|.$$

Employing Lemma 4, we have

$$\sum_{d>0} \sum_{0 < j \le N_1 d} \| \sup_{l \in \mathbb{Z}} |G_{l-j;b,k}^{l,d} f| \|_{p}$$

$$\le C \sum_{d>0} \sum_{0 < j \le N_1 d} \| M_{\Omega_d;b,k} f\|_{p}$$

$$+ \sum_{m=0}^{k} \sum_{d>0} \sum_{0 < j \le N_1 d} \| M_{b,m} (M_{\Omega_d;b,k-m} f) \|_{p}$$

$$\le C \sum_{d>0} d\lambda_{\Omega_d,k} \| f \|_{p} \le C \| f \|_{p}.$$

Now trivial computation gives

$$|\widehat{K}_{l,d}(\xi) - \Phi_{l-j} * \widehat{K}_{l,d}(\xi)| \le C \|\Omega_d\|_{\infty} \min\{2^{-j} | 2^l \xi|, |2^l \xi|^{-\mu}\},$$

with $\mu = \mu_n > 0$. This via the Plancherel theorem shows that for some $\widetilde{\mu} > 0$,

(14)
$$\|\sup_{l\in\mathbb{Z}} |G_{l-j}^{l,d}h| \|_2 \le \left\| \left(\sum_{l\in\mathbb{Z}} |G_{l-j}^{l,d}h|^2 \right)^{1/2} \right\|_2 \le C2^{-\widetilde{\mu}j} \|\Omega_d\|_{\infty} \|h\|_2.$$

On the other hand, it is easy to see that for each fixed $1 and <math>w \in A_p$,

(15)
$$\|\sup_{l\in\mathbb{Z}} |G_{l-j}^{l,d}h| \|_{p,w} \le C \|\Omega_d\|_{\infty} \|h\|_{p,w},$$

and the constant C depending only on n, p and the A_p constant of w. Interpolating the inequalities (14) and (15) with change of measures implies that for each $1 and <math>w \in A_p$,

(15)
$$\|\sup_{l\in\mathbb{Z}} |G_{l-j}^{l,d}h| \|_{p,w} \le C2^{-\delta j} \|\Omega_d\|_{\infty} \|h\|_{p,w}.$$

Since the mapping $f \mapsto \{G_{l-j}^{l,d}f\}_{l\in\mathbb{Z}}$ is linear, applying Theorem 2.13 of [2], we can obtain

$$\|\sup_{l\in\mathbb{Z}} |G_{l-j,b,k}^{l,d}h| \|_{p} \le C\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} 2^{-\delta j} \|\Omega_{d}\|_{\infty} \|h\|_{p}.$$

Let $N_1 > 2\delta^{-1}$. We conclude the proof of Theorem 2 by noting that

$$\sum_{j=0}^{\infty} \|\sup_{l \in \mathbb{Z}} |G_{l-j;b,k}^{l,0} f| \|_{p} \le C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \sum_{j=0}^{\infty} 2^{-\delta j} \|f\|_{p} \le C \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{k} \|f\|_{p}$$

and

$$\sum_{d>0} \sum_{j>N_1 d} \sup_{l\in\mathbb{Z}} \| |G_{l-j;b,k}^{l,d} f| \|_p \le C \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k \sum_{d>0} 2^d \sum_{j>N_1 d}^{\infty} 2^{-\delta j} \|f\|_p$$

$$\le C \|b\|_{\mathrm{BMO}(\mathbb{R}^n)}^k \|f\|_p.$$

Acknowledgements. The author would like to thank the referee for some valuable suggestions and corrections.

References

- [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] J. Alvarez, R. Bagby, D. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), 195–209.
- [3] A. P. Calderón and A. Zygmund, On singular integral operators, Amer. J. Math. 18 (1956), 289–309.
- [4] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611–636.
- [5] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1990), 869–880.

- [6] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integrals via Fourier transform estimates, Invent. Math. 84 (1986), 541–561.
- [7] G. Hu, $L^2(\mathbb{R}^n)$ boundedness for the commutators of convolution operators, Nagoya Math. J. 163 (2001), 55–70.
- [8] B. Ma and G. Hu, Maximal operators associated with the commutators of spherical means, Tohoku Math. J. 50 (1998), 349–363.
- [9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
- [10] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389–399.

Department of Applied Mathematics University of Information Engineering P.O. Box 1001-747, Zhengzhou 450002 People's Republic of China E-mail: huguoen@371.net

> Received May 30, 2001 Revised version May 20, 2002 (4748)