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On the statistical and σ-cores

by

Hüsametti̇n Çoşkun (Malatya), Celal Çakan (Malatya)
and Mursaleen (Aligarh)

Abstract. In [11] and [7], the concepts of σ-core and statistical core of a bounded
number sequence x have been introduced and also some inequalities which are analogues
of Knopp’s core theorem have been proved. In this paper, we characterize the matrices of
the class (S ∩m,Vσ)reg and determine necessary and sufficient conditions for a matrix A
to satisfy σ-core(Ax) ⊆ st-core(x) for all x ∈ m.

1. Introduction. Let K be a subset of N, the set of positive integers.
The natural density δ of K is defined by

δ(K) = lim
n

1
n
|{k ≤ n : k ∈ K}|,

where the vertical bars indicate the number of elements in the enclosed set.
The number sequence x = (xk) is said to be statistically convergent to the
number l if for every ε, δ{k : |xk− l| ≥ ε} = 0 (see [7]). In this case, we write
st-limx = l. We shall also write S and S0 to denote the sets of all statistically
convergent sequences and of all sequences statistically convergent to zero.
The statistically convergent sequences were studied by several authors (see
[2], [7] and others).

Let m and c be the Banach spaces of bounded and convergent sequences
x = (xk) with the usual supremum norm. Let σ be a one-to-one mapping
from N into itself. An element Φ ∈ m′, the conjugate space of m, is called an
invariant mean or a σ-mean if (i) Φ(x) ≥ 0 when the sequence x = (xk) has
xk ≥ 0 for all k, (ii) Φ(e) = 1, where e = (1, 1, 1, . . .), (iii) Φ((xσ(k))) = Φ(x)
for all x ∈ m.

Throughout this paper we consider the mapping σ such that σp(k) 6= k
for all positive integers k ≥ 0 and p ≥ 1, where σp(k) is the pth iterate of
σ at k. Thus, a σ-mean extends the limit functional on c in the sense that
Φ(x) = limx for all x ∈ c (see [12]). Consequently, c ⊂ Vσ where Vσ is the
set of bounded sequences all of whose σ-means are equal.
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In case σ(k) = k+1, a σ-mean is often called a Banach limit and Vσ is the
set of almost convergent sequences, introduced by Lorentz [9]. If x = (xn),
write Tx = (Txn) = (xσ(n)). It can be shown [15] that

Vσ = {x ∈ m : lim
p
tpn(x) = s uniformly in n, s = σ-limx}

where

tpn(x) = (xn + Txn + . . .+ T pxn)/(p+ 1), t−1,n(x) = 0.

We say that a bounded sequence x = (xk) is σ-convergent if x ∈ Vσ. By
Z, we denote the set of σ-convergent sequences with σ-limit zero. It is well
known [14] that x ∈ m if and only if Tx− x ∈ Z.

Let A be an infinite matrix of real entries ank and x = (xk) be a real
number sequence. Then Ax = ((Ax)n) =

(∑
k ankxk

)
denotes the trans-

formed sequence of x. If X and Y are two non-empty sequence spaces, then
we use (X,Y ) to denote the set of all matrices A such that Ax exists and
Ax ∈ Y for all x ∈ X. Throughout,

∑
k will denote summation from k = 1

to ∞.
A matrixA is called (i) regular ifA∈(c, c) and limAx=limx for all x ∈ c,

(ii) σ-regular if A ∈ (c, Vσ) and σ-limAx = limx for all x ∈ c, and (iii) σ-co-
ercive if A ∈ (m,Vσ). The regularity conditions for A are well known [10].

The following two lemmas which were established in [15] will enable us
to prove our results:

Lemma 1.1 ([15, Th. 3]). The matrix A is σ-coercive if and only if

(1.1) ‖A‖ = sup
n

∑

k

|ank| <∞,

(1.2) σ-limank = αk for each k,

(1.3) lim
p

∑

k

1
p+ 1

∣∣∣
p∑

i=0

(aσi(n),k − αk)
∣∣∣ = 0 uniformly in n.

Lemma 1.2 ([15, Th. 2]). The matrix A is σ-regular if and only if the
conditions (1.1) and (1.2) hold with αk = 0 for each k and

σ-lim
∑

k

ank = 1.(1.4)

A matrix A is called normal if ank = 0 (k > n) and ann 6= 0 for all n. If
A is normal, then it has its reciprocal.

For any real number λ we write λ− = max{−λ, 0}, λ+ = max{0, λ}.
Then λ = λ+ − λ−. We recall (see [11]) that a matrix A is said to be
σ-uniformly positive if

lim
p

∑

k

a−(p, n, k) = 0 uniformly in n
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where

a(p, n, k) =
1

p+ 1

p∑

i=0

aσi(n).

It is known [11] that a σ-regular matrix A is σ-uniformly positive if and only
if

lim
p

∑

k

|a(p, n, k)| = 1 uniformly in n.(1.5)

Let us consider the following functionals defined on m:

l(x) = lim inf x, L(x) = lim supx, qσ(x) = lim sup
p

sup
n
tpn(x),

L∗(x) = lim sup
p

sup
n

1
p+ 1

p∑

i=0

xn+i.

In [11], the σ-core of a real bounded number sequence x has been de-
fined as the closed interval [−qσ(−x), qσ(x)] and also the inequalities qσ(Ax)
≤ L(x) (σ-core of Ax ⊆ K-core of x), qσ(Ax) ≤ qσ(x) (σ-core of Ax ⊆ σ-core
of x), for all x ∈ m, have been studied. Here the K-core of x (or Knopp core
of x) is the interval [l(x), L(x)] (see [3]).

When σ(n) = n + 1, since qσ(x) = L∗(x), the σ-core of x is reduced
to the Banach core of x (B-core) defined by the interval [−L∗(−x), L∗(x)]
(see [13]).

The concepts of B-core and σ-core have been studied by many authors
[4, 5, 6, 11, 13].

Recently, Fridy and Orhan [7] have introduced the notions of statistical
boundedness, statistical limit superior (st-lim sup) and inferior (st-lim inf),
defined the statistical core (or briefly st-core) of a statistically bounded
sequence as the closed interval [st-lim inf x, st-lim supx] and also determined
necessary and sufficient conditions for a matrix A to yield K-core(Ax) ⊆
st-core(x) for all x ∈ m.

After all these explanations, one can naturally ask: What are necessary
and sufficient conditions on a matrix A so that the σ-core of Ax is contained
in the st-core of x for all x ∈ m? Our main purpose is to find an answer
to that question. To do this we need to characterize the class of matrices
A such that Ax ∈ Vσ and σ-limAx = st-limx for all x ∈ S ∩ m, i.e.,
A ∈ (S ∩m,Vσ)reg.

2. Main results

Theorem 2.1. A ∈ (S ∩m,Vσ)reg if and only if A is σ-regular and

lim
p

∑

k∈E
|a(p, n, k)| = 0 uniformly in n,(2.1)

for every E ⊆ N with natural density zero.
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Proof. First, suppose that A ∈ (S ∩ m,Vσ)reg. The σ-regularity of A
immediately follows from the fact that c ⊂ S ∩m. Now, define a sequence
z = (zk) for x ∈ m as

zk =
{
xk, k ∈ E,
0, k 6∈ E,

where E is any subset of N with δ(E) = 0. By our assumption, since z ∈ S0,
we have Az ∈ Z. On the other hand, since Az =

∑
k∈E ankxk, the matrix

B = (bnk) defined by

bnk =
{
ank, k ∈ E,
0, k 6∈ E,

for all n, must belong to the class (m,Z). Hence, the necessity of (2.1) follows
from Lemma 1.1.

Conversely, suppose that A is σ-regular and (2.1) holds. Let x be any
sequence in S ∩m with st-limx = l. Write E = {k : |xk − l| ≥ ε} for any
given ε > 0, so that δ(E) = 0. Now, from (1.4) we have

σ-lim(Ax) = σ-lim
(∑

k

ank(xk − l) + l
∑

k

ank

)

= σ-lim
∑

k

ank(xk − l) + l

= lim
p

∑

k

a(p, n, k)(xk − l) + l.

On the other hand, since∣∣∣
∑

k

a(p, n, k)(xk − l)
∣∣∣ ≤ ‖x‖

∑

k∈E
|a(p, n, k)|+ ε‖A‖,

the condition (2.1) implies that

lim
p

∑

k

a(p, n, k)(xk − l) = 0 uniformly in n.

Hence, σ-lim(Ax) = st-limx; that is, A ∈ (S ∩m,Vσ)reg, which completes
the proof.

In the special case σ(n) = n+ 1, we also have the following theorem:

Theorem 2.2. A ∈ (S ∩ m, f)reg if and only if A is almost regular
(see [8]) and

lim
p

∑

k∈E

1
p+ 1

∣∣∣
p∑

i=0

an+i,k

∣∣∣ = 0 uniformly in n,

for every E ⊆ N with natural density zero.

Theorem 2.3. σ-core(Ax) ⊆ st-core(x) for all x ∈ m if and only if
A ∈ (S ∩m,Vσ)reg and A is σ-uniformly positive.
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Proof. Assume that σ-core(Ax) ⊆ st-core(x) for all x ∈ m. Then qσ(Ax)
≤ β(x) for all x ∈ m where β(x) = st-lim supx. Hence, since β(x) ≤ L(x)
for all x ∈ m (see [7]), the σ-uniform positivity of A follows from Theorem 2
of [11]. One can also easily see that

−β(−x) ≤ −qσ(−Ax) ≤ qσ(Ax) ≤ β(x),

i.e.,
st-lim inf x ≤ −qσ(−Ax) ≤ qσ(Ax) ≤ st-lim supx.

If x ∈ S ∩m, then st-lim inf x = st-lim supx = st-limx (see [7]). Thus, the
last inequality implies that st-limx = −qσ(−Ax) = qσ(Ax) = σ-limAx,
that is, A ∈ (S ∩m,Vσ)reg.

Conversely, assume A ∈ (S ∩ m,Vσ)reg and A is σ-uniformly positive.
If x ∈ m, then β(x) is finite. Let E be a subset of N defined by E =
{k : xk > β(x) + ε} for a given ε > 0. Then it is obvious that δ(E) = 0 and
xk ≤ β(x) + ε if k 6∈ E.

Now, we can write

tpn(Ax) =
∑

k∈E
a(p, n, k)xk +

∑

k 6∈E
a+(p, n, k)xk −

∑

k 6∈E
a−(p, n, k)xk

≤ ‖x‖
∑

k∈E
|a(p, n, k)|+ (β(x) + ε)

∑

k 6∈E
|a(p, n, k)|

+ ‖x‖
∑

k 6∈E
a−(p, n, k).

Using (1.5), (2.1) and σ-uniform positivity of A we have

lim sup
p

sup
n
tpn(Ax) ≤ β(x) + ε.

Since ε is arbitrary, we conclude that qσ(Ax) ≤ β(x) for all x ∈ m, that is,
σ-core(Ax) ⊆ st-core(x) for all x ∈ m and the proof is complete.

Now, since qσ(Ax) = L∗(Ax) whenever σ(n) = n + 1, we have the fol-
lowing result:

Theorem 2.4. B-core(Ax) ⊆ st-core(x) for all x ∈ m if and only if
A ∈ (S ∩m, f)reg and

lim
p

∑

k

1
p+ 1

∣∣∣
p∑

i=0

an+i,k

∣∣∣ = 1 uniformly in n.

The next theorem is a slight generalization of our main theorem as well
as an analogue of Theorem 2 of [1]:

Theorem 2.5. Let B be a normal matrix and A be any matrix. In order
that whenever Bx is bounded Ax should exist and be bounded and satisfy

σ-core(Ax) ⊆ st-core(Bx),(2.2)
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it is necessary and sufficient that

(2.3) C = (cnk) = AB−1 exists,

(2.4) C ∈ (S ∩m,Vσ)reg,

(2.5) C is σ-uniformly positive,

(2.6) for any fixed n,
N∑

k=0

∣∣∣
∞∑

j=N+1

anjγjk

∣∣∣→ 0 as N →∞,

where γjk are the entries of the matrix B−1.

Proof. Let (2.2) hold and suppose An(x) exists for every n whenever
Bx ∈ m. Then by Lemma 2 of Choudhary [1] it follows that conditions (2.3)
and (2.6) hold. Further by the same lemma, we obtain Ax = Cy, where
y = Bx. Since Ax ∈ m, we have Cy ∈ m. Therefore (2.2) implies that

σ-core(Cy) ⊆ st-core(y).

Hence using Theorem 2.3, we see that conditions (2.4) and (2.5) hold.
Conversely, let conditions (2.3)–(2.6) hold. Then obviously the assump-

tions of Lemma 2 of [1] are satisfied and so Cy ∈ m. Hence Ax ∈ m and by
Theorem 2.3, we obtain

σ-core(Cy) ⊆ st-core(y),

and consequently
σ-core(Ax) ⊆ st-core(Bx),

since y = Bx and Cy = Ax. This completes the proof.

Finally, from Theorem 2.5 we have the following result:

Theorem 2.6. Let B be a normal matrix and A be any matrix. In order
that whenever Bx is bounded Ax should exist and be bounded and satisfy

B-core(Ax) ⊆ st-core(Bx),(2.7)

it is necessary and sufficient that (2.3) and (2.6) hold and

(2.8) C ∈ (S ∩m, f)reg,

(2.9) lim sup
p

sup
n

∑

k

1
p+ 1

∣∣∣
p∑

i=0

cn+i,k

∣∣∣ = 1.
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