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On the statistical and o-cores
by

HUSAMETTIN COSKUN (Malatya), CELAL CAKAN (Malatya)
and MURSALEEN (Aligarh)

Abstract. In [11] and [7], the concepts of o-core and statistical core of a bounded
number sequence x have been introduced and also some inequalities which are analogues
of Knopp’s core theorem have been proved. In this paper, we characterize the matrices of
the class (S Nm, Vy)reg and determine necessary and sufficient conditions for a matrix A
to satisfy o-core(Az) C st-core(z) for all z € m.

1. Introduction. Let K be a subset of N, the set of positive integers.
The natural density 6 of K is defined by

(5(K):lim%\{k§n:k€K}\,

where the vertical bars indicate the number of elements in the enclosed set.
The number sequence x = () is said to be statistically convergent to the
number [ if for every e, 6{k : |z, —1| > £} = 0 (see [7]). In this case, we write
st-lim z = [. We shall also write S and Sy to denote the sets of all statistically
convergent sequences and of all sequences statistically convergent to zero.
The statistically convergent sequences were studied by several authors (see
[2], [7] and others).

Let m and ¢ be the Banach spaces of bounded and convergent sequences
x = () with the usual supremum norm. Let o be a one-to-one mapping
from N into itself. An element @ € m’, the conjugate space of m, is called an
invariant mean or a o-mean if (i) (x) > 0 when the sequence = = (xj) has
x> 0 for all k, (ii) @(e) = 1, where e = (1,1, 1,...), (iii) 2((z,1))) = @(x)
for all x € m.

Throughout this paper we consider the mapping o such that oP(k) # k
for all positive integers k > 0 and p > 1, where oP(k) is the pth iterate of
o at k. Thus, a o-mean extends the limit functional on ¢ in the sense that
@(z) = limz for all x € ¢ (see [12]). Consequently, ¢ C V,, where V, is the
set of bounded sequences all of whose o-means are equal.
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In case (k) = k+1, a o-mean is often called a Banach limit and V is the
set of almost convergent sequences, introduced by Lorentz [9]. If z = (z,,),
write Tx = (T'rn) = (T4(n))- It can be shown [15] that

Vo = {x € m : limt,,(z) = s uniformly in n, s = o-limx}
P

where
ton(x) = (xn + Txp+ ... +TPx,)/(p+1), t_1,(z)=0.

We say that a bounded sequence x = (z}) is o-convergent if x € V. By
Z, we denote the set of o-convergent sequences with o-limit zero. It is well
known [14] that = € m if and only if Tz —x € Z.

Let A be an infinite matrix of real entries a,; and = = (xj) be a real
number sequence. Then Az = ((Az),) = (Y, ankxi) denotes the trans-
formed sequence of z. If X and Y are two non-empty sequence spaces, then
we use (X,Y) to denote the set of all matrices A such that Az exists and
Az €Y for all z € X. Throughout, ), will denote summation from k = 1
to oo.

A matrix A is called (i) regular if A€ (¢, c) and lim Az =limz for all z € ¢,
(ii) o-regular if A € (¢,V,) and o-lim Az = lim x for all x € ¢, and (iii) o-co-
ercive if A € (m,V,). The regularity conditions for A are well known [10].

The following two lemmas which were established in [15] will enable us
to prove our results:

LEMMA 1.1 ([15, Th. 3]). The matriz A is o-coercive if and only if

(L1) 141 = sup 3 Jan| < oo,
n
k
(1.2) o-lima,, = ap  for each k,
. IEES . .
(1.3) hzr)nz P ‘ Z(aai(nm - ak)‘ =0 uniformly in n.
k =0

LEMMA 1.2 ([15, Th. 2]). The matriz A is o-reqular if and only if the
conditions (1.1) and (1.2) hold with o, =0 for each k and

(1.4) a—limz ang = 1.
k

A matrix A is called normal if ap;, = 0 (k > n) and an, # 0 for all n. If
A is normal, then it has its reciprocal.

For any real number A we write A~ = max{—\,0}, AT = max{0, \}.
Then A = AT — A™. We recall (see [11]) that a matrix A is said to be
o-uniformly positive if

li “(p,n,k)=0 iformly i
1}1;112’6:(1 (p,n, k) uniformly in n
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where
alp,n k) = —— Z a,
It is known [11] that a o-regular matrix A is o—unlformly positive if and only
if
(1.5) limz la(p,n, k)] =1 uniformly in n.
p
Let us consider the following functionals defined on m:

l(z) =liminfz, L(z)=Ilimsupz, ¢s(z)=limsupsupip,(x),
p n

1
L*(z) = hmpsup sup P E;:Enﬂ

In [11], the o-core of a real bounded number sequence z has been de-
fined as the closed interval [—¢,(—x), ¢, ()] and also the inequalities ¢, (Ax)
< L(z) (o-core of Az C K-core of ), ¢-(Ax) < ¢, () (0-core of Az C o-core
of x), for all x € m, have been studied. Here the K-core of x (or Knopp core
of z) is the interval [I(z), L(z)] (see [3]).

When o(n) = n + 1, since ¢,(x) = L*(x), the o-core of x is reduced
to the Banach core of z (B-core) defined by the interval [—L*(—z), L*(x)]
(see [13]).

The concepts of B-core and o-core have been studied by many authors
[4,5, 6, 11, 13].

Recently, Fridy and Orhan [7] have introduced the notions of statistical
boundedness, statistical limit superior (st-limsup) and inferior (st-liminf),
defined the statistical core (or briefly st-core) of a statistically bounded
sequence as the closed interval [st-lim inf z, st-lim sup | and also determined
necessary and sufficient conditions for a matrix A to yield K-core(Az) C
st-core(zx) for all x € m.

After all these explanations, one can naturally ask: What are necessary
and sufficient conditions on a matrix A so that the o-core of Ax is contained
in the st-core of x for all x+ € m? Our main purpose is to find an answer
to that question. To do this we need to characterize the class of matrices
A such that Az € V, and o-limAx = st-limz for all x € S Nm, ie.,
A e (SNm,Vy)reg.

2. Main results

THEOREM 2.1. A € (SNm, Vy)reg if and only if A is o-reqular and

(2.1) hm Z la(p,n, k)| =0  wuniformly in n,
keE
for every E C N with natural density zero.
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Proof. First, suppose that A € (S N m,V;)wee. The o-regularity of A
immediately follows from the fact that ¢ C .S Nm. Now, define a sequence
z = (z) for z € m as

) Tk, kEE,
=30, k¢E,

where E is any subset of N with §(E) = 0. By our assumption, since z € Sy,
we have Az € Z. On the other hand, since Az = ), _p aniy, the matrix

B = (byy) defined by
{ank, ke FE,
bk =

0, k¢E,

for all n, must belong to the class (m, Z). Hence, the necessity of (2.1) follows
from Lemma 1.1.

Conversely, suppose that A is o-regular and (2.1) holds. Let = be any
sequence in S N'm with st-limz = [. Write E = {k : |z}, — | > ¢} for any
given € > 0, so that §(F) = 0. Now, from (1.4) we have

o-lim(Az) = o-lim <Z ank(xp — 1) +1 Z ank>
k k
= J—limZank(:Ek - l) +1
k
=1 k —1 l.
llgn%a(pan’ )(l’k ) +

On the other hand, since

> alp,ns k) g = )] < Nz Y lalp,n, k)] + ]| Al

k keE
the condition (2.1) implies that

limz a(p,n,k)(zy —1) =0 uniformly in n.
P k

Hence, o-lim(Az) = st-limz; that is, A € (S Nm, V;)reg, which completes
the proof. =

In the special case o(n) =n + 1, we also have the following theorem:

THEOREM 2.2. A € (SN m, f)reg if and only if A is almost regular
(see [8]) and

1 P

lim —‘ aniik| =0  uniformly in n,

> > formly
keE =0

for every E C N with natural density zero.

THEOREM 2.3. o-core(Ax) C st-core(x) for all x € m if and only if
A e (SNm,Vy)reg and A is o-uniformly positive.
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Proof. Assume that o-core(Az) C st-core(x) for all z € m. Then ¢, (Ax)
< B(x) for all x € m where (z) = st-limsup x. Hence, since f(x) < L(x)
for all x € m (see [7]), the o-uniform positivity of A follows from Theorem 2
of [11]. One can also easily see that

—B(—z) < —¢o(—Az) < ¢o(Az) < B(2),
i.e.,
st-liminf x < —g,(—Azx) < ¢o(Az) < st-limsup z.

If x € SNm, then st-liminf 2 = st-limsupz = st-limz (see [7]). Thus, the
last inequality implies that st-limz = —¢,(—Az) = ¢,(Ax) = o-lim Az,
that is, A € (SNmM, V5 )reg-

Conversely, assume A € (S Nm,V,)ree and A is o-uniformly positive.
If © € m, then B(x) is finite. Let E be a subset of N defined by E =
{k : xp > B(x) + ¢} for a given € > 0. Then it is obvious that 6(E) = 0 and
zp < B(x)+cifk ¢ E.

Now, we can write

tpn(Az) = Z a(p,n, k)zy + Z at(p,n, k)x, — Z a” (p,n, k)

keE kgE kgE
<l Y lalp,n, k) + (B(x) +2) > lalp, n, k)
keE kgE
+ 1zl > a” (p,n, k).
kZE

Using (1.5), (2.1) and o-uniform positivity of A we have
limsup sup tpn (Az) < B(z) + €.
P n
Since ¢ is arbitrary, we conclude that ¢,(Az) < B(x) for all x € m, that is,
o-core(Ax) C st-core(x) for all z € m and the proof is complete. =

Now, since ¢,(Az) = L*(Ax) whenever o(n) = n + 1, we have the fol-
lowing result:

THEOREM 2.4. B-core(Az) C st-core(z) for all x € m if and only if
Ae(SNm, freg and

. 1 e
h;n ; m ‘ ; An4i.k

The next theorem is a slight generalization of our main theorem as well
as an analogue of Theorem 2 of [1]:

=1 uniformly in n.

THEOREM 2.5. Let B be a normal matriz and A be any matriz. In order
that whenever Bz is bounded Ax should exist and be bounded and satisfy

(2.2) o-core(Azx) C st-core(Bz),
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it is necessary and sufficient that

(2.3) C = (cqx) = AB™ exists,

(2.4) C e (S nm, Va)rega

(2.5) C is o-uniformly positive,
N e}

(2.6) for any fized n, Z‘ Z anjfyjk‘ —0 as N — oo,
k=0 j=N+1

where ;i are the entries of the matriz B~

Proof. Let (2.2) hold and suppose A, (x) exists for every n whenever
Bz € m. Then by Lemma 2 of Choudhary [1] it follows that conditions (2.3)
and (2.6) hold. Further by the same lemma, we obtain Ax = Cy, where
y = Bz. Since Ax € m, we have C'y € m. Therefore (2.2) implies that

o-core(Cy) C st-core(y).

Hence using Theorem 2.3, we see that conditions (2.4) and (2.5) hold.

Conversely, let conditions (2.3)—(2.6) hold. Then obviously the assump-
tions of Lemma 2 of [1] are satisfied and so Cy € m. Hence Az € m and by
Theorem 2.3, we obtain

o-core(Cy) C st-core(y),

and consequently
o-core(Azx) C st-core(Bz),

since y = Bx and Cy = Ax. This completes the proof. m
Finally, from Theorem 2.5 we have the following result:

THEOREM 2.6. Let B be a normal matriz and A be any matriz. In order
that whenever Bx is bounded Ax should exist and be bounded and satisfy

(2.7) B-core(Ax) C st-core(Bx),
it is necessary and sufficient that (2.3) and (2.6) hold and
(2'8) Ce (S nm, f)reg7
1 P
(2.9) lim sup sup Z — ‘ Z Cntik| = 1.
P Ol
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