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The projective limit functor for spectra of webbed spaces

by

L. Frerick (Wuppertal), D. Kunkle (Wuppertal) and
J. Wengenroth (Trier)

Abstract. We study Palamodov’s derived projective limit functor Proj1 for projec-
tive spectra consisting of webbed locally convex spaces introduced by Wilde. This class
contains almost all locally convex spaces appearing in analysis. We provide a natural char-
acterization for the vanishing of Proj1 which generalizes and unifies results of Palamodov
and Retakh for spectra of Fréchet and (LB)-spaces. We thus obtain a general tool for
solving surjectivity problems in analysis.

1. Introduction. A classical method for solving analytical problems
consists in finding local solutions and then searching for corrections which
force the local solutions to converge to a global one. For instance, the clas-
sical Mittag-Leffler theorem can be proved in that way, and several modern
applications of this strategy can be found e.g. in [BMV1, BMV2, DV1, DV2,
MTV].

To formalize this method, let us consider a countable projective spectrum
X which consists of linear spaces Xn and linear “spectral” maps %nn+1 :
Xn+1 → Xn. The “steps” Xn might be viewed as the “local parts” of

X = ProjX =
{

(xn)n∈N ∈
∏

n∈N
Xn : %nn+1xn+1 = xn

}
.

If Y = (Yn, τnn+1) is another projective spectrum, f : ProjX → ProjY is
a linear map, and y ∈ ProjY is given then a local solution of the prob-
lem “does y belong to the range of f?” consists in finding xn ∈ Xn with
fn(xn) = yn (where fn : Xn → Yn are the local parts of f satisfying
τnn+1 ◦ fn+1 = fn ◦ %nn+1). Of course, (xn)n∈N need not belong to ProjX ,
but one may hope to find rn ∈ ker fn such that x = (xn − rn)n∈N ∈ ProjX
and thus x solves f(x) = y.

In 1969, V. P. Palamodov introduced the derived functor Proj1 which
measures the obstacle against the method described above. If K is the spec-
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trum consisting of ker fn then Proj1K = 0 means that the method always
works.

This concept is purely algebraic. However, if the spaces Xn carry appro-
priate topologies one can characterize Proj1 = 0 by topological properties.
To mention just one result in this direction, assume that each Xn is endowed
with a complete metrizable group topology such that the spectral maps are
continuous with dense range. Then Proj1 X = 0.

In the situation of the classical Mittag-Leffler theorem these assumptions
are realized using Runge’s theorem. In applications of the Proj1 functor in
distribution theory (in particular, when solving PDEs on various spaces of
distributions) the steps Xn are no longer Fréchet spaces but “dual” to those,
e.g. countable inductive limits of Banach spaces (which are called (LB)-
spaces). For such situations very powerful characterizations of Proj1 = 0
due to Retakh, Palamodov, Vogt, and the last named author are available.

Yet one step further, if one not only seeks for solvability of PDEs but for a
continuous linear solution operator, one can still apply the Proj1 techniques
but the structure of the steps is now “LPLB”, i.e. an inductive limit of
projective limits of (LB)-spaces.

The aim of this article is to unify some results about the vanishing of
Proj1 known for spectra of Fréchet and (LB)-spaces and extend them to
spectra consisting of webbed spaces. This is an extremely wide class of locally
convex spaces introduced by M. De Wilde in connection with closed graph
theorems. It contains Banach spaces and is stable with respect to count-
able products, countable direct sums, (closed) subspaces, and (separated)
quotients. Thus, all spaces appearing in analysis by repeated applications of
countable inductive or projective processes belong to this class.

Here we treat the abstract aspect of this development. Applications to
the splitting theory for sequence spaces are contained in the second named
author’s dissertation [K].

After finishing the first version of this article we learned that a result
very similar to Theorem 3.1 was proved by P. Domański in the unpublished
manuscript [D].

2. Projective spectra and webbed spaces. We start by recalling
basic definitions and properties of the projective limit functor. As mentioned
in the introduction a projective spectrum X consists of linear spaces Xn and
linear spectral maps %nn+1 : Xn+1 → Xn. We denote by %nk = %nn+1◦. . .◦%k−1

k :
Xk → Xn the composition (for n < k) and by %nn the identity on Xn. The
projective limit is

X = ProjX =
{

(xn)n∈N ∈
∏

n∈N
Xn : %nn+1xn+1 = xn

}
,
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and the canonical map X → Xn, (xk)k∈N 7→ xn, is denoted by %n. ProjX is
the kernel of the linear map

Ψ :
∞∏

n=1

Xn →
∞∏

n=1

Xn, (xn)n∈N 7→ (%nn+1xn+1 − xn)n∈N,

and we define the derived functor Proj1 as the cokernel

Proj1X =
∞∏

n=1

Xn/imΨ.

This formula was obtained by Palamodov as a characterization of his defi-
nition of the derived functor in terms of homological algebra (see [P1, P2,
V1, V2, W3]). Instead of going into details we just mention a simple result
which is used in applications (as explained in the introduction).

Proposition 2.1. Let X , Y, and Z be projective spectra and

0 // Xn+1
in+1 //

��

Yn+1
fn+1 //

��

Zn+1 //

��

0

0 // Xn
in // Yn

fn // Zn // 0

commutative diagrams (the vertical arrows are the spectral maps) with exact
rows (i.e. fn is surjective and in is the embedding of Xn = ker fn into Yn).
Then Proj1X = 0 implies that the induced map f : ProjY → ProjZ is
surjective.

Proof. Given z = (zn)n∈N ∈ ProjZ there are yn ∈ Yn with zn = fnyn.
Using the commutativity we get yn − %nn+1yn+1 ∈ ker fn. Hence there are
xn ∈ Xn with yn − %nn+1yn+1 = inxn, and Proj1X = 0 implies the existence
of “corrections” rn ∈ Xn with xn = rn − %nn+1rn+1. Then ỹn = yn − inrn
defines an element ỹ ∈ ProjY with fỹ = z.

The proposition above is in a certain sense even a characterization: If the
conclusion holds for all such commutative diagrams then Proj1 X = 0. Using
this one can show by elementary calculations that Proj1X = 0 if and only
if Proj1 X̃ = 0 where X̃ is some subsequence of X , i.e. for some increasing
sequence k(n) we have X̃n = Xk(n) and %̃nn+1 = %

k(n)
k(n+1).

Let us state one of the fundamental results about Proj1 = 0 which is due
to Retakh [R] (the implications (1)⇒(2)⇒(3)), Palamodov [P2] ((3)⇒(1))
and the last named author [W2] ((4)⇒(1)). We denote by BD(X) the system
of Banach discs in a locally convex space X, i.e. bounded absolutely convex
sets B such that the linear span [B] endowed with ‖x‖B = inf{λ > 0 : x ∈
λB} is a Banach space.
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Theorem 2.2. Let X = (Xn, %
n
n+1) be a projective spectrum of (LB)-

spaces and continuous linear spectral maps. The following conditions are
equivalent :

(1) Proj1X = 0.
(2) There are Bn ∈ BD(Xn) such that

(α) %nn+1(Bn+1) ⊆ Bn,
(β) ∀n ∈ N ∃m ≥ n ∀k ≥ m %nm(Xm) ⊆ %nk(Xk) +Bn.

(3) There are Bn ∈ BD(Xn) such that

(α) %nn+1(Bn+1) ⊆ Bn,
(β̃) ∀n ∈ N ∃m ≥ n %nm(Xm) ⊆ %n(ProjX ) +Bn.

(4) There are Dn ∈ BD(Xn) such that

∀n ∈ N ∃m ≥ n %nm(Xm) ⊆ %n(ProjX ) +Dn.

If in the theorem the spaces are in addition Montel spaces and the spec-
tral maps have dense range then one can drop condition (β) in (2); this is
proved in [W1]. More results of that type are in [BV, FW] and all this can
also be found in [W3].

Now we will recall the definition of webbed spaces (as given e.g. in [J]),
the class of spaces to which we want to generalize (at least parts of) the
theorem above.

Definition 2.3. Let X be a locally convex space. A web in X is a family
(Cα1,...,αk)k,α1,...,αk∈N of absolutely convex sets with the following properties:

(1)
⋃∞
α=1Cα = X.

(2)
⋃∞
n=1Cα1,...,αk,n = Cα1,...,αk for all k, α1, . . . , αk ∈ N.

(3) For every (αk)k∈N ∈ NN there is (λk)k∈N ∈ (0,∞)N such that for every
sequence (xk)k∈N in X with xk ∈ Cα1,...,αk the series

∑∞
k=1 λkxk converges

in X.

The web is called strict if in (3) we additionally have, for every k0 ∈ N,
∞∑

k=k0

λkxk ∈ Cα1,...,αk0
.

The web is called ordered if αk ≤ βk, k ∈ N, implies Cα1,...,αk ⊆ Cβ1,...,βk .

For a sequence (αk)k∈N and j, k ∈ N we will write Cα|j,k := Cαj ,...,αk and
Cα|k := Cα1,...,αk .

The class of spaces having a (strict or ordered) web is closed with respect
to sequentially closed subspaces, separated quotients, countable products
and countable direct sums. Thus also countable inductive and projective
limits of webbed spaces are webbed. We will now show that the sequence
(λk)k∈N in (3) can always be taken independently of α as λk = 2−(k+1).
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Lemma 2.4. Let C = (Cα|k)k,α1,...,αk∈N be a (strict) web in the locally
convex space X. For α = (αk)k∈N ∈ NN and (xk)k∈N ∈

∏
k∈N Cα|k the series∑∞

k=p 2−(k+1)xk converges in X (to an element of 21−pCα|p).

Proof. For simplicity we assume p = 1 (the proof for general p ∈ N is
the same).

For a given sequence β = (βk)k∈N of natural numbers, we take a sequence
(λk)k∈N as in (3) and we find a strictly increasing sequence (lk)k∈N of natural
numbers such that for every k ∈ N we have

lk−1 ≥ k and
∞∑

ν=lk+1

2−ν ≤ λk+1.

Now for a sequence (xk)k∈N in X such that xk ∈ Cα|k for every k ∈ N, we
define a sequence (yk)k∈N by

y1 := 0 and yk := λk
−1

lk∑

ν=lk−1+1

2−νxν for k ≥ 2.

For k ≥ 2 and lk−1 < ν ≤ lk we have xν ∈ Cα|ν ⊆ Cα|lk−1
⊆ Cα|k, thus

absolute convexity and
∑lk+1

ν=lk+1 2−ν ≤ λk+1 imply yk ∈ Cα|k. According
to the choice of (λk)k∈N, the series

∑∞
k=2 λkyk converges (to an element

z ∈ Cα|2) and thus also the sequence

lk∑

ν=1

2−(ν+1)xν = 2−1
l1∑

ν=1

2−νxν + 2−1
k∑

j=1

λjyj

must converge as k →∞ (to an element w ∈ 2−1Cα|1 + 2−1Cα|2 ⊆ Cα|1).
Choose for every n ∈ N the maximal k(n) ∈ N such that lk(n) < n. If we

show that the sequence (rn)n∈N defined by

rn :=
n∑

ν=lk(n)+1

2−(ν+1)xν ∈ λk(n)+1Cα|k(n)+1

converges to zero, the proof will be finished. For this it suffices to show that
for each subsequence n(m) there is a further subsequence m(i) such that
rn(m(i)) tends to 0. But if m(i) is chosen such that k(n(m(i))) is strictly
increasing, even the series

∑∞
i=1 rn(m(i)) converges. This shows rn → 0.

3. The Retakh–Palamodov theorem for webbed spaces. In all
results of this section about projective spectra of locally convex spaces it is
tacitly assumed that the spectral maps are continuous with respect to the
given topologies on the step spaces. We start with a natural generalization
of the equivalence of (1), (2), and (3) in Theorem 2.2.
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Theorem 3.1. Let X = (Xn, %
n
n+1)n∈N be a projective spectrum of lo-

cally convex spaces Xn having ordered webs Cn = (Cnα|k)k,α1,...,αk∈N. The
following conditions are equivalent :

(1) Proj1X = 0.
(2) There is (αν)ν∈N ∈ NN such that for all n ∈ N there exists m ≥ n

such that for all k ≥ m we have

%nmXm ⊆ %nkXk +
n⋂

j=1

(%jn)−1(Cj
α|j,n).

If every web Cn, n ∈ N, is strict , then (1) and (2) are equivalent to

(3) There is a sequence (αν)ν∈N ∈ NN such that for all n ∈ N there exists
m ≥ n with

%nmXm ⊆ %n ProjX +
n⋂

j=1

(%jn)−1(Cjα|j,n).

Proof. We first show that (1) implies (2). If we consider Π :=
∏∞
n=1Xn

with the topology σ defined by the basis of neighbourhoods of zero

Un :=
n∏

j=1

{0} ×
∞∏

j=n+1

Xj , n ∈ N

(i.e. σ is the product of the discrete topologies), then (Π,σ) is complete
and metrizable, thus it is Baire. Since X1 =

⋃∞
j=1C

1
j and since the mapping

Ψ : Π → Π defined in the previous section is surjective, there exists α1 ∈ N
such that Ψ(C1

α1
×∏∞j=2Xj) is not meagre in Π. Since C1 and C2 are ordered,

it follows that

C1
α1
×X2 =

∞⋃

n=1

C1
α1,n × C2

n,

and we find α2 ∈ N such that Ψ(C1
α1,α2

× C2
α2
× ∏∞j=3Xj) is not meagre

in Π. Inductively we can find a sequence (αν)ν∈N such that for all n ∈ N
the set

An := Ψ
( n∏

j=1

Cjα|j,n ×
∞∏

j=n+1

Xj

)

is not meagre in Π, which implies that every A
σ
n contains interior points.

Also the origin is an interior point (as A
σ
n is absolutely convex and σ has

a basis of the zero-neighbourhood filter consisting of vector spaces), which
implies that for all n ∈ N there exists m ≥ n such that for all k ≥ m,

m−1∏

j=1

{0} ×
∞∏

j=m

Xj ⊆ An +
k−1∏

j=1

{0} ×
∞∏

j=k

Xj .
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This implies that for given x ∈ Xm and k ≥ m there is a sequence (zj)j∈N ∈∏n
j=1C

j
α|j,n ×

∏∞
j=n+1Xj such that

(δjmx)j∈N − Ψ((zj)j∈N) ∈
k−1∏

j=1

{0} ×
∞∏

j=k

Xj .

From this we get zj−%jj+1zj+1 = 0 for j ≤ k−1, j 6= m, and zm−%mm+1zm+1
= x, whence

%nmx = %nmzm − %nm+1zm+1 = zn + %nkzk ∈
n⋂

j=1

(%jn)−1(Cjα|j,n) + %nkXk,

so the inclusion in (2) is proved.
In the proof that (2) implies (1) we may assume without loss of gen-

erality that the inclusion in (2) holds with m(n) = n + 1 (because of the
remark after Proposition 2.1). Take a sequence (xn)n∈N ∈

∏∞
n=1Xn. To find

a sequence (wn)n∈N with Ψ((wn)n∈N) = (xn)n∈N, we set y1 := y2 := 0, and
find inductively

yn ∈ Xn and zn ∈ 2−(n+1)
n⋂

j=1

(%jn)−1(Cj
α|j,n)

such that

%nn+1(yn+1 − xn+1) = %nn+2(yn+2) + zn for all n ∈ N.
As for k ≥ n we know that %nkzk ∈ 2−(k+1)Cnα|n,k, Lemma 2.4 implies the
convergence of

∑∞
k=n %

n
kzk := rn. We have rn − %nn+1rn+1 = zn, so if we set

wn := %nn+1yn+1 − rn + xn,

for all n ∈ N we get

wn−%nn+1wn+1 = %nn+1(yn+1−xn+1)−%nn+2yn+2−(rn−%nn+1rn+1)+xn = xn.

It is obvious that (3) implies (2) (as %n(ProjX ) ⊆ %nkXk), so it remains
to show that (1) implies (3). We construct a sequence (αν) ∈ NN as in
the first part of this proof and endow Π with the topology S having the
0-neighbourhood basis

{
ε

n∏

j=1

Cjα|j,n ×
∏

j>n

Xn : ε > 0, n ∈ N
}
.

The strictness of the webs implies that (Π,S) is again a complete metrizable
group. Now, Ψ : (Π,S)→ (Π,σ) has closed graph and is almost open (by the
choice of αν), i.e. images of 0-neighbourhoods are not meagre. The Schauder
lemma (see e.g. [MV, Lemma 3.9]) implies that Ψ is open, and as before this
yields the inclusion required in (3).
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Let us mention that the theorem above has been used in [W3, Theo-
rem 3.3.3] to answer a question of Palamodov [P2, §12.2] about topological
consequences of Proj1X = 0:

If X is a projective spectrum of locally convex spaces having strict
ordered webs then Proj1X = 0 implies Proj+X = 0, i.e. Ψ :

∏
n∈NXn

→∏
n∈NXn is open.

On the other hand, there are spectra X of complete locally convex spaces
such that Proj1X = 0 but Ψ is not open [W3, Example 3.3.2].

In the proof of the theorem (which is quite similar to Retakh’s proof
[R] for spectra of (LB)-spaces) we did not use all properties of webs, but
particularly the following:

Definition 3.2. Let X be a locally convex space, (Ar)r∈N a decreasing
sequence of subsets of X. We call (Ar)r∈N completing (respectively strict)
if there exists a sequence (λr)r∈N ∈ (0,∞)N such that for all (xr)r∈N ∈∏∞
r=1Ar and all p ∈ N the series

∑∞
r=p λrxr converges in X (to an element

in Ap).

The same proof as in Lemma 2.4 shows that for a completing or strict
sequence (Ar)r∈N we can always choose λr = 2−(r+1), r ∈ N. As in Theorem
3.1 we have:

Proposition 3.3. Let X =(Xn, %
n
n+1)n∈N be a projective spectrum of lo-

cally convex spaces Xn having completing sequences (Anr )r∈N with %nn+1A
n+1
r

⊆ Anr for all n, r ∈ N. Then Proj1X = 0 if for all n ∈ N there is m ≥ n
such that for all k ≥ m we have

%nmXm ⊆ %nkXk + Ann.

Remark. To verify the assumptions of the proposition, it is sufficient
to show

%nn+1Xn+1 ⊆ %nn+2Xn+2 + Ann

for all n ∈ N, since we can repeatedly use it to get the condition for all
k ≥ m = n+ 1.

To get a sufficient condition for Proj1X = 0 in terms of the websets
Cnα|k and without the intersection appearing in Theorem 3.1 we need simple
permanence properties of strict sequences:

Lemma 3.4. Let f : X → Y be a continuous linear map between locally
convex spaces. If (Ar)r∈N and (Br)r∈N are strict sequences in X respec-
tively Y then (f(Ar) +Br)r∈N and (Ar ∩ f−1(Br))r∈N are again strict.
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Proof. If xr = f(ar) + br with ar ∈ Ar and br ∈ Br, r ∈ N, then for all
p ∈ N we have

∞∑

r=p

2−(r+1)ar ∈ Ap and
∞∑

r=p

2−(r+1)br ∈ Bp

(in particular, the series converge), thus we get the convergence of
∞∑

r=p

2−(r+1)xr ∈ f(Ap) +Bp.

In the same way, if xr ∈ Ar ∩ f−1(Br), r ∈ N, then
∞∑

r=p

2−(r+1)xr ∈ Ap and
∞∑

r=p

2−(r+1)f(xr) ∈ Bp, p ∈ N,

imply that
∞∑

r=p

2−(r+1)xr ∈ Ap ∩ f−1(Bp), p ∈ N.

We now prove a sophisticated “webbed version” of the sufficiency of the
condition

∀n ∈ N ∃m ≥ n ∀k ≥ m ∃Bn ∈ BD(Xn)

∀Bm ∈ BD(Xm) ∃Bk ∈ BD(Xk) %nmBm ⊆ %nkBk +Bn

for Proj1X = 0. This is an improved formulation of a result proved in [FW]
and [BV] recently observed by M. Langenbruch (personal communication).

Theorem 3.5. Let X = (Xn, %
n
n+1)n∈N be a projective spectrum of lo-

cally convex spaces Xn having strict ordered webs Cn = (Cnα|k)k,α1,...,αk∈N
with

(∗) 2Cnα1,...,αr ⊆ Cn2α1,...,2αr for all α ∈ NN.
Then the following condition implies Proj1X = 0:

∀n ∈ N ∃m ≥ n ∀k ≥ m ∃α ∈ NN ∀β ∈ NN ∃γ ∈ NN
∀r ∈ N ∃s ∈ N ∀t ∈ N %nmC

m
β|s ⊆ %nkCkγ|t + Cnα|r.

Proof. Without loss of generality we assume m(n) = n + 1 (see the
remark after Proposition 2.1). Because of (∗), we have with the same quan-
tifiers as in the statement of the theorem

%nn+1C
n+1
β|s ⊆ %

n
kC

k
γ|t + 2−1Cnα|r.

We will show that this implies

%nn+1Xn ∈ %nn+2Xn+2 + Ann.
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Using the assumption, we choose α1 according to n = 1, m = 2 and k = 3
and α2 according to n = 2, m = 3 and k = 4. Then there is a sequence
γ = (γr)r∈N and a strictly increasing sequence (s(r))r∈N such that for all
t, r ∈ N,
(1) %1

2C
2
α2|s(r) ⊆ %1

3C
3
γ|t + C1

α1|r.

We define, for all r, t ∈ N,
A1
r := C1

α1|r, Br,t := (%1
2)−1(A1

r) ∩ (%2
3(C3

γ|t) + C2
α2|s(r)), A2

r := Br,r.

Then (1) implies C2
α2|s(r) ⊆ %2

3(C3
γ|t) + (%1

2)−1(A1
r) and therefore also

(2) C2
α2|s(r) ⊆ %2

3(C3
γ|t) +Br,t

for all r, t ∈ N. The choice of α2 implies the existence of a sequence δ =
(δr)r∈N and of a strictly increasing sequence (s̃(r))r∈N such that for all
r, t̃ ∈ N,

%2
3C

3
γ|s̃(r) ⊆ %2

4(C4
δ|t̃) + 2−1C2

α2|r.

Inserting s(r) instead of r into the last inclusion and defining ŝ(r) := s̃(s(r)),
we deduce from (2), for all r, t, t̃ ∈ N,

(3) %2
3C

3
γ|ŝ(r) ⊆ %2

4(C4
δ|t̃) + 2−1Br,t + 2−1%2

3C
3
γ|t.

This inclusion for t = ŝ(r + 1) gives us, for all r, t̃ ∈ N,

(4) %2
3C

3
γ|ŝ(r) ⊆ %2

4(C4
δ|t̃) + 2−1A2

r + 2−1%2
3C

3
γ|ŝ(r+1).

Here we have also used the fact that (ŝ(r))r∈N is strictly increasing and the
sets Br,t are ordered by inclusion with respect to t, so

Br,ŝ(r+1) ⊆ Br,r = A2
r.

We show that this implies

(5) %2
3C

3
γ|ŝ(r) ⊆ 4%2

4(C4
δ|τ ) + 2A2

r

for all r, τ ∈ N. For this we take fixed r, τ ∈ N and x0 ∈ C3
γ|ŝ(r). Then (4)

applied to t̃ = τ gives

y0 ∈ C4
δ|τ , z0 ∈ A2

r, x1 ∈ C3
γ|ŝ(r+1)

such that
%2

3x0 = %2
4y0 + 2−1z0 + 2−1%2

3x1.

For every p ∈ N we get inductively using (4) for t̃ = τ + p elements

yp ∈ C4
δ|τ+p, zp ∈ A2

r+p, xp+1 ∈ C3
γ|ŝ(r+p+1)

such that
%2

3xp = %2
4yp + 2−1zp + 2−1%2

3xp+1,
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thus

%2
3x0 = %2

4

q∑

p=0

2−pyp +
q∑

p=0

2−(p+1)zp + %2
3(2−(q+1)xq+1)

for all q ∈ N. Now the web C4 is strict and (A2
r)r∈N is strict because of

Lemma 3.4. Thus by 2.4 the two series converge to elements in 4C4
δ|τ and

2A2
r respectively, so the right hand side of the last equation converges to an

element in 4%2
4C

4
δ|τ + 2A2

r, which proves (5).

The next step is to show that for all sequences β = (βr)r∈N there is a
sequence σ = (σr)r∈N and a sequence (s(r))r∈N such that for all τ, r ∈ N we
have

(6) %2
3C

3
β|s(r) ⊆ %2

4C
k
σ|τ + A2

r.

Fix β; then according to the choice of α2 there are sequences η, s′ ∈ NN such
that for all r, τ̃ ∈ N,

%2
3C

3
β|s′(r) ⊆ %2

4C
4
η|τ̃ + C2

α2|r

and so, defining s(r) := s′(s(r)), we get, for all r, t, τ̃ ∈ N,
%2

3C
3
β|s(r) ⊆ %2

4C
4
η|τ̃ + C2

α2|s(r) ⊆ %
2
4C

4
η|τ̃ + %2

3C
3
γ|t +Br,t

where in the last inclusion we have used (2). Inserting t = ŝ(r) and using
(5) we get, according to the definition of A2

r ,

%2
3C

3
β|s(r) ⊆ %2

4C
4
η|τ̃ + %2

3C
3
γ|ŝ(r) +A2

r ⊆ %2
4C

4
η|τ̃ + 4%2

4C
4
δ|τ + 2A2

r +A2
r

⊆ %2
4C

4
η|τ̃ + 4%2

4C
4
δ|τ + 3A2

r

for all r, τ̃ , τ ∈ N. Putting τ̃ = τ and defining σk = max{ηk, δk}, k ∈ N, we
conclude

%2
3C

3
β|s(r) ⊆ 5%2

4C
4
σ|τ + 3A2

r.

Using this inclusion for 8β instead of β and taking into account (∗), we get
the inclusion (6).

So far, starting from (A1
r)r∈N, we have constructed a strict sequence

(A2
r)r∈N of subsets satisfying (6) and %1

2A
2
r ⊆ A1

r for all r ∈ N. Proceeding in
the same way with An−1

r instead of A1
r we can construct inductively strict

sequences (Anr )r∈N, n ∈ N, that satisfy %nn+1A
n+1
r ⊆ Anr and for all β ∈ NN

there exists σ ∈ NN such that for all r ∈ N there exists s(r) ∈ N such that
for all t ∈ N,
(7) %nn+1C

n+1
β|s(r) ⊆ %

n
n+2C

n+2
σ|t + Anr .

To finally arrive at Proj1X = 0, we use the Remark after Proposition 3.3:



128 L. Frerick et al.

If n ∈ N and x ∈ Xn+1 are given, there is a sequence β of natural numbers
such that x ∈ Cn+1

β|s for all s ∈ N. Thus (7) with r = n implies

%nn+1x ∈ %nn+2Xn+2 +Ann,

so we have proved the inclusion in Proposition 3.3, which implies Proj1X
= 0.
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of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci. 287, Kluwer, Dordrecht, 1989, 11–27.

[W1] J. Wengenroth, Inductive spectra of Fréchet spaces, Studia Math. 120 (1996),
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