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Abstract. Relatively independent joinings of W*-dynamical systems are construct-
ed. This is intimately related to subsystems of W*-dynamical systems, and therefore
we also study general properties of subsystems, in particular fixed point subsystems and
compact subsystems. This allows us to obtain characterizations of weak mixing and relative
ergodicity, as well as of certain compact subsystems, in terms of joinings.

1. Introduction. In the study of the general mathematical structure of
quantum dynamical systems and quantum statistical mechanics, the opera-
tor-algebraic approach has proven very valuable. In particular the framework
of von Neumann algebras, in which case the dynamical system is called a
W∗-dynamical system (see Section 2 for a precise definition), provides a nat-
ural arena for ergodic theory which extends the classical measure-theoretic
framework. Refer to [6, 7] for an account of many aspects of these topics.

The first aim of this paper is to study the extension of the concept of
a relatively independent joining of two dynamical systems in classical er-
godic theory to the noncommutative framework of W∗-dynamical systems.
It is essentially a generalized way of forming the tensor product of two sys-
tems which takes into account a common subsystem of the systems. A clear
exposition of the classical case can be found in [15, Chapter 6].

Since the early works [14, 31], joinings have been a useful tool in classical
ergodic theory (again see [15]). This paper, building on [9, 10], is part of
a programme to systematically develop the theory of joinings in the non-
commutative case. The goal is to eventually have a similarly useful tool for
noncommutative dynamical systems.

Joinings have in fact already gradually found some use in noncommu-
tative dynamical systems, in particular related to dynamical entropy [32]
where a special case of joinings appears (see also [26, Section 5.1]). Early
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work related to joinings in a noncommutative setting goes back to at least [4],
where disjointness was studied in the context of a noncommutative extension
of topological dynamics (see in particular [4, Definition 2.9 and Section 5]).

Since subsystems form an integral part of relatively independent join-
ings, we also study the properties of particular subsystems, namely the fixed
point subsystem and the compact subsystem generated by the eigenoper-
ators of the dynamics. These subsystems are related to the properties of
W∗-dynamical systems, namely to ergodicity and weak mixing respectively.
For subsystems more generally we will see in Section 2 and onward that the
modular group of the state of the W∗-dynamical system in question plays
an essential role in the definition and application of subsystems relevant to
relatively independent joinings. This fits in very naturally with the phys-
ically relevant case in which the dynamics itself is given by the modular
group of the state, but we will see that the framework is much more widely
applicable. Note that subsystems have already proven useful in the study of
noncommutative dynamical systems; see for example [3, Sections 3 and 4]
and [29, Definition 2.9 and Lemma 2.10] for recent work.

After summarizing the basic framework in Section 2, we construct rela-
tively independent joinings of two W∗-dynamical systems in Section 3 and
derive a few useful facts regarding them. In Sections 4 and 5 we then study
relative ergodicity and compact subsystems respectively, to illustrate how
relatively independent joinings fit into the theory of W∗-dynamical systems.
In the latter two sections the fixed point subsystem and compact subsystem
generated by the eigenoperators respectively play a central role. In Section 6
we conclude the paper by studying further properties of this compact sub-
system when the W∗-dynamical system is ergodic.

2. Basic definitions, notations and background. We use the same
basic definitions as in [9, 10]. For convenience we summarize them here, along
with some additional definitions. Simultaneously this fixes notations that will
be used throughout the rest of the paper. Some related background material,
in particular regarding Tomita–Takesaki theory (or modular theory) is also
discussed. A general notation that we use often is B(X) to denote the space
of all bounded linear operators X → X on a normed space X. The identity
element of a group will be indicated by 1. In the remainder of this paper W∗-
dynamical systems are referred to simply as “systems” and they are defined
as follows:

Definition 2.1. A system A = (A,µ, α) consists of a faithful normal
state µ on a (necessarily σ-finite) von Neumann algebra A, and a representa-
tion α : G→ Aut(A) : g 7→ αg of an arbitrary group G as ∗-automorphisms
of A, such that µ ◦αg = µ for all g. We call the system A an identity system
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if αg = idA for all g where idA : A → A is the identity mapping, while we
call it trivial if A = C1A where 1A (often denoted simply as 1) is the unit
of A.

In the rest of the paper the symbols A, B, F and R will denote sys-
tems (A,µ, α), (B, ν, β), (F, λ, ϕ) and (R,ψ, ρ) respectively, all making use
of actions of the same group G.

Definition 2.2. A joining of A and B is a state ω (i.e. a positive linear
functional with ω(1) = 1) on the algebraic tensor product A� B such that
ω(a ⊗ 1B) = µ(a), ω(1A ⊗ b) = ν(b) and ω ◦ (αg � βg) = ω for all a ∈ A,
b ∈ B and g ∈ G. The set of all joinings of A and B is denoted by J(A,B).
We call A disjoint from B when J(A,B) = {µ� ν}.

We will also have occasion to use a more general concept, namely if
A and B are von Neumann algebras with faithful normal states µ and ν
respectively, then a coupling of (A,µ) and (B, ν) is a state ω on A�B such
that ω(a⊗ 1B) = µ(a) and ω(1A ⊗ b) = ν(b).

The modular group of a faithful normal state µ on a von Neumann algebra
A will be denoted by σµ, and its elements by σµt for every t ∈ R. The cyclic
representation of A obtained from µ by the GNS construction will be denoted
by (Hµ, πµ, Ωµ); this notation will in fact also be used in the case of an
arbitrary state on a unital ∗-algebra. The associated modular conjugation
will be denoted by Jµ, and we let

jµ : B(Hµ)→ B(Hµ) : a 7→ Jµa
∗Jµ

for which we note that j−1
µ = jµ. We will also use the notation

γµ : A→ Hµ : a 7→ πµ(a)Ωµ

even in the case of unital ∗-algebras.
The dynamics α of a system A can be represented by a unitary group U

on Hµ defined by extending

Ugγµ(a) := γµ(αg(a)).

It satisfies
Ugπµ(a)U∗g = πµ(αg(a))

for all g ∈ G; see also [6, Corollary 2.3.17]. The unitary representation of β
will be denoted by V .

Definition 2.3. We call F a subsystem of A if there exists an injective
unital ∗-homomorphism ζ of F onto a von Neumann subalgebra of A such
that µ◦ζ = λ and αg ◦ζ = ζ ◦ϕg for all g ∈ G. If ζ(F ) is invariant under σµ,
i.e. σµt (ζ(F )) = ζ(F ) for all t ∈ R, then F is called a modular subsystem ofA.
If furthermore ζ : F → A is surjective, then we say that ζ is an isomorphism
of dynamical systems, and the systems A and F are isomorphic.
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The symbol ζ will be used uniformly for this purpose. We call it the
imbedding of F into A. Without loss one could assume ζ to be an inclusion,
so F ⊂ A, and we will often do so. When the system F is a subsystem
of B, the notation η : F → B instead of ζ will be used. If F is a (modular)
subsystem of both A and B, then we call it a common (modular) subsystem
of A and B.

Important nontrivial examples of modular subsystems will be studied in
Sections 4 and 5. In the meantime we note that in classical ergodic theory all
subsystems (also known as “factors”) are of course modular. More generally,
if the state µ of our system A happens to be a trace (i.e. µ(ab) = µ(ba) for
all a, b ∈ A), then again all subsystems are modular. Also, in the physically
relevant situation where the dynamics α of A is the modular group of µ, any
subsystem of A is automatically modular.

A standard fact from Tomita–Takesaki theory related to modular subsys-
tems is the following (a proof is contained in [36, Section 10.2] for example):

Lemma 2.4. Let µ be a faithful normal state on a von Neumann al-
gebra A. Let F be a von Neumann subalgebra of A, invariant under σµ.
Setting HF := γµ(F ), we have JµHF = HF .

When we construct relatively independent joinings of A and B over a
common modular subsystem F in the next section, one of the key tricks (also
used in [12]) is to work with the “commutant” B̃ of B. Given a system B,
this means the following: We set B̃ := πν(B)′ and then carry the state
and dynamics of B over to B̃ in a natural way using jν by defining a state
ν̃ and ∗-automorphism β̃g on B̃ by ν̃(b) := ν ◦ π−1

ν ◦ jν(b) and β̃g(b) :=
jν ◦ πν ◦ βg ◦ π−1

ν ◦ jν(b) for all g ∈ G. From Tomita–Takesaki theory one
deduces that VgJν = JνVg (see [9, Construction 3.4]). It follows that

ν̃(b) = 〈Ων , bΩν〉 and β̃g(b) = VgbV
∗
g

for all b ∈ B̃ and g ∈ G. In particular the latter tells us that the unitary
representation of β̃ is the same as that of β, namely V .

3. Relatively independent joinings. Throughout this section we con-
sider two systems A and B which have a common modular subsystem F. We
are going to construct the relatively independent joining of A and B over F.
More precisely it will be a joining of A and B̃. Without loss we can assume
ζ to be an inclusion, so F ⊂ A.

Since F is a modular subsystem of B, we obtain a modular subsystem
F̃ = (F̃ , λ̃, ϕ̃) of B̃ in the following way (as is easily checked): Set

F̃ := jν ◦ πν ◦ η(F ) ⊂ B̃
and let λ̃ := ν̃|F̃ and ϕ̃g := β̃g|F̃ for all g ∈ G.



Relatively independent joinings 25

Since F and F̃ are invariant under the modular groups of µ and ν̃ respec-
tively we know by Tomita–Takesaki theory (see for example [37, Theorem
IX.4.2]) that we have unique conditional expectations

D : A→ F and D̃ : B̃ → F̃

such that λ ◦D = µ and λ̃ ◦ D̃ = ν̃. (This corresponds to disintegrations in
the classical case; see [15, Section 6.1].)

SettingHη := γν(η(F )), we obtain a well-defined unital ∗-homomorphism

πη : F → B(Hη) : a 7→ πν(η(a))|Hη
and one can check that (Hη, πη, Ων) is a cyclic representation of (F, λ) and
hence unitarily equivalent [6, Theorem 2.3.16] to (Hλ, πλ, Ωλ). In other words
there is a unique unitary operator uη : Hλ → Hη such that uηΩλ = Ων and
u∗ηπη(a)uη = πλ(a) for all a ∈ F . From Lemma 2.4, for any a ∈ F̃ we have
aHη ⊂ Hη, and therefore we obtain a well-defined injective ∗-homomorphism

κη : F̃ → B(Hλ) : a 7→ u∗η(a|Hη)uη.

It is then easily shown from the definition of F̃ that κη(F̃ ) ⊂ πλ(F )′, and
hence

δ : πλ(F )� κη(F̃ )→ B(Hλ)

defined as the linear extension of πλ(F )× κη(F̃ )→ B(Hλ) : (a, b) 7→ ab is a
well-defined unital ∗-homomorphism. We now introduce the diagonal state
of λ as the state

∆λ : F � F̃ → C

defined by
∆λ(c) := 〈Ωλ, δ ◦ (πλ � κη)(c)Ωλ〉

for all c ∈ F � F̃ . This enables us to define a linear functional µ �λ ν̃ on
A� B̃ by

µ�λ ν̃ := ∆λ ◦ (D � D̃).

(If we did not assume ζ to be an inclusion mapping, one would simply replace
D by ζ−1 ◦D.)

This completes the basic construction. The next step is to show that
µ�λ ν̃ is a joining of A and B̃. In fact we will show a bit more in the next
proposition. We first define a special class of joinings of A and B̃:

Definition 3.1. Any ω ∈ J(A, B̃) with ω|F�F̃ = ∆λ is called a joining
of A and B̃ over F. The set of all such ω is denoted by Jλ(A, B̃).

Proposition 3.2. If F is a common modular subsystem of A and B,
then µ�λ ν̃ ∈ Jλ(A, B̃).
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Proof. From the uniqueness of D it follows that ϕ−1
g ◦D ◦ αg = D and

therefore D ◦ αg = ϕg ◦ D. Similarly D̃ ◦ β̃g = ϕ̃g ◦ D̃. Denoting the uni-
tary representation of ϕ on Hλ by W , we observe that for a ∈ F we have
u∗ηVg|Hηuηπλ(a)u∗ηVg|Hηuη = u∗ηπν(βg(η(a)))uη = πλ(ϕg(a)) = Wgπλ(a)W ∗g .
Letting this act on the cyclic vector Ωλ, we obtain u∗ηVg|Hηuη = Wg. There-
fore κη(ϕ̃g(b)) = Wgκη(b)W

∗
g for b ∈ F̃ .

For a ∈ A and b ∈ B̃ it follows that

µ�λ ν̃(αg � β̃g(a⊗ b)) = 〈Ωλ, πλ(ϕg(D(a)))κη(ϕ̃g(D̃(b)))Ωλ〉
= 〈Ωλ,Wgπλ(D(a))W ∗gWgκη(D̃(b))W ∗gΩλ〉
= µ�λ ν̃(a⊗ b)

and therefore µ �λ ν̃ ◦ (αg � β̃g) = µ �λ ν̃ as required. Since D and D̃ are
conditional expectations, it follows that D�D̃ is positive (see [36, p. 119] for
example). It is now easily seen that µ �λ ν̃ ∈ J(A, B̃). From the definition
of µ�λ ν̃ it then immediately follows that µ�λ ν̃ ∈ Jλ(A, B̃).

Definition 3.3. The joining µ�λ ν̃ of A and B̃ is called the relatively
independent joining of A and B̃ over F. If Jλ(A, B̃) = {µ �λ ν̃}, then
A and B̃ are called disjoint over F.

In the remainder of this section we study simple but useful properties
of this relatively independent joining. These properties will be applied in
subsequent sections.

Proposition 3.4. If F =C, then µ�λ ν̃=µ�ν̃ and Jλ(A, B̃)=J(A, B̃).

Proof. This follows directly from the definitions above.

Proposition 3.5. Let F and R both be common modular subsystems of
A and B, and F a subsystem of R, with inclusions F ⊂ R ⊂ A giving the
corresponding imbeddings of the subsystems into A, while θ : R→ B and η =
θ|F give the imbeddings into B. Then Jψ(A, B̃) ⊂ Jλ(A, B̃). Furthermore,
if µ�ψ ν̃|R�R̃ = µ�λ ν̃|R�R̃, then R = F .

Proof. For the first part we only need to show that ∆ψ|F�F̃ = ∆λ. Given
(Hψ, πψ, Ωψ), we can assume that (Hλ, πλ, Ωλ) is defined by Hλ = γψ(F ),
πλ(a) = πψ(a)|Hλ for a ∈ F , and Ωλ = Ωψ, without changing ∆λ, because
of unitary equivalence between different cyclic representations of the same
state. We can also define κθ : R̃ → B(Hψ) in the same way as κη above,
with the corresponding unitary operator denoted by uθ instead of uη. Note
that uθγλ(a) = πθ(a)Ων = πη(a)Ων = uηγλ(a) for a ∈ F , which implies that
κθ(b)|Hλ = κη(b) for b ∈ F̃ , hence ∆ψ|F�F̃ = ∆λ.
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Assuming µ�ψ ν̃|R�R̃ = µ�λ ν̃|R�R̃, we have (in Hψ)

〈πψ(a)Ωψ, κθ(b)Ωψ〉= µ�ψ ν̃(a∗⊗ b) = µ�λ ν̃(a∗⊗ b) = µ�λ ν̃(a∗⊗ D̃(b))

= µ�ψ ν̃(a∗ ⊗ D̃(b)) = 〈πψ(a)Ωψ, κθ(D̃(b))Ωψ〉

for any a ∈ R and b ∈ R̃ (with R̃ of course defined in an analogous way to F̃ ).
Since Ωψ is cyclic for πψ, and therefore separating for κθ(R̃) ⊂ πψ(R)′,
it follows that κθ(b) = κθ(D̃(b)). Therefore b|Hθ = D̃(b)|Hθ where Hθ :=

γν(θ(R)), and hence bΩν = D̃(b)Ων . Since Ων is separating for B̃ we conclude
that b = D̃(b) ∈ F̃ and therefore R̃ = F̃ . It follows that R = F as required.

Finally we consider a Hilbert space characterization of relatively inde-
pendent joinings. We will work in the following setting: Let ω be a cou-
pling of (A,µ) and (B̃, ν̃) as defined in Section 2. Then we can “imbed”
(Hµ, πµ, Ωµ) and (Hν̃ , πν̃ , Ων̃) into (Hω, πω, Ωω) in a natural way (see [9,
Construction 2.3] for explicit details; also note that (Hν̃ , πν̃ , Ων̃) is unitar-
ily equivalent to (Hν , ιB̃, Ων) but not necessarily equal). In particular Hµ

and Hν̃ are then subspaces of Hω and the corresponding cyclic vectors are
equal to Ωω. We set H ′λ = γµ(F ) ⊂ Hµ and Hλ̃ = γν̃(F̃ ) ⊂ Hν̃ .

We are particularly interested in the case where ω|F�F̃ = ∆λ. One then

has H ′λ = Hλ̃: Indeed, H
′
λ and Hλ̃ are both contained in H� := γω(F � F̃ ).

Consider x ∈ H�	H ′λ and a sequence bn ∈ F�F̃ such that γω(bn)→ x; then
for every a ∈ F it follows from ω|F�F̃ = ∆λ that 0 = 〈γµ(a), x〉 = 〈γλ(a), x′〉
where the limit x′ := limn→∞ δ ◦ (πλ � κη)(bn)Ωλ exists in Hλ by unitary
equivalence between the cyclic representations (Hλ, δ ◦ (πλ � κη), Ωλ) and
(H�, πω(·)|H� , Ωω) of (F � F̃ ,∆λ). Therefore x′ = 0, and so x = 0 by the
same unitary equivalence. Hence H ′λ = H�. In a similar fashion Hλ̃ = H�,
proving the claim. By unitary equivalence one can choose (Hλ, πλ, Ωλ) to be
(H ′λ, πµ(·)|H′λ , Ωµ), with a corresponding change in κη, without changing the
state ∆λ . In conclusion we therefore have

Hλ̃ = Hλ

when ω|F�F̃ = ∆λ.
In this setting we now have the following result:

Proposition 3.6. Suppose that ω is a coupling of (A,µ) and (B̃, ν̃) such
that ω|F�F̃ = ∆λ. Then ω = µ�λ ν̃ if and only if any of the following three
equivalent conditions is satisfied: (Hµ	Hλ) ⊥ (Hν̃ 	Hλ), (Hµ	Hλ) ⊥ Hν̃ ,
or Hµ ⊥ (Hν̃ 	Hλ).

Proof. The equivalence of the three conditions is easily verified. So as-
sume ω = µ �λ ν̃ and consider any x ∈ Hµ 	 Hλ and y ∈ Hν̃ , as well as
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sequences an ∈ A and bn ∈ B̃ such that γµ(an)→ x and γν̃(bn)→ y. Then
〈x, γν̃(bn)〉 = lim

m→∞
ω(a∗m ⊗ bn) = lim

m→∞
µ�λ ν̃(a∗m ⊗ bn)

= 〈Ωλ, (πλ ◦D(a∗m))(κη ◦ D̃(bn))Ωλ〉
= 〈Ωλ, (πλ ◦D(a∗m))(κη ◦ D̃(D̃(bn)))Ωλ〉 = 〈x, γν̃(D̃(bn))〉 = 0

and therefore 〈x, y〉 = 0. It follows that (Hµ	Hλ) ⊥ Hν̃ . Conversely, assume
that (Hµ	Hλ) ⊥ (Hν̃ 	Hλ) and consider any a ∈ A and b ∈ B̃. Let P and
P̃ respectively be the projections of Hµ and Hν̃ on Hλ. Then for any a ∈ A
and b ∈ B̃,

ω(a⊗ b) = 〈γµ(a∗), γν̃(b)〉 = 〈Pγµ(a∗), P̃ γν̃(b)〉
= 〈γµ(D(a∗)), γν̃(D̃(b))〉 = ω(D(a)⊗ D̃(b))

= ∆λ(D(a)⊗ D̃(b)) = µ�λ ν̃(a⊗ b),
which is sufficient.

We will also unitarily represent the dynamics of B̃ on Hν̃ , and denote
this representation by Ṽ . This representation is used in Sections 4 and 5
instead of V on Hν to fit into the setting of Proposition 3.6.

4. Relative ergodicity. In this section and the next we study how
the relatively independent joinings constructed in the previous section relate
to properties of systems. In particular in this section we consider relative
ergodicity, which is a simple generalization of ergodicity. See for example
[15, Section 6.6] for a discussion of the classical case.

The relevant terminology and definitions are as follows: The fixed point
algebra of a system A (or, put differently, of α) is defined as

Aα := {a ∈ A : αg(a) = a for all g ∈ G}
and this gives an identity subsystem Aα of A by simply restricting the state
of A to Aα . We call Aα the fixed point subsystem of A. Similarly, we call

HU
µ := {x ∈ Hµ : Ugx = x for all g ∈ G}

the fixed point space of U .
Definition 4.1. Let F be a subsystem of A. We call A ergodic relative

to F if Aα ⊂ ζ(F ).
If F in Definition 4.1 is the trivial system, then A is simply called ergodic.
We note the following important facts:
Proposition 4.2. The fixed point subsystem Aα is a modular subsystem

of A. Furthermore, HU
µ = γµ(Aα).

Proof. By [37, Corollary VIII.1.4], αg ◦ σµt = αg ◦ σ
µ◦αg
t = σµt ◦ αg, from

which σµt (Aα) = Aα follows.
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We now show that HU
µ = γµ(Aα). It is clear that γµ(Aα) ⊂ HU

µ . The
converse follows from the Kovács–Szűcs mean ergodic theorem [6, Proposi-
tion 4.3.8] (see also see [21]) using an argument similar to that of [6, Theo-
rem 4.3.20] (see also [18]): Let P be the projection ofHµ ontoHU

µ ; then, since
Ωµ ∈ HU

µ is cyclic for πµ(A)′, there exists a unique normal (πµ ◦αg ◦π−1
µ )g∈G

invariant projection E : πµ(A)→ πµ(Aα). Furthermore, E has the property
that Ea is the unique element of πµ(A) such that (Ea)P = PaP for every
a ∈ πµ(A). Hence (Ea)Ωµ = PaΩµ, from which we obtain γµ(Aα) ⊃ HU

µ .

Now for the main result of this section:

Theorem 4.3. Let the identity system F be a modular subsystem of A.
If A and B̃ are disjoint over F for B = Aα, then A is ergodic relative to F.
On the other hand, if A is ergodic relative to F, then A and B̃ are disjoint
over F for every identity system B which has F as a modular subsystem.

Proof. Without loss we assume that ζ is an inclusion, so F ⊂ A. Now,
suppose A is not ergodic relative to F, in other words F is strictly contained
in Aα. Note that F is a modular subsystem of Aα, since F and Aα are
modular subsystems of A. Then apply Proposition 3.5 with B = R = Aα to
obtain µ�ψ ν̃ 6= µ�λ ν̃. But both these joinings are contained in Jλ(A, B̃)

by Propositions 3.2 and 3.5, so A and B̃ are not disjoint over F.
Conversely, assume that A is ergodic relative to F, and let B be any

identity system which has F as a modular subsystem. We are going to apply
Proposition 3.6. So consider any ω ∈ Jλ(A, B̃). From this joining we obtain a
conditional expectation operator Pω : Hν̃ → Hµ (i.e. 〈x, Pωy〉 = 〈x, y〉 for all
x ∈ Hµ and y ∈ Hν̃) such that UgPω = PωṼg (see [9, Proposition 2.4]). Then
for any b ∈ B̃ we have UgPωγν̃(b) = Pωγν̃(b), since B̃ is an identity system.
Since F = Aα, it follows from Proposition 4.2 that Pωγν̃(b) ∈ γµ(Aα) = Hλ.
Noting that Pω is the projection of Hω onto Hµ restricted to Hν̃ , we conclude
that Hν̃ ⊥ (Hµ 	Hλ), and hence ω = µ�λ ν̃ by Proposition 3.6.

This result contains [10, Theorem 2.1] as a special case by Proposition 3.4,
namely A is ergodic if and only if it is disjoint (over the trivial system) from
all identity systems. Also note that in Theorem 4.3, A being ergodic relative
to F means exactly that Aα = ζ(F ), i.e. F is isomorphic to Aα, since F is
assumed to be an identity system.

5. Compact subsystems. In this section we study an analogue of the
result in the previous section in terms of compact systems instead of identity
systems. We therefore proceed by first building up some background regard-
ing compact subsystems, which includes extending certain results from [27,
Section 4] to more general group actions in a way (see Lemma 5.3 and The-
orem 5.4 below) that is relevant to our intended applications. Our proofs of
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Lemma 5.3 and Theorem 5.4 follow the basic plans of those in [27], but many
of the details differ. We can also mention that these two results are closely
related to the work in [25, Sections 1 and 2]. To avoid any confusion, we note
that our terminology regarding topologies on B(H) differs slightly from that
of [27] and furthermore we do not always use the same topologies as in [27];
we use the terminology of [6, Section 2.4.1], in particular the weak topology
on B(H) is generated by 〈x, (·)y〉 for x, y ∈ H. The additional definitions
that we need in this section are the following:

Definition 5.1. A system A is compact if the orbit UGx is totally
bounded (i.e. UGx is compact) in Hµ for every x ∈ Hµ. An eigenvector
of U is an x ∈ Hµ\{0} such that there is a function, called its eigenvalue,
χ : G→ C such that Ugx = χ(g)x for all g ∈ G. The set of all eigenvalues is
denoted by σA. Let H0 denote the Hilbert subspace of Hµ spanned by the
eigenvectors of U . We will call u ∈ A\{0} an eigenoperator of α if there is a
function χ : G→ C, its eigenvalue, such that αg(u) = χ(g)u for all g ∈ G.

As already mentioned, our immediate goal is to study compact subsys-
tems of a given system. We start with an analogue of the first part of Propo-
sition 4.2:

Proposition 5.2. For a system A, denote by AK the von Neumann
subalgebra of A generated by the eigenoperators of α. Then αg(A

K) = AK ,
which allows us to define a subsystem AK = (AK , µK , αK) of A (in terms of
an inclusion as the imbedding into A) by setting µK := µ|AK and αKg (a) :=

αg(a) for all a ∈ AK . The system AK is a compact modular subsystem of A.

Proof. Let S be the ∗-algebra generated by the eigenoperators of α. Then
clearly αg(S) = S ⊂ AK . But AK = S′′, so S is σ-weakly dense in AK , while
αg is σ-weakly continuous for each g. It follows that αg(AK) = AK .

Next we prove that the subsystem AK so obtained is compact. Note that
for any eigenoperator u of α, γµ(u) is an eigenvector of U . Furthermore,
it is easily seen that if u and v are eigenoperators of α, then u∗ is also
an eigenoperator of α, while uv is either zero or an eigenoperator of α. It
follows that γµ(S) ⊂ H0, hence γµ(AK) ⊂ H0. It is easy to show from
the definition of H0 that each of its elements has a totally bounded (i.e.
relatively compact) orbit under U . Also note that (AK , µ) can be cyclically
represented on HK

µ := γµ(AK), which is contained in H0, with the unitary
representation of αK given by the restriction of Ug to HK

µ . Therefore AK is
indeed compact.

Lastly note that as in Proposition 4.2, for any eigenoperator u of α with
eigenvalue χ, we have θg(σ

µ
t (u)) = σµt (θg(u)) = χ(g)σµt (u) so σµt (u) ∈ S.

It follows that σµt (S) = S, hence σµt (AK) = AK , i.e. AK is a modular
subsystem of A.
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In order to go further, we first prove a technical result which is a version
of [27, Lemma 4.1] appropriate for our needs:

Lemma 5.3. Let H be a Hilbert space and T a weakly closed vector sub-
space of B(H). Assume that there is a unit vector Ω ∈ H such that T ′Ω = H.
Let G be an arbitrary group and Wg : H → H a linear isometry for every
g ∈ G such that WgWh = Wgh for all g, h ∈ G, and with

Ka := {WgaΩ : g ∈ G}

compact in H for every a ∈ T . Endow B(T ) with the topology of pointwise
strong convergence generated by the seminorms Θ 7→ ‖Θ(a)x‖ where a ∈ T
and x ∈ H. Let Γ be the set of all linear contractions Θ ∈ B(T ) such that
Θ(a)Ω ∈ Ka for all a ∈ T , and view it as a topological subspace of B(T ).
Then Γ is a compact group with composition as its operation and the identity
map on T as its identity.

Proof. Let us first consider the topology on Γ . For a ∈ T , a′ ∈ T ′, x ∈ H
and Θ1, Θ2 ∈ B(T ) we have

‖Θ1(a)x−Θ2(a)x‖ ≤ 2‖a‖ ‖x− a′Ω‖+ ‖a′‖ ‖Θ1(a)Ω −Θ2(a)Ω‖,

from which (together with T ′Ω = H) it follows that the topology on B(T )
is in fact generated by the seminorms Θ 7→ ‖Θ(a)Ω‖ where a ∈ T , hence
we have a simplified description of the topology on Γ . Now consider the
compact space

K :=
∏
a∈T

Ka

and the function
f : Γ → K : Θ 7→ (Θ(a)Ω)a∈T ,

which is easily shown to be injective because of T ′Ω = H. From the simplified
description of the topology on Γ described above and the definition of the
product topology on K it is clear that f : Γ → f(Γ ) is a homeomorphism.
We now show that f(Γ ) is closed:

Let x = (x(a))a∈T be in the closure of f(Γ ). Let (Θι)ι be a net in Γ such
that (f(Θι))ι converges to x. Then, from the inequality above, (Θι(a)y)ι is
a Cauchy net in H for every y ∈ H and a ∈ T . This allows us to define
Θ(a)y := limιΘι(a)y, and since each Θι is a contraction, Θ(a) ∈ B(H)
and ‖Θ(a)‖ ≤ ‖a‖. By this definition (Θι(a))ι converges strongly and there-
fore also weakly to Θ(a), but T is weakly closed therefore Θ(a) ∈ T . Since
Θι(a)Ω ∈ Ka and Ka is closed, it again follows from the definition of Θ(a)
that Θ(a)Ω ∈ Ka for all a ∈ T . This shows that Θ ∈ Γ . But by our choice
of (Θι)ι we have x(a) = limιΘι(a)Ω = Θ(a)Ω so x = f(Θ) ∈ f(Γ ) and
therefore f(Γ ) is indeed closed.
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It follows that f(Γ ) is compact, since K is, and therefore Γ is compact.
Also note that Γ is Hausdorff.

Now we start to prove the group structure on Γ . Note that W1 = 1,
since WgW1 = Wg while Wg is injective. It follows that idT ∈ Γ . For any
Θ1, Θ2 ∈ Γ we have

Θ1 ◦Θ2(a)Ω ∈ KΘ2(a) ⊂ {WgWhaΩ : g, h ∈ G} = Ka

and therefore Θ1 ◦Θ2 ∈ Γ .
Next we show the continuity of this product on Γ . For Θ ∈ Γ we have

Θ(a)Ω ∈ Ka ⊂ {x ∈ H : ‖x‖ = ‖aΩ‖}, since each Wg is an isometry.
Therefore we have a well-defined linear isometry

WΘ : TΩ → TΩ

such that WΘ(aΩ) = Θ(a)Ω, so in effect WΘ represents Θ on TΘ. Using
WΘ one can show that

‖(Θ1 ◦Θ′1)(a)Ω − (Θ2 ◦Θ′2)(a)Ω‖
≤ ‖Θ′1(a)Ω −Θ′2(a)Ω‖+ ‖Θ1(Θ′2(a))Ω −Θ2(Θ′2(a))Ω‖

for all Θ1, Θ2, Θ
′
1, Θ

′
2 ∈ Γ and a ∈ T . It follows that the product on Γ is

indeed continuous.
We now complete the proof that Γ is a group by considering inverses.

We have already shown that Γ is a semigroup, so for Θ ∈ Γ it follows that
Θn ∈ Γ for every n ∈ N = {1, 2, . . .}. FurthermoreWn

Θ(aΩ) = Θn(a)Ω ∈ Ka,
so since Ka is compact, the orbit (Wn

Θ(aΩ))n∈N is relatively compact (and
therefore totally bounded) for every a ∈ T . Since WΘ is an isometry, it
follows from [27, Corollary 9.10] (and remarks made just after it) that for
every ε > 0 and every finite set E ⊂ T there exists an n(E, ε) ∈ N such that

‖Θn(E,ε)(a)Ω − aΩ‖ < ε

for all a ∈ E. Defining (E, ε) ≤ (E′, ε′) to mean E ⊂ E′ and ε ≥ ε′, we
obtain a net (Θn(E,ε))(E,ε) in Γ which is seen to converge to idT by using
the description of the topology given at the beginning of this proof. Since Γ
is compact, the net (Θn(E,ε)−1)(E,ε) has a limit point in Γ , say Θ′, and it is
then not too difficult to show that Θ ◦ Θ′ = idT = Θ′ ◦ Θ. In other words
every element of Γ has an inverse in Γ , and therefore Γ is a group.

By the single theorem appearing in [11], it follows that Γ is a topological
group, which completes the proof.

Now we can state and prove the basic result regarding compact subsys-
tems, which is the version of [27, Theorem 4.2] that we will use. In this
result and the rest of the section our group G is assumed to be abelian,
although this assumption is unnecessary in the first part of the proof of the
next theorem, as will be indicated.
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Theorem 5.4. Consider a system A with G assumed to be abelian. Set

T := {a ∈ πµ(A) : aΩµ ∈ H0}, ξ(a) := 〈Ωµ, aΩµ〉, τg(a) := UgaU
∗
g ,

for all a ∈ T and g ∈ G. Then T :=(T, ξ, τ) is a subsystem of A which
is isomorphic to AK with the isomorphism given by π−1

µ |T : T → AK . It
follows that AK is the largest compact subsystem of A in the sense that AK
contains the image of the algebra of any compact subsystem F of A (under
the imbedding of F in A). Furthermore, TΩµ = H0, so T can be cyclically
represented on H0 and σT = σA.

Proof. The notation M = πµ(A), θg : M → M : a 7→ UgaU
∗
g , H = Hµ

and Ω = Ωµ will be used in what follows. We divide the proof into a number
of parts.

(i) First we show (see also [27, Proposition 3.2]) that for any χ ∈ σA we
have

MχΩ = Hχ

where

Mχ := {a ∈M : θg(a) = χ(g)a for all g ∈ G},
Hχ := {x ∈ H : Ugx = χ(g)x for all g ∈ G}.

To do this, let Pχ be the projection of H on Hχ. Note that |χ(g)| = 1 and
χ(g)χ(h) = χ(gh). It follows that g 7→ χ(g)Ug is also a unitary group on
H, and therefore by the Alaoglu–Birkhoff mean ergodic theorem [6, Propo-
sition 4.3.4] (see also [1]) we know that Pχ is in the strong closure of the
convex hull of {χ(g)Ug : g ∈ G}. Thus there is a net (mι)ι given by

mι =

nι∑
j=1

wιjχ(gιj)Ugιj ,

with wι1 + · · ·+ wιnι = 1 and wιj ≥ 0, which converges strongly to Pχ.
Now for any a ∈M the net (cι)ι given by

cι(a) =

nι∑
j=1

wιjχ(gιj)θgιj (a)

has a weakly convergent subnet, say (cι(κ)(a))κ, since the unit ball of B(H)
is weakly compact [6, Proposition 2.4.2]. SinceM is a von Neumann algebra,
it is weakly closed, so the limit of this subnet, say a0, is inM . Since (mι(κ))κ
converges strongly to Pχ and UgΩ = Ω, we have

〈x, PχaΩ〉 = lim
κ
〈x,mι(κ)aΩ〉 = lim

κ
〈x, cι(κ)(a)Ω〉 = 〈x, a0Ω〉

for any x ∈ H, so PχaΩ = a0Ω. It follows that θg(a0)Ω = χ(g)a0Ω; but Ω
is separating for M , hence a0 ∈Mχ.
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We remark that one can in fact go further: Taking b ∈M ′ we have

cι(κ)(a)bΩ = bmι(κ)aΩ → bPχaΩ = a0bΩ

since cι(κ)(a) ∈ M . Since M ′Ω is dense in H, it is now straightforward to
show that bΩ can be replaced by any x ∈ H, in other words (cι(κ)(a)) actually
converges strongly to a0. We will only need the convergence cι(κ)(a)Ω → a0Ω,
though.

Now consider any x ∈ Hχ and ε > 0, and let a ∈ M be such that
‖aΩ − x‖ < ε. Then

‖χ(g)θg(a)Ω − x‖ = ‖UgaΩ − χ(g)x‖ < ε

so ‖cι(κ)(a)Ω−x‖ < ε. But by the convergence above, there is a κ such that
‖a0Ω − cι(κ)(a)Ω‖ < ε, so ‖a0Ω − x‖ < 2ε. This proves that MχΩ is dense
in Hχ as required, since clearly MχΩ ⊂ Hχ.

(ii) Now we prove a number of properties of T . First, since UgH0 ⊂ H0

from the definition of H0 while U∗gΩ =Ω, we clearly have τg(T ) = θg(T ) = T .
It follows that τg ∈ B(T ).

Next, set
S := span

⋃
χ∈σA

Mχ

where “span” means finite linear combinations. From (i) it follows that SΩ =
H0. It is also readily verified that S is a ∗ -algebra contained in T ; in fact, S
is the ∗-algebra generated by the eigenoperators of θ. In particular TΩ = H0.

Lastly we show that T is weakly closed, so consider any a in the weak
closure of T , and a net (aι) in T converging weakly to a. Since M is weakly
closed, a ∈ M . Furthermore, from the definition of T , for every x ∈ H⊥0
we have 0 = 〈x, aιΩ〉 → 〈x, aΩ〉, so aΩ ∈ H0. Therefore, again from the
definition of T , we have a ∈ T as required.

(iii) Everything so far in the proof holds for nonabelian G as well, but in
the rest of the proof we do make use of the fact that G is abelian, since we
are going to work with its Bohr compactification.

In particular we now show that T is a von Neumann algebra using the
group Γ given by Lemma 5.3 applied to T with W = U . Note that all the
requirements in Lemma 5.3 are satisfied: M ′ ⊂ T ′ so T ′Ω is dense in H, and
for every a ∈ T the closure Ka of the corresponding orbit in H is indeed
compact, since each element of H0 has a totally bounded (i.e. relatively
compact) orbit under U (in fact H0 contains all such elements [5, Lemma
6.6], but this fact will only be used in (iv) below).

Assign the discrete topology to G. Since G is abelian, we can imbed it
into its Bohr compactification Ḡ. Let us denote this canonical imbedding by
ι : G→ Ḡ. It is an injective group homomorphism with ι(G) dense in Ḡ. The
dual map of this is a group isomorphism ι̂ : ̂̄G→ Ĝ. For χ ∈ Ĝ, set 〈·, χ〉 :=
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ι̂−1(χ); then 〈ι(g), χ〉 = χ(g). Note that since τg ∈ B(T ) is an isometry, it
follows that τ : G → Γ : g 7→ τg is a well-defined group homomorphism
(and it is continuous, since G is discrete) which by the universal property
of the Bohr compactification [13, Proposition (4.78)] can be extended to a
continuous group homomorphism

τ̄ : Ḡ→ Γ : g 7→ τ̄g,

which means that τ̄ι(g) = τg for all g ∈ G.
Since Γ → H : Θ 7→ Θ(a)y is continuous, so is Ḡ → H : g 7→ τ̄g(a)y

for all a ∈ T and y ∈ H. Denoting the normalized Haar measure on the
compact group Ḡ by m, we can for every a ∈ T and χ ∈ Ĝ define a unique
aχ ∈ B(H) by requiring

〈x, aχy〉 =
�

Ḡ

〈g, χ〉〈x, τ̄g(a)y〉 dm(g)

for all x, y ∈ H. If f is a weakly continuous linear functional on B(H), it
follows (see for example [8, Theorem V.3.9]) that it is a finite linear combi-
nation of such 〈x, (·)y〉 forms, hence

(5.1) f(aχ) =
�

Ḡ

〈g, χ〉f(τ̄g(a)) dm(g),

so if f is zero on T we have f(aχ) = 0 and therefore, by [8, Corollary V.3.12],
aχ ∈ T , since T is weakly closed. For g ∈ G it follows from the definition
of aχ that

〈x, τg(aχ)y〉 = 〈U∗g x, aχU∗g y〉 =
�

Ḡ

〈h, χ〉〈U∗g x, τ̄h(a)U∗g y〉 dm(h)

=
�

Ḡ

〈h, χ〉〈x, τ̄ι(g)h(a)y〉 dm(h) =
�

Ḡ

〈ι(g)−1h, χ〉〈x, τ̄h(a)y〉 dm(h)

= 〈ι(g)−1, χ〉
�

Ḡ

〈h, χ〉〈x, τ̄h(a)y〉 dm(h) = χ(g)〈x, aχy〉

and therefore τg(aχ) = χ(g)aχ, which means that aχ ∈ S, since aχ ∈ T ⊂M .
We now use this result to show that S is weakly dense in T , so take any

a ∈ T . Let f be any weakly continuous linear functional on B(H) which is
zero on the weak closure a

Ĝ
of the span of {aχ : χ ∈ Ĝ}. From (5.1) and

the Plancherel theorem it follows that g 7→ f(τ̄g(a)) is zero in L2(Ḡ). But
this function is continuous by arguments as above, so f(τ̄g(a)) = 0 for all
g ∈ Ḡ, for if not, then f would be nonzero on an open neighbourhood of some
g ∈ Ḡ, contradicting the fact that the Haar measure of a nonempty open set
is nonzero. In particular for g = 1 we find f(a) = 0. This means that a ∈ a

Ĝ
and therefore S is weakly dense in T . Since S is a ∗-algebra containing the
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identity operator, we conclude that T is a von Neumann algebra by the von
Neumann density theorem [6, Corollary 2.4.15].

(iv) By (ii) and (iii) we know that T is indeed a subsystem of A. It has
σT = σA, since it can be cyclically represented onH0 (because of TΩµ = H0)
with the dynamics given by Ug|H0 . Since S above is the ∗-algebra generated
by the eigenoperators of θ, we have S ⊂ πµ(AK) ⊂ T . Hence T = πµ(AK),
since πµ(AK) is a von Neumann algebra and therefore weakly closed. From
this the isomorphism between T and AK follows. If F is any compact sub-
system of A, and a ∈ F , then by definition of compactness of a system the
orbit of γµ(ζ(a)) under U is totally bounded (keep in mind that (F, λ) can be
cyclically represented on γµ(ζ(F )), with the corresponding unitary represen-
tation of ϕ given by the restriction of Ug to this space), thus πµ(ζ(a))Ωµ ∈ H0

according to [5, Lemma 6.6]. In other words πµ(ζ(a)) ∈ T , and therefore
ζ(a) ∈ AK , which means that AK is the largest compact subsystem of A.

Note that the sole reason we needed to assume that G is abelian in this
theorem is that we use its Bohr compactification in the proof.

Whereas Aα is by definition the largest identity subsystem of A, we have
seen above that AK is the largest compact subsystem of A, at least when G
is abelian. Clearly Aα ⊂ AK . We mention that a very simple version of this
in the context of noncommutative topological dynamics was also discussed in
[23, Section 2] and [4, Definition 1.2]. In analogy to Proposition 4.2, Theorem
5.4 says that H0 = γµ(AK).

Before we return to relatively independent joinings we note the following
generalization of [5, Theorem 6.8] (also see [27, Proposition 5.4]). Note that
in terms of Definition 5.1’s notation, we call A weakly mixing if dimH0 = 1.

Corollary 5.5. A system A with G abelian is weakly mixing if and
only if AK is the trivial system.

Proof. IfAK is trivial, then so isT in Theorem 5.4, soH0 = TΩµ = CΩµ.
Conversely, if A is weakly mixing, then TΩµ = CΩµ; but Ωµ is separating
for πµ(A) and therefore for T , so T = C, hence AK is trivial.

In addition to the assumptions in this corollary, in [5, Theorem 6.8] it
was also assumed that A is ergodic.

Now we finally return to relatively independent joinings, namely an ana-
logue of Theorem 4.3. The proof is very similar to that of Theorem 4.3.

Theorem 5.6. Assume that G is abelian, and let F be a compact modular
subsystem of A. If A and B̃ are disjoint over F for B = AK , then F is
isomorphic to AK . On the other hand, if F is isomorphic to AK , then A
and B̃ are disjoint over F for every compact system B which has F as a
modular subsystem.
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Proof. Assume without loss that F is imbedded in A by inclusion. Sup-
pose F is not isomorphic to AK ; then F is strictly contained in AK by
Theorem 5.4. Note that F is a modular subsystem of AK , since F and AK

are modular subsystems of A. Now apply Proposition 3.5 with B = R = AK

to obtain µ�ψ ν̃ 6= µ�λ ν̃. But both these joinings are contained in Jλ(A, B̃)

by Propositions 3.2 and 3.5, so A and B̃ are not disjoint over F.
Conversely, assume that F is isomorphic (and therefore equal) to AK .

Consider any ω ∈ Jλ(A, B̃). For any eigenvector y ∈ Hν̃ of Ṽ with eigenvalue
χ ∈ σB̃ we have

UgPωy = PωṼgy = χ(g)Pωy

with Pω as in the proof of Theorem 4.3. So Pωy = 0 or χ ∈ σA. Therefore
Pωy ∈ H0 = Hλ with H0 as in Definition 5.1 and Hλ as given in the setting
described before Proposition 3.6. Since B̃ has discrete spectrum (i.e. Hν̃ is
spanned by the eigenvectors of Ṽ ) as remarked in [10, Proposition 2.6] (see
also [22, Section 2.4] for the general theory), it follows that Pωy ∈ Hλ for all
y ∈ Hν̃ . Since Pω is the projection of Hω onto Hµ restricted to Hν̃ , it follows
that Hν̃ ⊥ (Hµ 	Hλ), and hence ω = µ�λ ν̃ by Proposition 3.6.

In the case of trivial F this theorem gives a variation on [10, Theorems 2.7
and 2.8] in that the latter assumed ergodicity of the systems involved, but
did not require G to be abelian, namely:

Corollary 5.7. Assuming G is abelian, A is weakly mixing if and only
if it is disjoint from all compact systems.

Proof. Use trivial F in Theorem 5.6, together with Proposition 3.4 and
Corollary 5.5.

Note that from this result (and [10, Theorem 3.4]) it follows that the
converse to [10, Theorem 3.8] holds. This was a question left open in that
paper due to the ergodicity requirements in [10, Theorem 2.8] and the fact
that the compact systems appearing in [10, Theorem 3.8] are necessarily
nonergodic (or trivial).

As in Section 4, these results illustrate how relatively independent join-
ings relate to the structure of W∗-dynamical systems, in particular to certain
types of subsystems.

6. Ergodicity and compactness. In this concluding section we turn
away from joinings and focus on subsystems. The goal is to study AK , which
was defined in Proposition 5.2, whenA is ergodic, i.e. whenAα is trivial. This
is related to, and largely motivated by, [19, Theorem 1.3] (see Corollary 6.2
below).

Remember that a state µ on a von Neumann algebra A is called tracial
if µ(ab) = µ(ba) for all a, b ∈ A. The following result strengthens the fact
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that AK is a modular subsystem of A when the latter is ergodic; note that
in this result we need not assume G is abelian:

Theorem 6.1. Let A be ergodic. Then AK is contained in the fixed point
algebra of the modular group σµ of µ. Furthermore, µK is then tracial, and
AK therefore a finite von Neumann algebra.

Proof. Let u be any eigenoperator of α, with eigenvalue χ. Then, as in
the proof of Proposition 4.2,

αg(σ
µ
t (u)) = σµt (αg(u)) = χ(g)σµt (u).

Since A is ergodic and u and σµt (u) are eigenoperators with the same norm
and the same eigenvalue, it follows from [35, Lemma 2.1(3)] that there is a
number, say Λ(t) ∈ C, with |Λ(t)| = 1, such that

σµt (u) = Λ(t)u

for all t ∈ R. Now we show that σµt (u) = u (see also the proof of [10,
Lemma 5.2]). It follows from the group property of σµ that Λ(s + t) =
Λ(s)Λ(t) for all s, t ∈ R, and since t 7→ 〈x, πµ(σµt (u))y〉 is continuous for all
x, y ∈ Hµ, it follows that t 7→ Λ(t) is continuous. Therefore

Λ(t) = eiθt

for all t ∈ R for some θ ∈ R; see for example [30, p. 12]. Denoting the modu-
lar operator associated with (πµ(A), Ωµ) by ∆, it follows that ∆itπµ(u)Ωµ =
πµ(σµt (u))Ωµ = eiθtπµ(u)Ωµ, hence by the definition of Jµ∆1/2 (see for ex-
ample [6, Section 2.5.2])

Jµπµ(u)∗Ωµ = Jµ(Jµ∆
1/2)πµ(u)Ωµ = ∆1/2πµ(u)Ωµ = eθ/2πµ(u)Ωµ,

and by taking the norm of both sides we conclude that eθ/2 = 1, since
αg(uu

∗) = |χ(g)|2uu∗ = uu∗ and αg(u
∗u) = u∗u, implying uu∗ = u∗u ∈

C1\{0} by ergodicity and the fact that uu∗ and u∗u are both positive. There-
fore θ = 0. This proves that

σµt (u) = u

for all t ∈ R. Then by the definition of AK in Proposition 5.2, it is indeed
contained in the fixed point algebra of the modular group σµ, since the latter
algebra is a von Neumann algebra containing all eigenoperators of α, as just
shown.

Since AK is a modular subsystem of A, the modular group σµK of µK is
simply given by the restriction of σµt to AK . Hence σµ

K

t = idAK for all t by
what we have shown above. It follows that the modular operator associated
with the cyclic representation of (AK , µK) is the identity operator. Therefore
by the basic definitions of Tomita–Takesaki theory, and writing the cyclic
representation of (AK , µK) as (H,π,Ω) and the corresponding modular con-
jugation as J , we have JaΩ = a∗Ω for all a ∈ π(AK). From this it follows
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that µK is tracial, namely for any a, b ∈ AK we have

µ(ab) = 〈Ω, π(ab)Ω〉 = 〈π(a)∗Ω, π(b)Ω〉 = 〈Jπ(a)Ω, π(b)Ω〉
= 〈Jπ(b)Ω, π(a)Ω〉 = 〈Ω, π(ba)Ω〉 = µ(ba)

and the existence of a faithful (numerical) trace on AK implies that it is a
finite von Neumann algebra (see for example [20, p. 505]).

To clarify the connection with [19, Theorem 1.3], we deduce it as a corol-
lary from this theorem (but we only state it for an inverse temperature
of −1):

Corollary 6.2. Suppose that the dynamics α of A is given by the mod-
ular group σµ, i.e. G = R and αt = σµt for all t ∈ R. If A is ergodic, then it
is weakly mixing.

Proof. By Theorem 6.1, AK ⊂ Aα, but Aα = C, since A is ergodic,
therefore AK = C. Since R is an abelian group, it follows from Corollary 5.5
that A is weakly mixing.

One may wonder whether more generally, when Aα is not necessarily
trivial, one has AK = Aα if α is the modular group of µ. However, on
A = B(H) with H a finite-dimensional Hilbert space, one has the simple
counter-example given by the Gibbs state (at inverse temperature−1) µ(a) =
Tr(eha)/Tr(eh) where h ∈ A is hermitian, in which case αt(a) = eihtae−iht

is the modular group of µ; the system A so obtained is compact but not in
general an identity system, so AK = A 6= Aα.

Another corollary of Theorem 6.1 is the following (also see [28, Proposi-
tion 7.2]):

Corollary 6.3. If a system A is ergodic and compact, and G is abelian,
then µ is necessarily tracial and A a finite von Neumann algebra.

Proof. By Theorem 5.4, AK = A, and the result follows from Theo-
rem 6.1.

Results of the nature of Corollary 6.3 have of course been well studied.
However, our assumption that the system is compact makes Corollary 6.3 a
relatively easy result. In the literature much more difficult results have been
obtained; see [17, 33, 34, 35, 24, 2, 28, 16] for the development.

The results of this section illustrate how subsystems can be applied to
derive interesting properties of systems, and show how aspects of the work
above fit into previous literature on noncommutative dynamical systems.
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