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The numerical radius of Lipschitz operators
on Banach spaces

by

Ruidong Wang (Tianjin)

Abstract. We study the numerical radius of Lipschitz operators on Banach spaces.
We give its basic properties. Our main result is a characterization of finite-dimensional real
Banach spaces with Lipschitz numerical index 1. We also explicitly compute the Lipschitz
numerical index of some classical Banach spaces.

1. Introduction. O. Toeplitz [T] introduced the concept of numerical
range for matrices, and his definition applies equally well to operators on
infinite-dimensional Hilbert spaces. In the sixties, the concept of numerical
range for operators on general Banach spaces was independently introduced
by G. Lumer [L] and F. Bauer [B]. We will use the definition given by
F. Bauer.

Let X be a real or complex Banach space. We will denote by S(X) the
unit sphere of X, by X∗ the Banach space of continuous linear functionals
on X, and by L(X) the algebra of bounded linear operators on X. The
numerical range of an operator T ∈ L(X) is the subset V (T ) of the scalar
field defined by

V (T ) = {x∗(Tx) : x ∈ S(X), x∗ ∈ S(X∗), x∗(x) = 1}.
The numerical radius is the seminorm defined on L(X) by

ν(T ) = sup{|λ| : λ ∈ V (T )}.
The numerical index of a Banach space X is the constant n(X) defined by

n(X) = inf{ν(T ) : T ∈ L(X), ‖T‖ = 1}
A complete survey on this subject can be found in the books of F. Bonsall

and J. Duncan [BD1, BD2], and we refer the reader to these books for general
information and background.

Recently, the numerical index of Banach spaces has been widely dis-
cussed, and the reader is referred to [E, M, MP] for recent developments.
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In [Z], Zarantonello introduced the concept of numerical range of nonlin-
ear Hilbert space operators, and proved that the numerical range contains
the spectrum. Verma [V] generalized the results of Zarantonello to the case
of nonlinear operators on semi-inner product spaces.

In this paper, we generalize these notions to Lipschitz operators on Ba-
nach spaces. First, we give some definitions and notation:

An operator T : X → Y is called Lipschitz if

‖Tx− Ty‖ ≤ K‖x− y‖

for some constant K > 0, and all x, y ∈ X.

Let Lip0(X) denote the set of all Lipschitz operators on X which map
0 to 0. The Lipschitz norm of T ∈ Lip0(X), denoted by ‖T‖L, is given by

‖T‖L = sup
x6=y

‖Tx− Ty‖
‖x− y‖

.

Then (Lip0(X), ‖ · ‖L) is a Banach space, To simplify the writing, we will
write Lip0(X) for (Lip0(X), ‖ · ‖L).

Obviously, L(X) is a subspace of Lip0(X).

For each x ∈ X with x 6= θ, we define

D(x) = {x∗ ∈ X∗ : x∗(x) = ‖x∗‖ · ‖x‖ = ‖x‖2}

The numerical range of a Lipschitz operator T ∈ Lip0(X) is the subset
W (T ) of the scalar field defined by

W (T ) =

{
x∗Tx+ (x− y)∗(Tx− Ty)

‖x‖2 + ‖x− y‖2
: x, y ∈ X, x∗ ∈ D(x),

(x− y)∗ ∈ D(x− y)

}
.

From the above definition, we can easily see that W (T ) is the union of all
the numerical ranges of the Lipschitz operator T in the sense of Verma [V],
corresponding to all choices of semi-inner product.

The numerical radius of a Lipschitz operator T is defined on Lip0(X) by

ω(T ) = sup{|λ| : λ ∈W (T )}.

The Lipschitz numerical index of the Banach space X is the constant m(X)
defined by

m(X) = inf{ω(T ) : T ∈ Lip0(X), ‖T‖L = 1}.

The organization of the paper is the following: In Section 2, we give some
basic properties of the numerical radius of Lipschitz operators on Banach
spaces. In Section 3, we give our main result which gives a characterization
of finite-dimensional real Banach spaces with Lipschitz numerical index 1.
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In Section 4, we explicitly compute the Lipschitz numerical index of some
classical Banach spaces. Finally, we list some open problems in Section 5.

2. Some basic properties. First, let us give some properties of the
numerical radius of Lipschitz operators on the Banach space X.

Proposition 2.1.

(i) For any T ∈ Lip0(X), ω(T ) ≤ ‖T‖L.
(ii) ω(αT ) = |α|ω(T ) for T ∈ Lip0(X) and α ∈ R.

(iii) ω(T1 + T2) ≤ ω(T1) + ω(T2) for T1, T2 ∈ Lip0(X).

Proof. For any x, y ∈ X and x∗ ∈ D(x), (x− y)∗ ∈ D(x− y), we have∣∣∣∣x∗(Tx) + (x− y)∗(Tx− Ty)

‖x‖2 + ‖x− y‖2

∣∣∣∣
≤ ‖x

∗‖ ‖T‖L‖x‖+ ‖(x− y)∗‖ ‖T‖L‖x− y‖
‖x‖2 + ‖x− y‖2

= ‖T‖L.

This proves (i).

Assertion (ii) being obvious, only (iii) needs proof. For any x, y ∈ X and
x∗ ∈ D(x), (x− y)∗ ∈ D(x− y), we have∣∣∣∣x∗((T1 + T2)(x)) + (x− y)∗((T1 + T2)(x)− (T1 + T2)(y))

‖x‖2 + ‖x− y‖2

∣∣∣∣
≤
∣∣∣∣x∗(T1x) + (x− y)∗(T1x− T1y)

‖x‖2 + ‖x− y‖2

∣∣∣∣+

∣∣∣∣x∗(T2x) + (x− y)∗(T2x− T2y)

‖x‖2 + ‖x− y‖2

∣∣∣∣
≤ ω(T1) + ω(T2).

So ω(T1 + T2) ≤ ω(T1) + ω(T2).

Remark. From the above proposition, we see that ω is a seminorm on
Lip0(X).

Proposition 2.2. For any Banach space X, if T ∈ L(X), then ω(T ) =
ν(T ).

Proof. From the definition of ω(T ), fixing y = 0, we have

ω(T ) = sup

{∣∣∣∣x∗(Tx) + (x− y)∗(Tx− Ty)

‖x‖2 + ‖x− y‖2

∣∣∣∣ : x, y ∈ X,

x∗ ∈ D(x), (x− y)∗ ∈ D(x− y)

}

≥ sup

{
x∗(Tx)

‖x‖2
: x ∈ X, x∗ ∈ D(x)

}
= ν(T ).



46 R. D. Wang

For the converse, since T is linear, it follows that for any ε > 0, there
exist x0, y0 ∈ X and x∗0 ∈ D(x0), (x0 − y0)∗ ∈ D(x0 − y0) such that

ω(T )− ε ≤
∣∣∣∣x∗0(Tx0) + (x0 − y0)∗(Tx0 − Ty0)

‖x0‖2 + ‖x0 − y0‖2

∣∣∣∣
≤
∣∣∣∣x∗0(Tx0) + (x0 − y0)∗(T (x0 − y0))

‖x0‖2 + ‖x0 − y0‖2

∣∣∣∣.
Without loss of generality, we may assume that∣∣∣∣x∗0(Tx0)‖x0‖2

∣∣∣∣ ≥ ∣∣∣∣(x0 − y0)∗(Tx0 − Ty0)‖x0 − y0‖2

∣∣∣∣.
Then∣∣∣∣x∗0(Tx0) + (x0 − y0)∗(T (x0 − y0))

‖x0‖2 + ‖x0 − y0‖2

∣∣∣∣
≤ |x

∗
0(Tx0)|+ |(x0 − y0)∗(T (x0 − y0))|

‖x0‖2 + ‖x0 − y0‖2

=
‖x0‖2

∣∣x∗0(Tx0)
‖x0‖2

∣∣+ ‖x0 − y0‖2
∣∣ (x0−y0)∗(T (x0−y0))

‖x0−y0‖2
∣∣

‖x0‖2 + ‖x0 − y0‖2

≤
∣∣∣∣x∗0(Tx0)‖x0‖2

∣∣∣∣ ≤ ν(T ).

Because for any Banach space X, L(X) is a subspace of Lip0(X), using
Proposition 2.2, we can easily get the following:

Proposition 2.3. For any Banach space X, we have m(X) ≤ n(X).

3. Lipschitz numerical index on finite-dimensional Banach
spaces. In [MG], C. McGregor gave the following theorem which charac-
terizes finite-dimensional Banach spaces with numerical index 1:

Theorem 3.1. Let X be a finite-dimensional normed linear space over
R or C. Then the following are equivalent:

(i) n(X) = 1,
(ii) for all x ∈ ext(B(X)) and all x∗ ∈ ext(B(X∗)), |x∗(x)| = 1,

(iii) for all x ∈ ext(B(X)) and all y ∈ S(X), there exists a scalar λ with
|λ| = 1 such that D(λx) ∩D(y) 6= ∅.

Here B(X) is the closed unit ball of X, and ext(A) is the set of extreme
points of a convex set A ⊂ X.

More concretely, a finite-dimensional normed space X has numerical
index 1 if and only if

|x∗(x)| = 1, ∀x ∈ ext(B(X)) and ∀x∗ ∈ ext(B(X∗)).
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Moreover, if a finite-dimensional real normed space X has numerical
index 1, then for any x1, x2 ∈ ext(B(X)), x1 6= x2, there exists x∗ ∈
ext(B(X∗)) such that x∗(x1) · x∗(x2) = −1 and ‖x∗(x1)‖ = ‖x∗(x2)‖ = 1.
So

‖x1 − x2‖ ≥ |x∗(x1 − x2)| = 2.

Since S(X) is compact, it follows that ext(B(X)) is finite.
The aim of this section is to give a characterization of finite-dimensional

real Banach spaces with Lipschitz numerical index 1.
The following lemma is immediate from Theorem 3.1, so we omit the

proof.

Lemma 3.2. Let X be a finite-dimensional Banach space. If n(X) = 1,
then for any x ∈ X and any x0 ∈ ext(B(X)),

sup
x∗0∈D(x0)

|x∗0(x)| = ‖x‖.

For any Banach space X, we define Bδ(X) = {x ∈ X : ‖x‖ ≤ δ}.
Lemma 3.3. Let X be a finite-dimensional real Banach space with n(X)

= 1. If there exists δX > 0 such that for any x ∈ S(X) there exists x̂ ∈
ext(Bδx(X)) satisfying ‖x− x̂‖ = 1− δx, where δx ≥ δX , then m(X) = 1.

Proof. Fix T ∈ Lip0(X) with ‖T‖L = 1. Then for any ε > 0, there exist
x, y ∈ X such that

‖Tx− Ty‖ ≥ (1− ε)‖x− y‖.
By hypothesis, there exists z ∈ ext(B‖x−y‖δx−y

(X)) such that

‖x+ z − y‖ = ‖x− y‖(1− δx−y)
where δx−y ≥ δX .

Because ‖T (x + z) − Ty‖ ≤ ‖x + z − y‖ = ‖x − y‖(1 − δx−y) and z ∈
ext(B‖x−y‖δx−y

(X)), using Lemma 3.2, we obtain

sup
(x+z−x)∗∈D(x+z−x)

∣∣∣∣(x+ z − x)∗(T (x+ z)− Tx)

‖z‖2

∣∣∣∣ =
‖T (x+ z)− Tx‖

‖z‖

≥ ‖Tx− Ty‖ − ‖T (x+ z)− Ty‖
‖z‖

≥ (1− ε)‖x− y‖ − ‖x− y‖(1− δx−y)
‖x− y‖δx−y

= 1− ε

δx−y
≥ 1− ε

δX
.

Since ε is arbitrary, it follows that m(X) = 1.

Main Theorem 3.4. Let X be a finite-dimensional real Banach space.
Then m(X) = 1 if and only if n(X) = 1.

Proof. If m(X) = 1, by Proposition 2.3 we obtain 1 = m(X) ≤ n(X)
≤ 1. So n(X) = 1.
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For the converse, if n(X) = 1 and X is a finite-dimensional real Banach
space, then ext(B(X)) is finite, say card ext(B(X)) = n0. We claim that X
satisfies the condition of Lemma 3.3 with δX = 1/n0.

For any x ∈ S(X), since X is finite-dimensional real Banach space,
we have x =

∑n0
i=1 αixi, where

∑n0
i=1 αi = 1, αi ≥ 0 and ext(B(X)) =

{x1, . . . , xn0}. So there exists 1 ≤ i0 ≤ n0 such that αi0 ≥ 1/n0.

Let x0 = αi0xi0 ∈ ext(Bαi0
(X)). Then

‖x− x0‖ =
∥∥∥∑
i 6=i0

αixi

∥∥∥ ≤ 1− αi0 .

Because

1 = ‖x‖ ≤ ‖x− x0‖+ ‖x0‖ ≤ (1− αi0) + αi0 = 1,

we have ‖x− x0‖ = 1− αi0 as claimed. So m(X) = 1 by Lemma 3.3.

4. Lipschitz numerical index on some classical Banach spaces.
J. Duncan, C. McGregor, J. Pryce and A. White [DMPA] proved that M-
spaces, L-spaces and their isometric preduals have numerical index 1. By
Proposition 2.3, we know that for any Banach space X, m(X) ≤ n(X) ≤ 1.
In this section, for the real Banach spaces c0, l

1 and l∞, we will show that
m(l∞) = m(l1) = m(c0) = 1, which is also another proof that n(l∞) =
n(l1) = n(c0) = 1.

First, we give an important lemma, whose proof is obvious.

Lemma 4.1. For any x0 ∈ ext(B(l∞)) and any x ∈ l∞, we have

sup
x∗0∈D(x0)

|x∗0(x)| = ‖x‖.

Theorem 4.2. For the real Banach space l∞, we have m(l∞) = 1.

Proof. Fix T ∈ Lip0(l
∞) with ‖T‖L = 1. Then for any ε > 0 there exist

x, y ∈ l∞ such that

‖Tx− Ty‖ ≥ (1− ε)‖x− y‖.

We can find z ∈ l∞ such that

‖z − x‖ = ‖z − y‖ = ‖x− y‖/2

and

z = x+ ‖x− y‖(ε1/2, ε2/2, . . .) ∈ l∞

where εi = ±1 for any i ∈ N.
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Because z − x is an extreme point of B‖x−y‖/2(l
∞), by Lemma 4.1 we

have

sup
(z−x)∗∈D(z−x)

∣∣∣∣(z − x)∗(Tz − Tx)

‖z − x‖2

∣∣∣∣ =
‖Tz − Tx‖
‖z − x‖

≥ ‖Tx− Ty‖ − ‖Tz − Ty‖
‖z − x‖

≥ (1− ε)‖x− y‖ − ‖x− y‖/2
‖z − x‖

= 1− 2ε.

Since ε is arbitrary, it follows that m(l∞) = 1.

For l1, we have the following lemma similar to Lemma 4.1:

Lemma 4.3. For any x0 ∈ ext(B(l1)) and any x ∈ l1, we have

sup
x∗0∈D(x0)

|x∗0(x)| = ‖x‖.

Theorem 4.4. For the real Banach space l1, we have m(l1) = 1.

Proof. Fix T ∈ Lip0(l
1) with ‖T‖L = 1. For any ε > 0 there exist

x, y ∈ l1 such that

‖Tx− Ty‖ ≥ (1− ε)‖x− y‖.

We assume that x = (ξ1, ξ2, . . .) and y = (η1, η2, . . .). Let x0 = x and

x1 = (η1, ξ2, ξ3, . . .), x2 = (η1, η2, ξ3, . . .), . . . .

Then

‖x− y‖ =
∞∑
i=1

‖xi − xi−1‖.

We claim that there exists n0 ∈ N such that ‖xn0 − xn0−1‖ > 0 and

‖Txn0 − Txn0−1‖ ≥ (1− ε)‖xn0 − xn0−1‖.

If not, we have ‖Txi − Txi−1‖ < (1 − ε)‖xi − xi−1‖ for any i ∈ N. Since
Ty − Tx =

∑∞
i=1(Txi − Txi−1), it follows that

(1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ =
∥∥∥ ∞∑
i=1

(Txi − Txi−1)
∥∥∥

≤
∞∑
i=1

‖Txi − Txi−1‖ <
∞∑
i=1

(1− ε)‖xi − xi−1‖ = (1− ε)‖x− y‖,

a contradiction.

Since xn0−xn0−1 = (0, 0, . . . , ηn0−ξn0 , 0, . . .), it follows that xn0−xn0−1
is an extreme point of B‖xn0−xn0−1‖(l

1), and by Lemma 4.3 we have
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sup
(xn0−xn0−1)∗∈D(xn0−xn0−1)

∣∣∣∣(xn0 − xn0−1)
∗(Txn0 − Txn0−1)

‖xn0 − xn0−1‖2

∣∣∣∣
=
‖Txn0 − Txn0−1‖
‖xn0 − xn0−1‖

≥ 1− ε.

Since ε is arbitrary, it follows that m(l1) = 1.

Theorem 4.5. For the real Banach space c0, we have m(c0) = 1.

Proof. Fix T ∈ Lip0(c0) with ‖T‖L = 1. Then for any ε > 0 there exist
x, y ∈ c0 such that

‖Tx− Ty‖ ≥ (1− ε)‖x− y‖.
Let

x = (ξ1, ξ2, . . .), y = (η1, η2, . . .),
and

Tx = (α1, α2, . . .), T y = (γ1, γ2, . . .).

Since x, y, Tx, Ty ∈ c0, there exists n0 ∈ N such that for any n ≥ n0, we

have |ηn − ξn| < 1
2‖x− y‖ and |γn − αn| < min(12‖Tx− Ty‖,

1
2‖x− y‖).

We can find z ∈ c0 satisfying ‖z − x‖ = ‖z − y‖ = ‖x− y‖/2 and

z = x+
‖x− y‖

2
(ε1, . . . , εn0 , 0, . . .)

where εi = ±1 for any i ∈ N and 1 ≤ i ≤ n0. So

D(z − x) = {ε1‖z − x‖e∗1, . . . , εn0‖z − x‖e∗n0
}

where

e∗i (ej) =

{
1 if i = j,

0 if i 6= j,
and

‖Tz − Tx‖ ≥ ‖Tx− Ty‖ − ‖Tz − Ty‖
≥ (1− ε)‖x− y‖ − ‖x− y‖/2 = ‖z − x‖ − 2ε‖z − x‖.

Let Tz = (λ1, λ2, . . .). Then

Tz − Tx = (λ1 − α1, λ2 − α2, . . .),

T y − Tz = (γ1 − λ1, γ2 − λ2, . . .).
Since for any n > n0, we have |γn−αn| < 1

2‖Tx−Ty‖, it follows that there

exists 1 ≤ i0 ≤ n0 such that |γn0 − αn0 | = ‖Tx− Ty‖. So

|λi0 − αi0 | ≥ |αi0 − γi0 | − |γi0 − λi0 | ≥ ‖Tx− Ty‖ − ‖Tz − Ty‖
≥ (1− ε)‖x− y‖ − ‖x− y‖/2 = ‖z − x‖ − 2ε‖z − x‖.

So

sup
(z−x)∗∈D(z−x)

∣∣∣∣(z − x)∗(Tz − Tx)

‖z − x‖2

∣∣∣∣ =
|λi0 − αi0 |
‖z − x‖

≥ 1− 2ε.

Since ε is arbitrary, it follows that m(c0) = 1.
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5. Open problems

Problem 5.1. In Section 2, we have shown that m(X) ≤ n(X) for any
Banach space X. We do not know if there is a Banach space X such that
m(X) < n(X).

Problem 5.2. M. Mart́ın and R. Payá [MP] proved some stability prop-
erties of the numerical index for operations like c0-, l1- and l∞-sums, namely
for a family {Xλ : λ ∈ Λ} of Banach spaces, we have

n
([⊕

λ∈Λ
Xλ

]
c0

)
= n

([⊕
λ∈Λ

Xλ

]
l1

)
= n

([⊕
λ∈Λ

Xλ

]
l∞

)
= inf

λ∈Λ
n(Xλ).

We do not know whether this holds for the Lipschitz numerical index, i.e.
whether

m
([⊕

λ∈Λ
Xλ

]
c0

)
= m

([⊕
λ∈Λ

Xλ

]
l1

)
= m

([⊕
λ∈Λ

Xλ

]
l∞

)
= inf

λ∈Λ
m(Xλ).
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