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Formulae for joint spectral radii of sets of operators
by

VICTOR S. SHULMAN (Vologda and London) and
YUuril V. TUurROVSKII (Baku)

Abstract. The formula o(M) = max{py (M), r(M)} is proved for precompact sets
M of weakly compact operators on a Banach space. Here o(M) is the joint spectral radius
(the Rota—Strang radius), gy (M) is the Hausdorff spectral radius (connected with the
Hausdorff measure of noncompactness) and r(M) is the Berger—-Wang radius.

1. Notations and preliminaries. In 1960 J.-C. Rota and W. G. Strang
[10] defined the joint spectral radius for a bounded set M of operators (or
elements of a Banach algebra):

(1.1) o(M) = limsup ||M™|/".

Here M™ denotes the set of all products of n elements of M, the norm of
a set is the supremum of the norms of its elements. As is well known, since
|| - || is submultiplicative, limsup in (1.1) may be replaced by lim or inf.

This notion has found various applications to operator theory, represen-
tation theory of semigroups and Lie algebras, invariant subspaces, geometry
of orbits and attractors, evolution dynamics, difference equations, wavelets
theory (see [4], [3], [8], [9], [12], [11]). In particular, the importance of the
joint spectral radius technique for invariant subspace theory depends pri-
marily on the following simple result: if o(M) = 0 then all polynomials in
elements of M are quasinilpotent (see [11], Corollary 2.10).

For a one-element set M = {T'}, the number o(M) coincides with the
usual spectral radius r(T) = sup{|t| : ¢ € o(T)}. For a bounded set M
in a Banach algebra, put rep(M) = sup{e(T) : T € M}. In 1992 M.
A. Berger and Y. Wang established in [2] that if M is a bounded set of
operators on a finite-dimensional space then the norm || - || in the defini-
tion of o(M) can be replaced by 7eup(-). More transparently, if we define
r(M) = lim sup reup (M™)'/", then

(1.2) o(M) =r(M).
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We will call (1.2) the Berger—Wang formula and r(M) the Berger—Wang
radius of M. The formula is important because it relates joint spectral radii
to spectra of operators.

It was proved in [11] that (1.2) extends to precompact sets of compact
operators on an infinite-dimensional Banach space. To see the convenience
of such extension, notice that it easily implies the solution of the Volterra
Semigroup Problem: each semigroup of compact quasinilpotent operators
has an invariant subspace [12]. Indeed, if a semigroup G consists of compact
quasinilpotent operators, then r(M) = 0 for each finite set M C G. Hence
o(M) = 0 and all linear combinations of elements of M are quasinilpotent.
Thus G is contained in an algebra of quasinilpotent operators and then it
has an invariant subspace by the Lomonosov Theorem [7].

The Berger-Wang formula fails in general. P. S. Guinand [6] has con-
structed a semigroup G of nilpotent operators that contains two operators
T, S with nonquasinilpotent 7'+ S. Clearly, o({T,S}) # 0, »({T,S}) = 0.

It was found in [11] that in some important cases the following “gener-
alized Berger—Wang formula” for precompact M holds:

(1.3) o(M) = max{oec(M),r(M)} = max{o, (M), r(M)}

where go(M) is the joint spectral radius of the canonical image of M in the
Calkin algebra B(X)/K(X) (called the essential spectral radius) and o, (M)
is the Hausdorff spectral radius (see the definition below). In particular (1.3)
is true if one of the following conditions is valid:

(1) M has no invariant subspaces;

(2) the semigroup SG(t~1M) with t = o(M) > 0 is bounded;

(3) the closed algebra generated by M has no compact operators in its
Jacobson radical.

The aim of the present work is to prove (1.3) for any precompact set M
of operators on a reflexive Banach space and, more generally, of weakly com-
pact operators on an arbitrary Banach space. In general, for any precompact
set M of bounded linear operators on a Banach space, we will establish the
other formulae of Berger—Wang type.

In what follows, X(;) denotes the unit ball of a Banach space X, B(X)
the algebra of all bounded linear operators on X, K(X) the ideal of com-
pact operators, mx the canonical surjection from B(X) onto B(X)/K(X),
IIT||| = |7 (T")| the essential norm of an operator T' € B(X). Clearly, |||T|||
can be regarded as a measure of noncompactness of T'; we will also need
another measure of noncompactness [T, = x(TX(;)), where x(E) for a
bounded set E means the infimum of all € such that F contains a finite
e-net. Clearly, ||T|l, < ||T|| and ||T']], = 0 if and only if T € K(X). The
advantage of the submultiplicative seminorm || - ||, is that it cannot grow
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if we pass to restrictions or quotients of operators; this is not quite clear
for || - -

The restriction of an operator 1" to an invariant subspace Y is denoted
by T|Y. Similarly, if Y7 C Y3 are T-invariant subspaces then T'|(Y2/Y7) is
the operator induced by 7" on the quotient space Y2/Y7.

Let M denote a set of operators. The individual characteristics |7,
I, 1Ty extend to M via supremum: ||M|y, = sup{||T||y : T € M}
and so on. We say that M is Hausdorff-bounded if ||M||, < oco. Similarly
to r (with respect to 7gup), 0 (with respect to the usual norm), g. (with
respect to the essential norm) we define the Hausdorff spectral radius g, for
a Hausdorff-bounded set M as follows:

o (M) = limsup | A"/,

A chain is any set of closed subspaces of X linearly ordered by inclusion.
A nest is a chain which is complete with respect to inf and sup and contains
(0) and X. A gap in a chain ' is a pair Y C Z of subspaces without
intermediate subspaces in I'. The space Z/Y is called a gap-quotient and
is usually denoted by Z~ (it is completely determined by Z). The set of
all gap-quotients for I" is denoted by gap([); if gap(I") is empty, I is said
to be continuous. Each continuous nest is mazimal (it is not contained in
a greater nest); more generally, a nest is maximal iff its gap-quotients are
one-dimensional.

The lattice of all M-invariant subspaces is denoted by lat M. If Y € lat M
we write M|Y = {T|Y : T € M} and similarly for quotients. If I" is a set
of closed subspaces of X, then alg " denotes the algebra of all operators
T € B(X) such that I' C lat T. Given an operator 7' € B(X) and a subspace
Z C X, we write TZyy for T(Z)) ={Tx:x € Zy)}

If I C lat M is a chain, we set

IMIT| = sup{|TIV]] : V € gap(I")}.

o(M|I') = sup{e(M|V) : V € gap(I') };
both values are assumed to be zero if I" is continuous. We also define o(M|I")
as follows: o(M|I") = limsup ||M"|T'||*/". Since || - |I'|| is a submultiplica-
tive seminorm on alg I, as above we obtain o(M|I") = lim || M™|[||*/" =
inf || M™|||Y/™. 1t is clear that g(M|I") < o(M|I).

We need the following results of [11].

LeEMMA 1.1 ([11], Corollary 4.3). If M C B(X) is bounded and F C
lat M is a finite nest, then o(M) = o(M|F).

Given a Banach space X, a set G C X and a closed subspace Y C X,
G/Y denotes the image of G under the canonical map X — X/Y (we adopt
this notation to avoid the confusion with G + Y'; here we understand G +Y
as a sum of two sets, namely G+Y ={z+y:2€ G, yeY}).
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LEMMA 1.2 ([11], Lemma 6.9). Let G be a precompact subset of a Ba-
nach space X, and let Y be a closed subspace of X. Then for any € > 0
there exist precompact sets G1 C X and Go C Y such that G C G1+ Go and
Gl < IG/Y| +e.

Recall that M C B(X) is irreducible if lat M is trivial.

LEMMA 1.3 ([11], Theorem 9.4). If M C B(X) is irreducible and pre-
compact, then o(M) = max{o,(M),r(M)}.

2. Auxiliary lemmas. As a rule, in what follows, M denotes a set of
operators on a Banach space X.

LEMMA 2.1. If M is precompact then || M|y = x(MX)).

Proof. Since TX(1) C MX(y) for T € M, the inequality < is evident. Let
|M]ly < a. For € > 0 choose an e-net T1,...,T, in M and for any j <n a
finite a-net in 7;X(1); their union will be a finite (a+¢)-net in M X ;). Thus
X(MX(1)) < o+ ¢; taking the infimum we obtain the inequality >. m

LEMMA 2.2. Let M be precompact, and let I' C lat M be an infinite
chain of nonzero subspaces with zero intersection. Then for any o > | M|y
there exists Zo in I' such that |M|(Zo/Z)|| < 2« for all Z C Zy in I

Proof. Note first that the interval ((0), Z]r ={Y € I' : Y C Z} contains
an infinite number of elements for any Z C I'. So, if the assertion is not valid
then there exists a decreasing sequence (Z,,) in I" such that

1M [(Zn/Zn 1) > 2a.
Hence there are x, in (Z,)(;) and T, in M with || Tz, — y[| > 2a for any y
in Z,y1. It follows that
(2.1) ||Tn33n — Tkka > 2a
for n # k. This implies that MX(;) does not contain a finite a-net, in
contradiction to Lemma 2.1. =

The proof of Lemma 2.2 actually establishes the following result.

LEMMA 2.3. If M is precompact and o > ||M]|y, then any chain I C
lat M has only a finite number of gap-quotients V € gap(I") with ||[M|V||
> 2.

Proof. Indeed, if not, then there exists an infinite set of gaps (Z,,Y,)
with

Hence there exists an infinite sequence (T, z,) with z, € (Y5.)q), Tn € M
and with property (2.1), a contradiction. =
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LEMMA 2.4. If M is precompact and o (M) < o(M|I") for a chain
I' Clat M then o(M|I") = o(M|I"). In other words, o(M|I") < max{p, (M),
o(M|IM)}.

Proof. Suppose that o(M|I') = 1 and oy (M) < o« < 8 < 1 for some
a, 3. Then there is a number n such that |M"|, < a"™ < 3"/2. By Lemma
2.3, the set

G1={V e gap(I') : [M™V| > 2a"}
is finite. Given G C gap(I'), let
|M|G|| = sup{|M™|V|| : V € G}.

Note that || - |G| is a submultiplicative seminorm on alg I, so that the limit
lim || M™|G||"/™ exists and || M™"|G||Y ™) < ||[M™|G||'/"™ for each m > 0.
Put G2 = gap(I")\G1. Then, for every m > 0,

1M G| ) < [ MGV < B,

Since

o(M|I') = lim || M™™| 7|/ (") = lim | M™™|(Gy U Go) ||/ (™)

— mac{lim | MGy [V, i [| A7 G|
we obtain
o(M|I") = max{lim [[M"™™|G4 ||/ ("™, 5}.
Since 3 < 1, o(M|I") = limy, || M™™|G4||*/™™). Since G is finite,
o(M|I') = lim ”Mnm’Glnl/(nm) =max{o(M|V):V € G1} < o(M|I'),

whence o(M|I') = o(M|I"). =

LEMMA 2.5. Let M C B(X) be precompact, and let Y,Z € lat M with
ZCY. Then |MIY |y < 2| M|y, [M|(Y/Z)] < 2|M]l\ and oy(M|(Y/2))
< ox(M). Moreover, ||M|(X/Z)l|x < ||M]|y.

Proof. If MY(y) has a finite a-net in X then it clearly has a finite 2a-net
in Y. So, by Lemma 2.1,

MY [l = x((M]Y)Y(1)) < 2x(MY(y)) < 2x(MX(1)) = 2[| M|
Since images of e-nets under the canonical map Y — Y/Z are e-nets, we
easily obtain
IM[(Y/Z)|lx = x(M(Y/Z) 1)) < Xx((M[Y)Y(1)) = [|M]Y].
Hence [|M|(Y/Z)]|x < 2[|M]ly and also [[M[(X/Z)]ly < [[M]]y-
Now oy (M|(Y/2))=lim [ M"|(Y/Z)|[Y" < lim 27| MY = 0y (M). =
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Let F be a complete lattice of closed subspaces of X, and let I" C F be a
chain. We say that I is relatively mazximal in F if I' C Iy for a chain Iy C F
implies Iy = 1.

PROPOSITION 2.6. Let M be precompact. If there exists a finite, rela-
tively mazimal nest I C lat M, then o(M) = max{o,(M),r(M)}.

Proof. This follows from Lemmas 1.1, 1.3, 2.5 and the obvious inequality
r(M|(Y/Z)) <r(M)forY,Z clat M with ZC Y. m

So, to obtain the general analogs of Proposition 2.6, we may consider
only the case of infinite nests.

LEMMA 2.7. If Q, N are bounded subsets of a Banach algebra A with
[Q,N]={ab—ba:a€c@Q,be N} ={0},
then |0(Q) — o(N)| < dist(Q, N) (dist here is the Hausdorff distance).

Proof. Let dist(Q, N) < € and o(IN) < «; it suffices to prove that o(Q) <
«a + . It follows easily from the definition of p that there exists a constant
C with |[N¥|| < Ca* for all k. Let ay,...,a, belong to @, and let us find
bi,...,b, in N with [|a; — b;|| < e. Setting ¢; = a; — b;, we have a; ...a, =
(b1 +c1)...(bp +¢n) = do+ ...+ dy, where di is a sum of (Z) elements
that are products of k elements of {¢;} and n — k elements of {b;}. Hence
ldil] < (D)e*IN"F|| < (})e"Ca™* and |ai...an|| < C(a+ €)". Thus
Q™™ < CY"(av+¢€) and 0(Q) < a4 €. m

LEMMA 2.8. For a precompact set N of commuting elements of a Banach
algebra, o(N) = r(N) = reup (V).

Proof. If N is finite the result follows by a direct computation. In the
general case take a finite e-net @) in N; then dist(Q, N) < € and by Lemma
2.7, o(N) < 0(Q) + € < 14up(Q) + € < roup(IN) + €. Since € is arbitrary,
o(N) < rqup(N). The inequality 7g,p(N) < o(N) is evident. m

3. Using the weakly compact operators. Let W (X) denote the set
of all weakly compact operators on a Banach space X (see, for example, [5],
Section 3.3). As is known, W (X) is a closed ideal of B(X) and K (X) C W(X).

Let I" be a chain of closed subspaces in X, and let W(I") = alg 'NW (X).
Then W(I") is a closed ideal of alg I" and alg I'/W (I") is a Banach algebra.
Given an operator T € alg I" or aset N C alg I", we write for brevity |||, r
instead of [|T/W(I")|| = inf{||T + S|| : S € W(I')} and || N||,r instead of
IN/W ()| = supd [ Tlhu,r : T € N}.

LEMMA 3.1. Let M be a precompact set, I' C lat M a chain, and [y C I
a subchain of nonzero subspaces with zero intersection. Then, for any e > 0,
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one can find Z in Iy with
102 Z]| < 4| M| max{| M |lw,r, | M|} +e.

Proof. One may suppose that [|[M|| > 0. It suffices to obtain the result
for a finite eg-net M., C M and, moreover, for any 77,75 in M., to find Z
in Iy satisfying the condition

(3.1) | Z|| < 4| M| max{|[ M|, [|M]

w,F} + 5/2
and then to take the intersection, say Y, of such subspaces for all pairs. In-
deed, if g9 < e(4[|M]])~"! then the obvious inequality || M?|Y]| < [|M2|Y|| +
£/2 and (3.1) with Z = Y complete the proof. In other words, the proof
is reduced to the case of a finite set and it suffices to show (3.1) for any
Ty, 15 € M.

By Lemma 2.2, for €1 > 0, there exists Zy in I such that

1T2[(Zo/Z)I| < 2| M [ + 1)

for all Z C Zy in I. Hence, for any x in (Zp)(1y and for any Z C Zp in I,
one can choose y = y(z, Z) in Z with | Tox — y(z, Z)| < 2(||M ||y +1). Set
a; = 2(||M||y +¢€1). Then

(3.2) ly(z, 2)|| < T2z — y(=z, Z)|| + [ Toz|| < oq + || M]|
and
(3-3) T Tox — Thy(z, Z)|| < 2T [[([[M]x + &) < an||M].

It follows from Lemma 1.2 that, for €9 > 0, there exist precompact
sets My C algl’ and My C W(I') such that |M| < || M|lw,r + €2 and
M C My + M. Therefore T = S1 + S5 for some S; € My and Sy € Ms. Set
ag = || M||lw,r + e2. It follows from (3.2), (3.3) and the inequality ||S1|| < a2
that

(3.4)  [[TTox — Say(x, 2)|| < [TiTox — Thy(x, 2)|| + [ S1y(x, Z)]|
< ar[ M| + (1S} - fly(z, Z)]|
< ap| M| + ag(en + [|[M])
< (o1 + a2)[[M|| + craa.
Since a1 < 2||M||(1+¢e1||M|~1) and ag < || M||(1+e2||M||~1), we obtain
arag < v2ajas ||M||(1+ e3), where
L+es = /(1 +e M=) + el M[71) < V2
if 1 and €2 are small enough. Therefore ajay < 2,/ajas ||M|| and
(3.5) (a1 + ) [|M || + ar02 < (Vo + Vaz)? | M]|
< (2max{\/ar, Va2 })?|| M|

< 4||M || max{ai, as}.
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It follows from (3.4) and (3.5) that
(3.6) | Th Tox — Say(x, Z)|| < 4||M || max{ai, as}.

Since the set {y(z,2) : Z C Zy, Z € I} is bounded (see (3.2)), S is
weakly compact and D ={Z € Iy : Z C Zy} is a directed set (with respect
to C), we deduce that the net (Say(z, Z))zep has a weak limit point, say z.
Since Say(z, Z) € Z for each subspace Z € D which is weakly closed, the
point z must belong to all Z in I, hence must be zero. So T1Thrx is a weak
limit point of the net Z — T1Tox — Say(x, Z). Then

T\ Tox|| < liminf(||T1Tox — Soy(x, Z)||) zeD,

and it follows from (3.6) that ||T1T2z| < 4||M| max{ai,as}. Since x in
(Zo) ) is arbitrary,

TV T2 | Zo|| < 4]|M|| max{aq, as}.

Now Zj is a subspace we looked for (i.e., Z = Zj satisfies (3.1)) if max{e1,e2}
<e(8|M|)~ -

LEMMA 3.2. Let I' be a chain of closed subspaces in X and Z,Y € I
with Z CY. Let I'|(Y/Z) ={V/Z :V eI, ZCcV CY}.If N Calgll
then N|(Y/Z) C alg(I'|(Y/Z)) and [|[N|(Y/Z)llw,r\v/z) < | Nllw,r-

Proof. Set F=1TI'|(Y/Z). For ¢ > 0, let T € N be arbitrary, and choose
S e W(I') with || T||w,r > ||T + S|| — €. Note that I" C lat{T, S}, and

standard arguments show that S|(Y/Z) is weakly compact. Hence T'|(Y/Z) €
alg F and S|(Y/Z) € W(F). So
IT1(Y/Z) |l p < (T +DIY/2) < T+ S| < [[T]w,r + ¢
Taking suprema, we obtain |N|(Y/Z)||,, f < || N[lw,r + € and therefore
INIY/Z) i, <IN |- m

LEMMA 3.3. Let M be a precompact set and I' a nest in lat M. Then
for any € > 0 there exists a finite subnest F C I such that
(3.7) I MPIF|| < max{4]|M]| - || Mlw,r, 4| M| - [[M]|, | M?|T|} +e.

Proof. Denote by 4« the right hand side of (3.7). As above (see the
beginning of the proof of Lemma 3.1), the problem reduces to the case of
finite M and, moreover, it suffices to find, for any 7' € M?, a finite subnest
F of I' with ||T|F|| < 4. The union of such finite subnests (when T runs
over the finite set M) is required for the completeness of the proof.

Since a > || M|| - || M|y > [IM?||y > |IT|ly, there exists by Lemma 2.1 a
finite a-net £ = {u1,...,u,} in the closure of TX(y). For Z € I', let

9(Z) ={u; € E : dist(u;, TZ(1)) < a}



Formulae for joint spectral radii 31

(here, as usual, dist(u;, TZ(y)) = inf{|lu; — z|| : # € TZ(;y}). Then
(3.8) dist(T'Z1y,9(Z)) < a,
where we also use dist to denote the Hausdorff distance on the set of all
bounded subsets of X. Indeed, dist(u,7Z(;)) < a for each u in g(Z) by
the definition. Furthermore, for any y € TZ(y) there exists u; € E with
lly — uj]| < . Hence u; € g(Z) and dist(y, g(2)) < a.
The set of all subsets g(Z) of E is finite and linearly ordered by inclusion.
So it can be enumerated increasingly: Fy C ... C E,,. Clearly, E1 = g((0)),
En,=9X).Set I ={Z eI :9(Z)=E;} forany j, 1 <j <m. Then I' is
the disjoint union of I;.
Let Y, Z belong to the same I';. It follows easily from (3.8) that
dlSt(T}/v(l),TZ(l)) S 2.
One may suppose that Z C Y. Hence
(3.9) ITI(Y/Z)|| = sup{|[Tz/Y || : z € Z1)}
< sup{dist(T'2,TY(y)) : 2 € Z(1y}
< diSt(TZ(l),TE/(l)) < 2a.

Let us examine the “boundary” subspaces. Let J{j =({Z:ZeTlju},
and let X be the closure of \U{Z : Z € I';}. We obtain a finite sequence of
subspaces X3 = (0), X1, X{,.... X, X" |, X, =X.

Set, for convenience, X, = (0), Iy = {¥; } and %}, = X.

It is clear that %J_ C %;r If they do not coincide then 36]_ € I}, %;r €

I'j+1 and %j/%]_ € gap(I'), whence
TS /X)) < ITIT|| < | M| < dar.

Assume now that X, = %j for some j, 0 < j < m, and denote them
by X;. If j = m then it follows from (3.9) that ||T((X,,/Z)| < 2« for any
Z € Iy, (because X,, = X € [},). So one may suppose that j < m. If
Xj in Ij1 then g(X;) = Eji1. It follows that for any y € T(X;)(;) we
have y = limy,, with y, € T(Zn)(l),Zn € I and dist(y,, Ej) < . Hence
dist(y, Fj) < «, dist(T(X;) (1), TZ(1)) < 2a and, as above,

(3.10) IT](%5/2)| < 2a
for any Z in I';. Note that, in this case, if j = m — 1, we also have
1T)(Xm/XEm—1)| < 2a.
Let X; belong to I'; for j < m, and let V' = X/X;. Then the chain
i |V ={Z/%;: Z € I'j;1, Z D X;}

is a chain of nonzero subspaces with zero intersection. Applying Lemma 3.1
to the space V, the operator T'|V and the chain I;11|V C I'|V, we obtain
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Z in Fj+1 with
(3.11) T2/ %))l < AIM|V || max{ | M|V ]|, rjv, [M|V]x} +&.
We denote the subspace Z by Z;.

It is clear that [|[M|V| < ||M]|. By Lemmas 3.2 and 2.5, [|[M|V ||, rjv <
| M|, r and || M|V, < ||M]y. Then it follows from (3.11) that

(3.12)  [IT[(Z;/ %))l < 4lIM || max{[|M |lw,r, [M]]x} + € < 4a.

Denote by F the chain consisting of all boundary subspaces %g i %f,
~ X %~ and all subspaces Z; defined above. It is clear that

oM m—1D M m—1vm
X4 = (0) and X,,, = X, i.e. F is a finite nest, and F C I'. Note that if Z; € F
then %;“ = X; C Zj C X;;;. We are to prove that ||T|Z~[| < 4a for all
Z~ € gap(F).

The previous considerations and (3.12) show that it only remains to
consider the possible gap-quotients Z~ = %J_ /Z;—1 for 1 < j < m. Note
that Z;_1 € I';. Then as we just have showed, the inequality

IT((%5 /Zj-1)| < 2a
holds in any case, i.e., if X; € I'j or X, € Ij11 (see (3.9) and (3.10)). =
LEMMA 3.4. Let M be a precompact set and I' C lat M be a nest. Then
(3.13) o(M)?2 < 4| M [ max{ | M, || M, M}

Proof. Let a be the right hand side of (3.13). By Lemma 3.3, for ¢ > 0
there exists a finite nest F C I" satisfying (3.7). Since

1M < | MID|P < (IMIT||- M) < 4]0 - ([ M]0])
we obtain ||[M?|F|| < a +¢e. By Lemma 1.1, o(M?) = o(M?|F). Hence
o(M)? = o(M?) = o(M?|F) < | M?|F|| < a+e,
and therefore o(M)? < . u

4. Main results. Given a chain I" in X and a subset N C algI’, let

ow,r(N) denote limsup,,_, HNnHle/? Since || - ||y, is a submultiplicative

seminorm on alg I', we may also write
IRRT 1/n . 1/n
0w,r(N) = lim [[N"[|,; = inf [[N"][; .

THEOREM 4.1. Let M be a precompact set and I' C lat M be a nest.
Then
(4.1) o(M) = max{ow,r(M), ox (M), o(M|I')}.
In particular, if M consists of weakly compact operators then

(4.2) o(M) = max{o, (M), o(MI|I")}.
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Proof. Note that (4.1) is obvious if o(M) = 0. So we assume that o(M)
> 0. Since I' C lat M C lat M™ for every integer n > 0, we may apply
Lemma 3.4 to M™. Then

o(M™)? < 4| M™ || max{[|M" |lu,r, [|M" ||, | M T]|}.
Hence
n\2/n n n n nl/n n n n n
o(M)? = o(M™)*™ < 4M™| M™ |/ max{||M Hw/,n M M|
Taking limits as n — oo, we obtain
o(M)? < o(M) max{gw,r(M), ox (M), o(M|I')}.

Taking into account that o(M|I") < max{o(M),o(M|I")} by Lemma 2.4,
we conclude that

o(M) < max{ow,r(M), ox(M), o(M|I")}.

The opposite inequality is evident.
If M consists of weakly compact operators then g, r(M) = 0 and (4.2)
follows. =

Given a complete chain I' C lat M, let »(M|I") denote sup{r(M|V) :
V e gap(I')} (if I" is continuous, we set r(M|[") = 0).

THEOREM 4.2. Let M be precompact, and let I' be a relatively mazimal
nest in lat M. Then

(4.3) o(M) = max{ow,r(M), o, (M), r(M|I")}

= max{ 0w r(M), oy (M), r(M)}.
In particular, if M consists of weakly compact operators then
(4.4) o(M) = max{oy(M),r(M)}.

Proof. If I' is a relatively maximal nest in lat M then M|V is irreducible
for every V' € gap(I"). Since M|V is precompact,

o(M|V) = max{o, (M|V),r(M|V)}

by Lemma 1.3. Since o, (M|V) < oy (M) by Lemma 2.5 and r(M|V) <
r(M|I"), we obtain

o(M|V) < max{o,(M),r(M|I")}
and therefore
o(M|I") < max{gy (M), r(M|I")}.
Since r(M|I") < r(M), it follows from (4.1) that
o(M) < max{ow,r(M), ox(M),r(M|I")} < max{ow,r(M), ox(M),r(M)}.

The opposite inequalities are evident. Now (4.4) clearly holds if M consists
of weakly compact operators. =
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THEOREM 4.3. Let M be precompact, let @QQ be a precompact set of weakly
compact operators, and let N be a precompact set of compact operators (all
sets are subsets of B(X)). Then

(4.5) o(MUQUN) =max{o(M), 0,(MUQ),"(MUQUN)},
and in particular,
(4.6) o(M UN) =max{o(M),r(M UN)}.
Proof. Let I' be a relatively maximal nest in lat M U N. It is clear that
ow,r(MUQUN) = 0y,r(M) < o(M)
and
ox(MUQUN) = 0, (MUQ).
It follows from (4.3) that
o(MUQUN) <max{o(M),0,(MUQ),r(MUQUN)}.
The opposite inequality is evident. m
THEOREM 4.4. Let M be precompact.
(i) If M is commutative modulo W (X) then

(4.7) o(M) = max{o,(M),r(M)}.
(ii) If M is commutative modulo K(X) then
(4.8) o(M) = r(M).

Proof. We first prove (i). Let I" be a relatively maximal nest in lat M.
Since [M,M] C W(X), we have [M,M] C W(I'). Since the image of M
in algI'/W(I'), say N, is a commutative precompact subset, we obtain
ow,r(M) = o(N) = r(N) by Lemma 2.8. Since the canonical map alg " —
alg I'/W(I') is a homomorphism of Banach algebras, r(N) < r(M). It fol-
lows from (4.3) that o(M) < max{o,(M),r(M)}. The opposite inequality
is evident.

If M is commutative modulo K(X), then we already have (4.7) and
a similar argument shows that o, (M) = r(M/K(X)) < r(M). Therefore
o(M) < r(M), and the opposite inequality is evident. m

COROLLARY 4.5. If M is a precompact set of operators which is commu-
tative modulo W (X) then, for any sequence M, of bounded sets of operators,
tending to M with respect to the Hausdorff distance,

(4.9) o(M) = max{ o, (M), limsup o(M,)}
= max{ o, (M), liminf o(M,)}.



Formulae for joint spectral radii 35

Proof. We should prove that

(4.10) max{p,(M),limsup o(M,)} < o(M)
< max{py(M),liminf o(My)}.

It is not difficult to check that limsup o(M,,) < o(M). Indeed, M — M™
for any m, whence |[M™|Y/™ — ||M™||/™. Since |[M™||V/™ > o(M,), we
see that limsup o(M,) < |M™|'™ and it remains to take the limit as
m — o0o. Since o, (M) < o(M), the first inequality in (4.10) is proved.
Suppose that liminf o(M,) < o(M) and o, (M) < o(M). Passing to a
subsequence, and multiplying by a scalar, one may assume that o(M,) —
a < 1 < o(M) and oy (M) < 1. It follows from Theorem 4.4(i) that
o(T) > 1 for some T € SG(M), say T € MF*. Let T, € MF, T,, — T. Since
o(T) > 0y (T) = 0e(T'), T has an isolated eigenvalue A with |A\| = o(T'). By
Newburgh’s theorem (see Theorem 1.1.4 of [1]), T is a point of continuity of
the usual spectral radius, o(7,,) — o(T'), whence o(7,,) > 1 for sufficiently
large n. On the other hand, o(T},) < o(M,)* — oF < 1, a contradiction. =

COROLLARY 4.6. A precompact set M of operators which is commutative
modulo W(X) and satisfies oy (M) < o(M) or o(M) = 0 is a point of
continuity of the joint spectral radius o.

A simplest example of a set satisfying the hypotheses of Corollary 4.6 is a
precompact set of compact operators. We recall that an operator T' € B(X)
is a Riesz operator if po(T) = 0. If M C B(X) is commutative modulo K (X),
one also says that M is an essentially commutative set of operators.

COROLLARY 4.7. Any essentially commutative precompact set of Riesz
operators is a point of continuity of o.

Proof. Let M be an essentially commutative precompact subset of Riesz
operators. Since M /K (X) is a commutative precompact subset of the Calkin
algebra,

ox(M) < 0e(M) = o(M/K(X)) = rsup(M/K(X))
by Lemma 2.8. As M /K (X) consists of quasinilpotents, rs,,(M/K (X)) = 0.
Hence g, (M) = 0 and, by Corollary 4.6, M is a point of continuity of o. m

Let A(M) denote the closed subalgebra generated by M C B(X).

COROLLARY 4.8. Let G be an essentially commutative semigroup of
quasinilpotent operators. Then o(M) = 0 for every precompact subset M C
A(G).

Proof. Note that o(IN) = r(IN) for every precompact subset N C G by
Theorem 4.4(ii). Since the semigroup generated by N consists of quasinilpo-

tents, r(NN) = 0 and therefore p(/N) = 0. Let B be the subalgebra generated
by G. If @ is a finite subset of B, then o(Q)) = 0 because @ is the set of
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polynomials in elements of some finite subset N C G (see [11], Corollary
2.10).

Let M be a precompact subset of A(G). Since A(G) is an essentially
commutative algebra of Riesz operators, M is a point of continuity of o
by Corollary 4.7. There exists a sequence (@) of finite subsets of B which
tends to M with respect to the Hausdorff distance. Since o(Q,) = 0, we
obtain o(M) =0. m

Here we list some extensions of our results; the proofs need some auxiliary
technique and will be published elsewhere.

(1) The Berger-Wang formula, o(M) = r(M), is valid for precompact
subsets of a Banach algebra if M consists of compact elements. Recall that
an element a of a Banach algebra A is called a compact element of A if the
map x — aza, r € A, is compact.

(2) The Berger—Wang formula is valid for finite subsets of a postliminal
C*-algebra.

(3) The commutativity conditions modulo W (X) (or K(X)) in Theorem
4.4 can be considerably weakened: one may suppose only that M/W(X)
(or M/K(%)) belongs to the closed associative subalgebra generated by a
nilpotent Lie subalgebra.

Other applications to Banach algebras will also be published separately.
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