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On rough maximal operators and
Marcinkiewicz integrals along submanifolds

by

H. M. Al-Qassem (Doha) and Y. Pan (Pittsburgh, PA)

Abstract. We investigate the Lp boundedness for a class of parametric Marcinkiewicz
integral operators associated to submanifolds and a class of related maximal operators
under the L(log L)α(Sn−1) condition on the kernel functions. Our results improve and
extend some known results.

1. Introduction and statement of results. Let Rn (n ≥ 2) be the
n-dimensional Euclidean space and Sn−1 be the unit sphere in Rn equipped
with the induced Lebesgue measure dσ = dσ(·). For x ∈ Rn\{0}, let
x′ = x/|x|. Let Ω be a function in L1(Sn−1) satisfying

(1.1)
�

Sn−1

Ω(x) dσ(x) = 0.

For 1 ≤ γ ≤ ∞, let ∆γ(R+) denote the collection of all measurable functions
h : [0, ∞)→ C satisfying supR>0(R−1

	R
0 |h(t)|γ dt)1/γ <∞. We note that

L∞(R+) ⊂ ∆β(R+) ⊂ ∆α(R+) for α < β,

Lγ(R+, dt/t) ⊂ ∆γ(R+) for 1 ≤ γ <∞,
and all these inclusions are proper. Let L(logL)α(Sn−1) (for α > 0) denote
the class of all measurable functions Ω on Sn−1 which satisfy

‖Ω‖L(logL)α(Sn−1) =
�

Sn−1

|Ω(y)| logα(2 + |Ω(y)|) dσ(y) <∞.

In this paper, we are interested in parametric Marcinkiewicz integral
operators of the form
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M%
Ω,φ,ψ,hf(x, xn+1)

=
(∞�

0

∣∣∣∣t−% �

|u|≤t

f(x− φ(|u|)u′, xn+1 − ψ(|u|)) Ω(u′)
|u|n−%

h(|u|) du
∣∣∣∣2dtt

)1/2

,

where (x, xn+1) ∈ Rn × R = Rn+1, φ and ψ are suitable functions defined
on R+, % = σ + iτ (σ, τ ∈ R with σ > 0) and f ∈ S(Rn+1), the space of
Schwartz functions.

When φ(t) ≡ t and ψ ≡ 0, we denote M%
Ω,φ,ψ,h by M%

Ω,h. In the special
case of % = 1 and h = 1, M%

Ω,h is essentially the classical Marcinkiewicz
integral operator

MΩf(x) =
(∞�

0

∣∣∣∣ �

|u|≤t

f(x− u)
Ω(u′)
|u|n−1

du

∣∣∣∣2 dtt3
)1/2

,

which was introduced by E. M. Stein as a higher dimensional analogue of

f 7→
( 2π�

0

|F (θ + t) + F (θ − t)− 2F (θ)|2 dt
t3

)1/2

,

where F (θ) =
	θ
0 f(s) ds + C. Such operators belong to the broad class of

Littlewood–Paley g-functions, and Lp bounds for them are useful in the
study of smoothness properties of functions and behavior of integral trans-
formations, such as Poisson integrals, singular integrals and, more generally,
singular Radon transforms. The readers are referred to [Di], [St1], [Sa], [TW],
[DFP], [SY], [AA], and [AACP] for a survey of past studies as well as some
of the more recent advances on this topic. Below we shall recall a few known
results which are directly relevant to our current study.

We start with the following result obtained in [AACP]:

Theorem A. If Ω ∈ L(logL)1/2(Sn−1), thenMΩ is bounded on Lp(Rn)
for 1 < p <∞. Moreover, the exponent 1/2 is the best possible.

We point out that T. Walsh [Wa] proved the result in Theorem A for
p = 2 and also that the exponent 1/2 in L(logL)1/2(Sn−1) cannot be replaced
by any smaller number. As for the parametric Marcinkiewicz operatorM%

Ω,h,

Hörmander [Ho] proved that if h(r) ≡ 1, % > 0, and Ω ∈ Lipα(Sn−1) with
α > 0, then M%

Ω,h is bounded on Lp(Rn) for p ∈ (1,∞). Sakamoto and
Yabuta [SY] proved thatM%

Ω,h is bounded on Lp for p ∈ (1,∞) if h(r) ≡ 1,
Ω ∈ Lipα(Sn−1) with α > 0, h(r) ≡ 1 and % is complex with Re(%) > 0. In
[DLY] the authors improved the result in [SY] as described in the following
theorem:

Theorem B. If h ∈ ∆γ(R+) for some γ > 1 and Ω ∈ L(logL)(Sn−1),
then M%

Ω,h is bounded on L2(Rn).
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If φ(t) ≡ t, % = 1 and ψ is a suitable function, then M%
Ω,φ,ψ,h (denoted

by M1
Ω,1,ψ,h) is the Marcinkiewicz integral operator along the surface of

revolution Sψ = {(y, ψ(|y|)) : y ∈ Rn} studied by Ding–Fan–Pan in [DFP].
We point out that the study of the related singular integrals along surfaces
of revolution was initiated by Kim, Wainger, Wright and Ziesler [KWWZ]
and continued by many authors (see, for example, [AP2], [AsP] and the
references therein). In [AA], the authors proved the following result:

Theorem C. Suppose that ψ : R+ → R+ is a C2, convex, increasing
function with ψ(0) = 0, and h ∈ ∆γ(R+) for some γ > 1. If % = 1 and
Ω ∈ L(logL)(Sn−1) satisfies (1.1), then M1

Ω,1,ψ,h is bounded on Lp(Rn+1)
for |1/p− 1/2| < min{1/2, 1/γ′}

If ψ(t) ≡ 0, % = 1 and φ is a suitable function, then M%
Ω,φ,ψ,h (denote it

by M1
Ω,φ,0,h) is the Marcinkiewicz integral operator studied by Al-Qassem

[A1] and described in the following:

Theorem D. Let h ∈ ∆γ(R+) for some γ > 1. Let φ be a C2([0,∞)),
convex, increasing function with φ(0) = 0. If Ω ∈ L(logL)1/2(Sn−1) satisfies
(1.1), thenM1

Ω,φ,0,h is bounded on Lp(Rn) for |1/p−1/2| < min{1/2, 1/γ′}.

We remark that the study of the Lp boundedness of the corresponding
singular integral operator (when ψ ≡ 0 and φ is a suitable function) was
initiated by Fan–Pan in [FP2] and continued by many authors (see, for
example, [AP2]).

We notice that the results in Theorems B and C fall short of what is
known regarding the classical operator MΩ because L(logL)1/2(Sn−1) ⊆
L(logL)(Sn−1), and that the range of p given in both Theorems C and D
is the entire range (1,∞) whenever γ ≥ 2, whereas this range becomes pro-
gressively smaller as γ → 1+. For relevant results on Marcinkiewicz integrals
and singular integrals having such limited range of p, we refer the readers
to [FP1], [FP2], [AsP], [AP1], and [AP2]. In light of the results cited above,
the following problems arise naturally:

Problem.

(1) Determine whether the operators M1
Ω,1,ψ,h and M1

Ω,φ,0,h can be
bounded on Lp for p outside the range |1/p− 1/2| < min{1/2, 1/γ′}.

(2) Determine whether the operator M1
Ω,1,ψ,h is bounded on Lp under

the natural condition Ω ∈ L(logL)1/2(Sn−1).

In the current paper we are primarily concerned with a solution to the
above problem. The main results of this paper are stated in the following
theorems:
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Theorem 1.1. Let h ∈ ∆γ(R+) for 1 < γ ≤ ∞. Assume that φ and ψ
are C2([0,∞)), convex , increasing functions with φ(0) = ψ(0) = 0.

(a) If Ω ∈ L(logL)1/2(Sn−1), then the operator M%
Ω,φ,ψ,h is bounded on

Lp(Rn+1) for 2 ≤ p < 1/(1/2− α(γ)), where α(γ) = min{1/2, 1/γ′}.
(b) If Ω ∈ L(logL)1/γ

′
(Sn−1) with 2 < γ ≤ ∞, thenM%

Ω,φ,ψ,h is bounded
on Lp(Rn+1) for γ′ < p <∞.

(c) If Ω ∈ L(logL)(2γ−1)/(2γ)(Sn−1) with 1 < γ ≤ 2, then M%
Ω,φ,ψ,h is

bounded on Lp(Rn+1) for 2γ/(2γ − 1) < p < 2.
(d) If Ω ∈ L(logL)(3γ−2)/(2γ)(Sn−1) with 1 < γ ≤ 2, then M%

Ω,φ,ψ,h is
bounded on Lp(Rn+1) for 2γ/(3γ − 2) < p < 2.

Notice that in (a)–(b), L(logL)1/γ
′
(Sn−1) ⊆ L(logL)1/2(Sn−1) if 2 <

γ ≤ ∞, but the range of p in (b) is better than in (a). Also, in (c)–(d),
L(logL)(2γ−1)/(2γ)(Sn−1) ⊆ L(logL)(3γ−2)/(2γ)(Sn−1), but the range of p in
(d) is better than in (c). If we impose a more restrictive condition on h we
have the following sharper result with respect to the condition on Ω and the
range of p:

Theorem 1.2. Suppose that h ∈ Lγ(R+, dt/t) with 1 ≤ γ ≤ ∞. As-
sume that φ and ψ are C2([0,∞)), convex , increasing functions with φ(0) =
ψ(0) = 0.

(a) If Ω ∈ L(logL)1/γ
′
(Sn−1) with 1 < γ ≤ 2, then M%

Ω,φ,ψ,h is bounded
on Lp(Rn+1) for γ′ ≤ p <∞.

(b) If Ω ∈ L(logL)1/2(Sn−1) and 2 < γ ≤ ∞, then M%
Ω,φ,ψ,h is bounded

on Lp(Rn+1) for 2 ≤ p <∞.
(c) If γ = 1 and Ω ∈ L1(Sn−1), thenM%

Ω,φ,ψ,h is bounded on L∞(Rn+1).

At this point, we remark that our results cannot be proved by application
of existing arguments on Marcinkiewicz integrals and some new maximal
functions must be introduced. One of these maximal functions, which is
related to Marcinkiewicz integrals, is

M
(γ)
φ,ψ,Ωf(x, xn+1) = sup

h
|M%

Ω,φ,ψ,hf(x, xn+1)|,

where the supremum is taken over all measurable radial functions h with
‖h‖Lγ(R+,dt/t) ≤ 1. If φ(t) ≡ t, ψ ≡ 0 and % = 1, we denote M (γ)

φ,ψ,Ω by M (γ)
Ω .

We remark that the definition of M (γ)
Ω is motivated by the definition of

the maximal operator =(γ)
Ω related to homogeneous singular integrals and

defined by

(1.2) =(γ)
Ω f(x) = sup

‖h‖Lγ (R+,dt/t)
≤1

∣∣∣ �
Rn
f(x− y)h(|y|)Ω(y′)|y|−n dy

∣∣∣.
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The operator =(γ)
Ω was formally introduced by L. K. Chen and H. Lin in

their work on singular integrals [CL]. We refer the readers to [Le], [A2], [As]
for the importance and applications of this maximal operator. Our result
regarding the maximal operator M (γ)

φ,ψ,Ω is the following:

Theorem 1.3. Assume that φ and ψ are C2([0,∞)), convex , increasing
functions with φ(0) = ψ(0) = 0.

(a) If Ω ∈ L(logL)1/γ
′
(Sn−1) satisfies (1.1), then M

(γ)
φ,ψ,Ω is bounded on

Lp(Rn+1) for γ′ ≤ p <∞ and 1 < γ ≤ 2.
(b) If Ω ∈ L(logL)1/2(Sn−1) satisfies (1.1), then M

(γ)
φ,ψ,Ω is bounded on

Lp(Rn+1) for 2 ≤ p <∞ and 2 < γ ≤ ∞.
(c) M

(γ)
φ,ψ,Ω is bounded on L∞(Rn+1) if γ = 1 and Ω ∈ L1(Sn−1).

(d) There exists an Ω which lies in L(logL)1/2−ε(Sn−1) for all ε > 0
and satisfies (1.1) such that M (2)

Ω is not bounded on L2(Rn).

Remarks. (1) To clarify the above results, we remark that, for any
q > 1, the following proper inclusions hold:

Lq(Sn−1) ⊂ L(logL)(Sn−1) ⊂ H1(Sn−1) ⊂ L1(Sn−1),(1.3)
L(logL)β(Sn−1) ⊂ L(logL)α(Sn−1) if 0 < α < β,(1.4)
L(logL)α(Sn−1) ⊂ H1(Sn−1) for all α ≥ 1,(1.5)

while

(1.6) L(logL)α(Sn−1) 6⊆ H1(Sn−1) 6⊆ L(logL)α(Sn−1) for all 0 < α < 1.

Here H1(Sn−1) is the Hardy space on the unit sphere.
(2) For the case h ∈ L∞(R+), the authors of [AAFJ] showed that there

is a function f ∈ Lp such that the maximal operator related to singular
integrals acting on f (i.e. =(∞)

Ω (f)) yields an identically infinite function. It
is still unknown whether =(γ)

Ω is bounded on 2 < γ <∞. It is worth noting
that the maximal operator related to the Marcinkiewicz integrals M%

Ω,φ,ψ,h
is bounded on Lp even if 2 < γ ≤ ∞.

(3) We notice that the Marcinkiewicz operator M1
Ω,h is bounded on Lp

if Ω ∈ L(logL)1/γ
′
(Sn−1) ⊂ L(logL)1/2(Sn−1) and h ∈ Lγ(R+, dt/t) (1 <

γ ≤ 2), while the classical Marcinkiewicz operator MΩ is bounded on Lp if
Ω ∈ L(logL)1/2(Sn−1). Since the condition Ω ∈ L(logL)1/2(Sn−1) is known
to be the best possible for the L2 boundedness of MΩ to hold, this reveals
that the Marcinkiewicz integral operators M1

Ω,h (with h ∈ Lγ(R+, dt/t)
and 1 < γ <∞) have weaker singularities than the classical Marcinkiewicz
integral operatorMΩ due to the presence of the strong condition on h. Also,
this is evidenced by the fact MΩ is not bounded on L∞(Rn), while M1

Ω,h

is bounded on L∞(Rn) if h ∈ L1(R+, dt/t).
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(4) Theorems 1.1 and 1.2 improve and extend Theorems A–D.
(5) If h ∈ ∆γ(R+) (γ ≥ 2), then Theorem 1.1(a) implies that M%

Ω,φ,ψ,h

is bounded on Lp for 2 ≤ p <∞ under the condition Ω ∈ L(logL)1/2(Sn−1).
Also, if γ = 2, then Theorem 1.1(c) and (d) respectively imply thatM%

Ω,φ,ψ,h

is bounded on Lp for 4/3 < p < 2 and Ω ∈ L(logL)3/4(Sn−1), and for
1 < p < 2 and Ω ∈ L(logL)(Sn−1). These results improve and extend
Theorem C and a result in [As].

(6) The main tools used in this paper come from [A1], [A2], [Le], [DR]
and [FP1].

Throughout the paper the letter C will stand for a positive constant
which is independent of the main parameters and not necessarily the same
at each occurrence.

The authors wish to thank the referee for his helpful comments.

2. Proof of Theorem 1.3(d). Let χA denote the characteristic func-
tion of a set A. By definition of M (2)

Ω f(x) and switching to polar coordinates
we have

M
(2)
Ω f(x) = sup

‖h‖L2(R+,dt/t)
≤1

(∞�
0

∣∣∣∞�
0

(h(s)χ[0,t](s))As,Ωf(x) ds
∣∣∣2 dt
t3

)1/2

,

where

As,Ωf(x) =
�

Sn−1

f(x− sy)Ω(y) dσ(y).

By duality and a change of variable we have

M
(2)
Ω f(x) =

(∞�
0

(1�

0

∣∣∣ �

Sn−1

f(x− sty)Ω(y) dσ(y)
∣∣∣2s ds) dt

t

)1/2

.

It is clear that M (2)
Ω is bounded on L2(Rn) if and only if the function

m(ξ) =
(∞�

0

1�

0

∣∣∣ �

Sn−1

e−2πitsξ·uΩ(u) dσ(u)
∣∣∣2 s ds dt

t

)1/2

is an L∞ function. It is easy to see that

(m(ξ))2 = lim
N→∞
ε→0

�

Sn−1×Sn−1

Ω(x)Ω(y)
1�

0

N |ξ|�

ε|ξ|

e−2πitξ′·(x−y) dt

t
s ds dσ(x) dσ(y).
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Notice that
N |ξ|�

ε|ξ|

(e−2πitsξ′·(x−y) − cos(2πt))
dt

t

→ log |ξ′ · (sx− sy)|−1 − i π
2

sgn(ξ′ · (sx− sy))

as N →∞ and ε→ 0, and the integral is bounded, uniformly in ε and N, by
C(1+|log |ξ′ ·(sx−sy)| |). Therefore, using (1.1) and the Lebesgue dominated
convergence theorem we obtain

(m(ξ))2 =
�

Sn−1×Sn−1

Ω(x)Ω(y)

×
(1�

0

(log |ξ′ · (sy − sx)|−1 − i π
2

sgn(ξ′ · (sy − sx)))s ds
)
dσ(x) dσ(y).

If Ω is a real-valued function, we have

(m(ξ))2 =
�

Sn−1×Sn−1

Ω(x)Ω(y)
(1�

0

(log |ξ′ · (sy − sx)|−1)s ds
)
dσ(x) dσ(y).

Now, for a nonzero real number a, it is easy to see that
�

[0,1]

log |sa|−1s ds =
1
2

log |a|−1 + 1/4.

Therefore, by the cancellation condition on Ω, we immediately get

(m(ξ))2 =
1
4

�

Sn−1×Sn−1

Ω(x)Ω(y)(log |ξ′ · (y − x)|−1) dσ(x) dσ(y).

Now the rest of the proof follows by the same argument as in [AA2] and [As].
We omit the details.

3. Some definitions and lemmas

Definition 3.1. For arbitrary functions φ(·) and ψ(·) on R+, a measur-
able function h : R+ → C and Ωm : Sn−1 → R with m ∈ N ∪ {0}, we define
the family {σt,m,h : t ∈ R+} of measures and the maximal operator σ∗m,h on
Rn+1 by

�

Rn+1

f dσt,m,h =
1
t%

�

t/2<|u|≤t

f(φ(|u|)u′, ψ(|u|))h(|u|) Ωm(u′)
|u|n−%

du,

σ∗m,hf(x, xn+1) = sup
t∈R+

| |σt,m,h| ∗ f(x, xn+1)|,

where |σt,m,h| is defined in the same way as σt,m,h, but with Ωm replaced by
|Ωm| and h replaced by |h|.
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Lemma 3.2. Let m ∈ N∪{0}, am = 2m+1, ψ(·) be an arbitrary function
on R+, and h ∈ ∆γ(R+) for some 1 < γ ≤ ∞. Let Ωm be a function on
Sn−1 such that :

(i) ‖Ωm‖L1(Sn−1) ≤ 1,
(ii) ‖Ωm‖L2(Sn−1) ≤ a2

m,
(iii) Ωm satisfies (1.1) with Ω replaced by Ωm.

Assume that φ is a C2([0,∞)), convex , increasing function with φ(0) = 0.
Then there exist positive constants C and α independent of k, φ, ψ and m
such that

ak+1
m�

akm

|σ̂t,m,h(ξ, η)|2 dt
t
≤ C(m+ 1),(3.1)

ak+1
m�

akm

|σ̂t,m,h(ξ, η)|2 dt
t
≤ C(m+ 1)|φ(ak−1

m )ξ|−α/(m+1),(3.2)

ak+1
m�

akm

|σ̂t,m,h(ξ, η)|2 dt
t
≤ C(m+ 1)|φ(ak+1

m )ξ|α/(m+1).(3.3)

Proof. It is easy to see that (3.1) holds. Next, we prove (3.2). By a change
of variable and Hölder’s inequality we have

|σ̂t,m,h(ξ, η)| ≤
t�

t/2

|h(s)|
∣∣∣ �

Sn−1

Ωm(x)e−i(φ(s)ξ·x+ηψ(s)) dσ(x)
∣∣∣ ds
s

≤ C
( 1�

1/2

∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣γ′ ds

s

)1/γ′

.

If 1 < γ ≤ 2, by noticing that∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣ ≤ 1,

we obtain

|σ̂t,m,h(ξ, η)| ≤ C
( 1�

1/2

∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣2 ds

s

)1/γ′

.

Now, if γ > 2, by Hölder’s inequality, we get

|σ̂t,m,h(ξ, η)| ≤
( t�

t/2

|h(s)|2 ds
s

)1/2

×
( 1�

1/2

∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣2 ds

s

)1/2
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≤ C
( 1�

1/2

∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣2 ds

s

)1/2

.

So in either case, we get

|σ̂t,m,h(ξ, η)| ≤ C
( 1�

1/2

∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣2 ds

s

)1/max{γ′,2}
,

which in turn implies that

|σ̂t,m,h(ξ, η)| ≤ C
( �

Sn−1×Sn−1

Ωm(x)Ωm(y)At(ξ, x, y) dσ(x) dσ(y)
)1/max{γ′,2}

,

where

At(ξ, x, y) =
1�

1/2

e−iφ(st)ξ·(x−y) ds

s
.

Now

At(ξ, x, y) =
1�

1/2

L′t(s)
ds

s
,

where

Lt(s) =
s�

1/2

e−iφ(tw)ξ·(x−y) dw, 1/2 ≤ s ≤ 1.

By the mean value theorem and the assumptions on φ we have
d

dw
(φ(tw)) = tφ′(tw) ≥ φ(tw)

w
≥ φ(t/2)

s
for 1/2 ≤ w ≤ s ≤ 1.

By the last estimate and van der Corput’s lemma,

|Lt(s)| ≤
∣∣∣∣φ(t/2)ξ

s

∣∣∣∣−1

|ξ′ · (x− y)|−1.

Thus, by integration by parts, we get

|At(ξ, x, y)| ≤ C|φ(t/2)ξ|−1|ξ′ · (x− y)|−1,

which when combined with the trivial estimate |At(ξ, x, y)| ≤ log 2 and
choosing α so that 0 < 2α < 1 yields

|At(ξ, x, y)| ≤ |φ(t/2)ξ|−α|ξ′ · (x− y)|−α.
By Hölder’s inequality, (ii) and the choice of α we get

|σ̂t,m,h(ξ, η)| ≤ C|φ(t/2)ξ|−α/max{γ′,2}‖Ωm‖2/max{γ′,2}
2

×
( �

Sn−1×Sn−1

|ξ′ · (x− y)|−2α dσ(x) dσ(y)
)1/max{γ′,2}

≤ C|φ(t/2)ξ|−α/max{γ′,2}a2/max{γ′,2}
m
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and hence
ak+1
m�

akm

|σ̂t,m,h(ξ, η)|2 dt
t
≤ C(m+ 1)

∣∣∣∣φ(1
2
akm

)
ξ

∣∣∣∣−2α/max{γ′,2}
a4/max{γ′,2}
m ,

which when combined with the trivial estimate in (3.1) yields (3.2).
For (3.3), we use the cancellation property of Ωm and the increasing

property of φ to get

|σ̂t,m,h(ξ, η)| ≤
t�

t/2

|h(s)|
∣∣∣ �

Sn−1

Ωm(x)(e−i(φ(s)ξ·x+ηψ(s)) − e−iηψ(s)) dσ(x)
∣∣∣ ds
s

≤ C|ξφ(t)|,
which easily implies

ak+1
m�

akm

|σ̂t,m,h(ξ, η)|2 dt
t
≤ C(m+ 1)|ξφ(ak+1

m )|2.

By combining the last estimate with (3.1) we get (3.3). This finishes the
proof of Lemma 3.2.

By a similar argument we get

Lemma 3.3. Let m ∈ N ∪ {0} and ψ(·) be an arbitrary function on R+.
Let Ωm(·) and φ be as in Lemma 3.2. For (ξ, η) ∈ Rn × R let

Im,k(ξ, η) =
ak+1
m�

akm

1�

1/2

∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣2 ds dt

st
.

Then |Im,k(ξ, η)| satisfies the estimates in (3.1)–(3.3) (with the expression	ak+1
m

akm
|σ̂t,m,h(ξ, η)|2 dt/t replaced by |Im,k(ξ, η)|) for some positive constants

C and α independent of k, m, ξ, η, φ(·) and ψ(·).
We shall need the following result from [AP1] which has its roots in [DR]

and [FP1].

Lemma 3.4. Let {σk : k ∈ Z} be a sequence of Borel measures on Rn.
Let L : Rn → Rm be a linear transformation. Suppose that for all k ∈ Z and
ξ ∈ Rn, and some a ≥ 2, α,C > 0, A > 1 and p0 ∈ (2,∞), we have:

(i) |σ̂k(ξ)| ≤ CA(akA|L(ξ)|)±α/A;
(ii) ‖(

∑
k∈Z |σk∗gk|2)1/2‖p0 ≤ CA‖(

∑
k∈Z |gk|2)1/2‖p0 for arbitrary func-

tions gk on Rn.

Then for p′0 < p < p0, there exists a positive constant Cp such that∥∥∥(∑
k∈Z
|σk ∗ f |2

)1/2∥∥∥
Lp(Rn)

≤ CpA‖f‖Lp(Rn)
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for all f in Lp(Rn). The constant Cp is independent of A and of the linear
transformation L.

Now, we need to introduce two more maximal functions. First, define

λ∗m,h(f) = sup
k∈Z

ak+1
m�

akm

(µt,m,h ∗ f)
dt

t
,

where f ≥ 0, m ∈ N∪ {0}, and µt,m,h = |σt,m,h|. We notice that if we define
the measure λm,k,h by

λ̂m,k,h(ξ, η) =
ak+1
m�

akm

µ̂m,t,h(ξ, η)
dt

t
for (ξ, η) ∈ Rn × R,

it is easy to see that

λ∗m,hf(x, xn+1) = sup
k∈Z
|λm,k,h ∗ f(x, xn+1)|.

Lemma 3.5. Let m ∈ N ∪ {0} and h ∈ L∞(Rn). Let Ωm be a function
on Sn−1 satisfying conditions (i) and (ii) of Lemma 3.2. Assume that φ and
ψ are C2([0,∞)), convex , increasing functions with φ(0) = ψ(0) = 0. Then
for every 1 < p < ∞, there exists a positive constant Cp independent of m
such that

(3.4) ‖λ∗m(f)‖p ≤ Cp(m+ 1)‖f‖p
for every f ∈ Lp(Rn+1).

Proof. Fix a ϕ ∈ S(Rn) such that ϕ̂(ξ) = 1 for |ξ| ≤ 1 and ϕ̂(ξ) = 0 for
|ξ| ≥ 2. For each t ∈ R+, let (ϕt)∧(ξ) = ϕ̂(tξ). Define the family of measures
{Υm,t}t∈R+ and {ϑm,k}k∈Z by

(3.5)

Υ̂m,t(ξ, η) = µ̂m,t,h(ξ, η)− µ̂m,t,h(0, η)(ϕt)∧(ξ),

ϑ̂m,k(ξ, η) =
ak+1
m�

akm

Υ̂m,t(ξ, η)
dt

t
.

Now, let

gm(f) =
(∑
k∈Z
|ϑm,k ∗ f |2

)1/2
, ϑ∗m(f) = sup

k∈Z
| |ϑm,k| ∗ f |,

Mφf(x, xn+1) = sup
t∈R+

∣∣∣∣ t�
t/2

f(x, xn+1 − φ(s))
ds

s

∣∣∣∣.
By the proof of Lemma 3.2 and the choice of ϕ we find that ϑm,k satisfies
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the estimates

‖ϑm,k‖ ≤ C(m+ 1),(3.6)

|ϑ̂m,k(ξ, η)| ≤ C(m+ 1)|φ(ak−1
m )ξ|−α/(m+1),(3.7)

|ϑ̂m,k(ξ, η)| ≤ C(m+ 1)|φ(ak+1
m )ξ|α/(m+1).(3.8)

By (3.5) we have

(3.9) ϑ∗mf(x, xn+1)
≤ gmf(x, xn+1) + C(m+ 1)((MRn ⊗ idR1) ◦Mφ)f(x, xn+1),

(3.10) λ∗mf(x, xn+1)
≤ gmf(x, xn+1) + 2C(m+ 1)((MRn ⊗ idR1) ◦Mφ)f(x, xn+1),

where MRd is the classical Hardy–Littlewood maximal function on Rd. By
the argument in [DR, p. 558] we get

(3.11) Mφf(x, xn+1) ≤ CMR1f(x, ·)(xn+1).

By (3.6)–(3.8) and Plancherel’s theorem,

(3.12) ‖gm(f)‖2 ≤ C(m+ 1)‖f‖2.
By the boundedness ofMRn on Lp (1 < p <∞), (3.9) and (3.11)–(3.12) we
get

(3.13) ‖ϑ∗m(f)‖2 ≤ C(m+ 1)‖f‖2.
Now, by (3.6), (3.13) and applying the proof of the lemma in [DR, p. 544]
with p0 = 4 and q = 2, we obtain

(3.14)
∥∥∥(∑

k∈Z
|ϑm,k ∗ gk|2

)1/2∥∥∥
4
≤ C(m+ 1)

∥∥∥(∑
k∈Z
|gk|2

)1/2∥∥∥
4

for arbitrary functions {gk}k∈Z on Rn+1. By (3.6)–(3.8), (3.14) and applying
Lemma 3.4 we get

(3.15) ‖gm(f)‖p ≤ Cp(m+ 1)‖f‖p
for all p ∈ (4/3, 4) and f ∈ Lp(Rn+1). By replacing p = 2 with p = 4/3 + ε
with ε→ 0+ in (3.12) and repeating the preceding arguments, we get (3.15)
for every p ∈ (8/7, 8) and f ∈ Lp(Rn+1). By continuing this process we
ultimately get

(3.16) ‖gm(f)‖p ≤ Cp(m+ 1)‖f‖p
for all p ∈ (1,∞) and f ∈ Lp(Rn+1). Therefore, by (3.10) and (3.16), we
obtain (3.4), which completes the proof of the lemma.

Lemma 3.6. Let m, Ωm, φ and ψ be as in Lemma 3.5. Then for every
1 < p <∞, there exists a positive constant Cp independent of m such that

(3.17) ‖F ∗m(f)‖p ≤ Cp(m+ 1)‖f‖p
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for every f ∈ Lp(Rn+1), where

F ∗mf(x, xn+1)

= sup
k∈Z

( �

akm<|u|≤a
k+1
m

1�

1/2

f(x− φ(|su|)u′, xn+1 − ψ(|su|)) Ω(u′)
|u|n

ds

s
du

)
.

This lemma can be proved by using Lemmas 3.3 and 3.4 and following
an argument similar to the one in the proof of Lemma 3.5. The details will
be omitted.

Lemma 3.7. Let h ∈ ∆γ(R+) for some γ > 1 and let Ωm, φ and ψ be
as in Lemma 3.2. Then for γ′ < p ≤ ∞, there exists a positive constant Cp
independent of m such that

(3.18) ‖σ∗m,h(f)‖p ≤ Cp(m+ 1)1/γ
′‖f‖p

for all f ∈ Lp(Rn+1).

Proof. By using Hölder’s inequality we have σ∗m,h(f) ≤ C(Υ ∗m(|f |γ′))1/γ′ ,
where �

Rn+1

f dΥt,m =
�

t/2<|u|≤t

f(φ(|u|)u′, ψ(|u|))|u|−nΩm(u′) du

and Υ ∗m(f) = supt∈R+
| |Υt,m| ∗ f |. Therefore, to prove (3.18) it suffices to

show that

(3.19) ‖Υ ∗m(f)‖Lp(Rn+1) ≤ Cp(m+ 1)‖f‖Lp(Rn+1) for 1 < p ≤ ∞.

It is easy to see that

Υ ∗mf(x, xn+1)

≤ 2 sup
k∈Z

( �

akm<|u|≤a
k+1
m

|f(x− φ(|u|)u′, xn+1 − ψ(|u|))| |Ωm(u′)|
|u|n

du

)
,

and it now suffices to adapt the argument in the proof of Lemma 3.5.

Lemma 3.8. Let h ∈ ∆γ(R+) for some γ ≥ 2 and γ′ < p <∞. Also, let
m, Ωm, φ and ψ be as in Lemma 3.5. Then there exists a positive constant
Cp such that

(3.20)
∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2∥∥∥∥
p

≤ Cp(m+ 1)1/γ
′
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
p

for any sequence {gk}k∈Z of functions on Rn+1.
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Proof. Let γ′ < p <∞. By a change of variable, we have

(3.21)
(∑
k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2

≤
(∑
k∈Z

am�

1

|σakmt,m,h ∗ gk|
2 dt

t

)1/2

.

By Hölder’s inequality we get

(3.22) |σt,m,h ∗ gk(x, xn+1)|γ′

≤ C
( akmt�

akmt/2

�

Sn−1

|Ωm(y)| |gk(x− φ(s)u, xn+1 − ψ(s))|γ′ dσ(y)
ds

s

)
.

Let d = p/γ′. By duality, there is a nonnegative function f ∈ Ld
′
(Rn+1)

satisfying ‖f‖Ld′ (Rn+1) ≤ 1 such that

(3.23)
∥∥∥∥(∑

k∈Z

am�

1

|σakmt,m,h ∗ gk|
γ′ dt

t

)1/γ′∥∥∥∥γ′
Lp(Rn+1)

=
�

Rn

∑
k∈Z

am�

1

|σakmt,m,h ∗ gk(x, xn+1)|γ′ dt
t
f(x, xn+1) dx dxn+1.

Therefore, by (3.21) and a change of variable we get∥∥∥∥(∑
k∈Z

am�

1

|σakmt,m,h ∗ gk|
γ′ dt

t

)1/γ′∥∥∥∥γ′
Lp(Rn+1)

≤ C
�

Rn+1

∑
k∈Z
|gk(x, xn+1)|γ′λ∗m,1f̃(−x,−xn+1) dx dxn+1,

where f̃(x, xn+1) = f(−x,−xn+1). By Hölder’s inequality, we obtain∥∥∥∥(∑
k∈Z

am�

1

|σakmt,m,h ∗ gk|
γ′ dt

t

)1/γ′∥∥∥∥γ′
Lp(Rn+1)

≤ C
∥∥∥(∑

k∈Z
|gk|γ

′
)1/γ′∥∥∥γ′

Lp(Rn+1)
‖λ∗m,1f̃‖Ld′ (Rn+1).

By Lemma 3.5, we have

(3.24)
∥∥∥∥(∑

k∈Z

am�

1

|σakmt,m,h ∗ gk|
γ′ dt

t

)1/γ′∥∥∥∥
Lp(Rn+1)

≤ C(m+ 1)1/γ
′
∥∥∥(∑

k∈Z
|gk|γ

′
)1/γ′∥∥∥

Lp(Rn+1)
.
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On the other hand, by Lemma 3.7, we get

(3.25) ‖ sup
k∈Z

sup
t∈[1,am]

|σakmt,m,h ∗ gk| ‖Lp(Rn+1)

≤ ‖σ∗m,h(sup
k∈Z
|gk|)‖Lp(Rn+1) ≤ C(m+ 1)1/γ

′‖ sup
k∈Z
|gk| ‖Lp(Rn+1).

Define the linear operator S on any function g = gk(x, xn+1) by

Sgk(x, xn+1) = σakmt,h ∗ gk(x, xn+1).

Then by (3.24), we have

(3.26) ‖ ‖ ‖S(g)‖Lγ′ ([1,am],dt/t)‖lγ′ (Z)‖Lp(Rn+1)

≤ C(m+ 1)1/γ
′‖ ‖g‖lγ′ (Z)‖Lp(Rn+1).

Also, by (3.25) we get

(3.27) ‖ ‖ ‖S(g)‖L∞([1,am],dt/t)‖l∞(Z)‖Lp(Rn+1)

= ‖ ‖ ‖S(g)‖L∞([1,am],dt)‖l∞(Z)‖Lp(Rn+1)

≤ C(m+ 1)1/γ
′‖‖g‖l∞(Z)‖Lp(Rn+1).

Therefore, we can interpolate (3.26) and (3.27) (see [GR, p. 481] for vector-
valued interpolation) to get (3.20). The lemma is proved.

Lemma 3.9. Let h ∈ ∆γ(R+) for some 1 < γ ≤ 2 and 2 ≤ p <
2γ/(2− γ). Also, let m, Ωm, φ and ψ be as in Lemma 3.5. Then there
exists a positive constant Cp such that

(3.28)
∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2∥∥∥∥
p

≤ Cp(m+ 1)1/2
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
p

for any sequence {gk}k∈Z of functions on Rn+1.

Proof. We use an argument similar to the one in the proof of Theorem 7.5
in [FP1]. By duality there exists a nonnegative function f ∈ L(p/2)′(Rn+1)
with ‖f‖(p/2)′ ≤ 1 such that∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2∥∥∥∥
p

=
∑
k∈Z

�

Rn+1

ak+1
m�

akm

|σt,m,h ∗ gk(x, xn+1)|2 dt
t
f(x, xn+1) dx dxn+1.

By Schwarz’s inequality we get
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|σt,m,h ∗ gk(x, xn+1)|2

≤ C
( t�

t/2

�

Sn−1

|gk(x− φ(s)u, xn+1 − ψ(s))|2|Ωm(y)| |h(s)|2−γ dσ(y)
ds

s

)
.

Therefore, by a change of variable we have

(3.29)
∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2∥∥∥∥2

Lp(Rn+1)

≤ C
�

Rn+1

(∑
k∈Z
|gk(x, xn+1)|2

)
λ∗m,|h|2−γ f̃(−x,−xn+1) dx dxn+1.

By Lemma 3.5 and noticing that |h(·)|2−γ ∈ ∆γ/(2−γ)(R+) and (p/2)′ >
(γ/(2− γ))′ we obtain

(3.30) ‖λ∗m,|h|2−γ (f)‖L(p/2)′ (Rn+1) ≤ Cp(m+ 1)‖f‖L(p/2)′ (Rn+1) ≤ Cp(m+ 1).

Thus, by (3.29)–(3.30) and Hölder’s inequality we get (3.28) for 2 ≤ p <
2γ/(2− γ).

Lemma 3.10. Let m ∈ N∪{0} and h ∈ ∆γ(R+) for some 1 < γ ≤ 2 and
2γ/(3γ − 2) < p < 2. Also, let m,Ωm, φ and ψ be as in Lemma 3.5. Then
there exists a positive constant Cp such that

(3.31)
∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2∥∥∥∥
p

≤ Cp(m+ 1)(3γ−2)/(2γ)
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
p

for any sequence {gk}k∈Z of functions on Rn+1.

Proof. Assume 2γ/(3γ − 2) < p < 2. By a duality argument, there exist
functions f = fk(x, xn+1, t) = fk,t(x, xn+1) defined on Rn+1 × R+ with
‖ ‖ ‖fk,t(·, ·)‖L2([akm,a

k+1
m ],dt/t)‖l2‖Lp′ ≤ 1 such that

(3.32)
∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2∥∥∥∥
p

=
�

Rn+1

∑
k∈Z

ak+1
m�

akm

(σt,m,h ∗ gk(x, xn+1))fk,t(x, xn+1)
dt

t
dx dxn+1

≤ Cp(m+ 1)1/2
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
p
‖(T (f))1/2‖p′ ,
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where

Tf(x, xn+1) =
∑
k∈Z

ak+1
m�

akm

|σt,m,h ∗ fk,t(x, xn+1)|2 dt
t
.

Now, since p′ > 2, there exists H ∈ L(p′/2)′(Rn+1) with ‖H‖p′/2 ≤ 1 such
that

‖T (f)‖p′/2 =
∑
k∈Z

�

Rn+1

ak+1
m�

akm

|σt,m,h ∗ fk,t(x, xn+1)|2H(x, xn+1)
dt

t
dx dxn+1.

By an argument similar to the one in the proof of Lemma 3.9, we have

‖T (f)‖p′/2

≤ C
�

Rn+1

σ∗m,|h|2−γ H̃(−x,−xn+1)
(∑
k∈Z

ak+1
m�

akm

|fk,t(x, xn+1)|2 dt
t

)
dx dxn+1

≤ C
∥∥∥∥(∑

k∈Z

�

Eµ,k

|fk,t(·, ·)|2
dt

t

)∥∥∥∥
p′/2

‖σ∗m,|h|2−γ (H̃)‖(p′/2)′ .

By invoking Lemma 3.7 and Hölder’s inequality we obtain

‖σ∗m,|h|2−γ (H̃)‖(p′/2)′ ≤ Cp(m+ 1)2/γ
′‖H‖(p′/2)′ ≤ Cp(m+ 1)2/γ

′
.

Thus by our choice of fk,t(x, xn+1),

‖T (f)‖p′/2 ≤ Cp
∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|fk,t(·, ·)|2
dt

t

)∥∥∥∥
p′/2

≤ Cp(m+ 1)2/γ
′
,

which along with (3.32) gives (3.31) for 2γ/(3γ − 2) < p < 2. The proof is
complete.

Lemma 3.11. Let m ∈ N∪{0} and h ∈ ∆γ(R+) for some 1 < γ ≤ 2 and
2γ/(2γ − 1) < p < 2. Also, let m, Ωm, φ and ψ be as in Lemma 3.5. Then
there exists a positive constant Cp such that

(3.33)
∥∥∥∥(∑

k∈Z

ak+1
m�

akm

|σt,m,h ∗ gk|2
dt

t

)1/2∥∥∥∥
p

≤ Cp(m+ 1)(2γ−1)/(2γ)
∥∥∥(∑

k∈Z
|gk
∣∣∣2)1/2∥∥∥

p

for any sequence {gk}k∈Z of functions on Rn+1.

Proof. We adopt the same notations as in the proof of Lemma 3.8. Since
‖σt,m,h‖ ≤ C we get



90 H. M. Al-Qassem and Y. Pan

(3.34) ‖ ‖ ‖S(g)‖L1([1,am],dt/t)‖l1(Z)‖L1(Rn+1)

=
�

Rn+1

∑
k∈Z

am�

1

|σt,m,h ∗ gk(x, xn+1)| dt
t
dx dxn+1

=
∑
k∈Z

am�

1

‖σt,m,h ∗ gk‖L1(Rn+1)
dt

t

≤
∑
k∈Z

am�

1

‖σt,m,h‖ ‖gk‖L1(Rn+1)
dt

t
≤ C(m+ 1)

∥∥∥∑
k∈Z
|gk|
∥∥∥
L1(Rn+1)

.

By interpolating between (3.34) and (3.27) (see [GR, p. 481]) we get (3.33).

4. Proof of main theorems

Proof of Theorem 1.3(a). Assume that Ω satisfies (1.1) and belongs to
L(logL)1/γ

′
(Sn−1) and 1 ≤ γ ≤ 2. First, by Minkowski’s inequality we have

M%
Ω,φ,ψ,hf(x, xn+1) =

(∞�
0

∣∣∣∣ ∞∑
k=0

1
t%

�

2−k−1t<|y|≤2−kt

Ω(u′)
|u|n−%

h(|u|)(4.1)

× f(x− φ(|u|)u′, xn+1 − ψ(|u|)) du
∣∣∣∣2dtt

)1/2

≤
∞∑
k=0

(∞�
0

∣∣∣∣ 1
t%

�

2−k−1t<|y|≤2−kt

Ω(u′)
|u|n−%

h(|u|)

× f(x− φ(|u|)u′, xn+1 − ψ(|u|) du
∣∣∣∣2 dtt

)1/2

= AσM̃%
Ω,φ,ψ,hf(x, xn+1),

where

M̃%
Ω,φ,ψ,hf(x, xn+1) =

(∞�
0

∣∣∣∣ 1
t%

�

t/2t<|u|≤t

Ω(u′)
|u|n−%

h(|u|)

× f(x− φ(|u|)u′, xn+1 − ψ(|u|)) du
∣∣∣∣2 dtt

)1/2

.

Let
M̃

(γ)
φ,ψ,Ωf(x, xn+1) = sup

‖h‖Lγ (R+,dt/t)
≤1
|M̃%

Ω,φ,ψ,hf(x, xn+1)|,

where the supremum is taken over all measurable radial functions h with
‖h‖Lγ(R+,dt/t) ≤ 1. Thus in view of (4.1), we get

M
(γ)
φ,ψ,Ωf(x, xn+1) ≤ CM̃ (γ)

φ,ψ,Ωf(x, xn+1)
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and hence here and in the following we shall deal with the maximal op-
erator M̃ (γ)

φ,ψ,Ω instead of M (γ)
φ,ψ,Ω. For convenience, we normalize σ so that

σ(Sn−1) = 1. Now, we decompose Ω as follows: For m ∈ N, let Jm be the
set of points x ∈ Sn−1 which satisfy 2m ≤ |Ω(x)| < 2m+1. Also, we let J0

be the set of all x ∈ Sn−1 which satisfy |Ω(x)| < 2. For m ∈ N ∪ {0}, set
bm = ΩχJm and Cm = ‖bm‖1. Set I = {m ∈ N : Cm ≥ 2−4m} and define
the sequence {Ωm}m∈I∪{0} of functions by

Ω0(x) =
∑

m∈{0}∪(N−I)

bm(x)−
∑

m∈{0}∪(N−I)

( �

Sn−1

bm(x) dσ(x)
)
,

Ωm(x) = (Cm)−1
(
bm(x)−

�

Sn−1

bm(x) dσ(x)
)

for m ∈ I.

It is easy to verify that for all m ∈ I ∪ {0} and some positive constant C,

‖Ωm‖2 ≤ Ca2
m, ‖Ωm‖1 ≤ C,(4.2) ∑

m∈I∪{0}

(m+ 1)1/γ
′
Cm ≤ C‖Ω‖L(logL)1/γ

′
(Sn−1),(4.3)

�

Sn−1

Ωm(u) dσ(u) = 0, Ω =
∑

m∈I∪{0}

CmΩm.(4.4)

By (4.4), we have

‖M̃ (γ)
φ,ψ,Ωf‖Lp(Rn+1) ≤

∑
m∈I∪{0}

Cm‖M̃ (γ)
φ,ψ,Ωm

f‖Lp(Rn+1)

and hence the proof of Theorem 1.3(a) is completed if we can show that

(4.5) ‖M̃ (γ)
φ,ψ,Ωm

f‖Lp(Rn+1) ≤ Cp(m+ 1)1/γ
′‖f‖Lp(Rn+1)

for all m ∈ I ∪ {0}, and for γ′ ≤ p < ∞ if 1 < γ ≤ 2, and p = ∞ if γ = 1.
We will first handle the cases γ = 1 and γ = 2 and then use a suitable
interpolation for 1 < γ < 2. To this end, we start with the easy case γ = 1.
Let

EΩmf(x, xn+1, s) =
�

Sn−1

f(x− φ(s)u, xn+1 − ψ(s))Ωm(u) dσ(u).

If f ∈ L∞(Rn+1) and h ∈ L1(R+, dr/r), by Minkowski’s inequality, we have(∞�
0

∣∣∣∣ �

t/2<|u|≤t

f(x− φ(|u|)u′, xn+1 − ψ(|u|)) Ωm(u′)
|u|n−%

h(|u|) du
∣∣∣∣2 dt

t1+2σ

)1/2

≤
(∞�

0

(∞�
0

|EΩmf(x, xn+1, s)| |h(s)|χ[t/2,t](s)
ds

s1−σ

)2 dt

t1+2σ

)1/2
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≤ ‖Ωm‖L1(Sn−1)‖f‖L∞
(∞�

0

(∞�
0

|h(s)|χ[t/2,t](s)
ds

s1−σ

)2 dt

t1+2σ

)1/2

≤ ‖f‖L∞
∞�

0

|h(s)|
(2s�

s

dt

t1+2σ

)1/2 ds

s1−σ
≤ C‖f‖L∞‖h‖L1(R+,dr/r)

for every (x, xn+1) ∈ Rn+1. Thus, by taking the supremum on both sides
over all radial functions h with ‖h‖L1(R+,dr/r) ≤ 1 we get

M̃
(1)
φ,ψ,Ωm

f(x, xn+1) ≤ C‖f‖L∞(Rn+1)

for almost every (x, xn+1) ∈ Rn+1. Hence,

(4.6) ‖M̃ (1)
φ,ψ,Ωm

(f)‖L∞(Rn+1) ≤ C‖f‖L∞(Rn+1).

The last inequality also yields Theorem 1.3(c).
Now we consider the case γ = 2. By duality and a change of variable we

have

(4.7) M̃
(2)
φ,ψ,Ωm

f(x, xn+1)

≤ sup
‖h‖L2(R+,dt/t)

≤1

(∞�
0

(∞�
0

|h(s)|χ[t/2,t](s)|EΩmf(x, xn+1, s)|
)2 dt

t

)1/2

=
(∞�

0

1�

1/2

|EΩmf(x, xn+1, st)|2
ds dt

st

)1/2

=
(∑
k∈Z

ak+1
m�

akm

1�

1/2

|EΩmf(x, xn+1, st)|2
ds dt

st

)1/2

.

For k ∈ Z and m ∈ N, let θm,k = φ(akm). We notice that {θm,k : k ∈ Z}
is a lacunary sequence with θm,k+1/θm,k ≥ am > 1. Let {ψk,m}∞k=−∞ be a
sequence in C∞((0, ∞)) such that

0 ≤ ψk,m ≤ 1,
∑
k

ψk,m(t) = 1,

suppψk,m ⊆ [θ−1
m,k+1, θ

−1
m,k−1], |(d/dt)jψk,m(t)| ≤ Aj/tj ,

where the constants Aj are independent of θm,k. Define an operator Tk,m
in Rn+1 by (T̂k,mf)(ξ, η) = ψk,m(|ξ|)f̂(ξ, η) (ξ, η) ∈ Rn × R. Then for any
f ∈ S(Rn+1) and l ∈ Z we have f(x, xn+1) =

∑
k∈Z(Tk+l,mf)(x, xn+1).
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Thus, by (4.7) and Minkowski’s inequality,

M̃
(2)
φ,ψ,Ωm

f(x, xn+1) ≤
(∑
k∈Z

ak+1
m�

akm

1�

1/2

∣∣∣∑
l∈Z

Yk+l,t,s,mf(x, xn+1)
∣∣∣2 ds dt

st

)1/2

≤
∑
l∈Z

(∑
k∈Z

ak+1
m�

akm

1�

1/2

|Yk+l,t,s,mf(x, xn+1)|2 ds dt
st

)1/2

=
∑
l∈Z

Xl,mf(x, xn+1),

where

Yl,t,s,mf(x, xn+1) =
�

Sn−1

(Tl,mf)(x− φ(st)u, xn+1 − ψ(st))Ωm(u) dσ(u),

Xl,mf(x, xn+1) =
(∑
k∈Z

ak+1
m�

akm

1�

1/2

|Yk+l,t,s,mf(x, xn+1)|2 ds dt
st

)1/2

.

By the last inequality, we notice that (4.5) is proved for γ = 2 if we can
show that

(4.8) ‖Xl,m(f)‖Lp(Rn+1) ≤ Cp(m+ 1)1/22−δp|l| ‖f‖Lp(Rn+1)

for some positive constants Cp, δp and for all 2 ≤ p <∞. We start by proving
(4.8) in the case p = 2. By employing Plancherel’s theorem, Fubini’s theorem
and Lemma 3.3 we obtain

‖Xl,m(f)‖22 =
�

Rn+1

∑
k∈Z

ak+1
m�

akm

1�

1/2

|Yk+l,t,s,mf(x, xn+1)|2 ds dt
st

dx dxn+1

≤
∑
k∈Z

�

R

�

θ−1
m,k+l+1≤|ξ|≤θ

−1
m,k+l−1

ak+1
m�

akm

1�

1/2

|f̂(ξ, η)|2

×
∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(ts))dσ(x)
∣∣∣2 ds dt

st
dξ dη

≤ C(m+ 1)2−2α|l|
∑
k∈Z

�

R

�

θ−1
m,k+l+1≤|ξ|≤θ

−1
m,k+l−1

|f̂(ξ, η)|2 dξ dη

≤ C(m+ 1)2−2α|l|‖f‖22,
and hence

(4.9) ‖Xl,m(f)‖2 ≤ C(m+ 1)1/22−α|l|‖f‖2.

Now we consider the case p > 2. Choose g in L(p/2)′(Rn+1) with ‖g‖(p/2)′ ≤ 1
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such that

‖Xl,m(f)‖2p

=
∑
k∈Z

�

Rn+1

ak+1
m�

akm

1�

1/2

|Yk+l,t,s,mf(x, xn+1)|2 ds dt
st
|g(x, xn+1)| dx dxn+1

≤
∑
k∈Z

�

Rn+1

ak+1
m�

akm

1�

1/2

�

Sn−1

|Ωm(u)| |g(x+ φ(st)u, xn+1 + ψ(st))|

× |Tk+l,mf(x, xn+1)|2dσ(u)
ds dt

st
dx dxn+1

≤ C
∑
k∈Z

�

Rn+1

|Tk+l,mf(x, xn+1)|2F ∗m(g̃)(−x,−xn+1) dx dxn+1

≤
∥∥∥∑
k∈Z
|Tk+l,mf |2

∥∥∥
(p/2)
‖F ∗m(g̃)‖(p/2)′ ,

where g̃(x, xn+1) = g(−x,−xn+1). By using Lemma 3.6, the Littlewood–
Paley theory and [St1, Theorem 3 along with the remark that follows its
statement, p. 96], we have

(4.10) ‖Xl,m(f)‖p ≤ Cp(m+ 1)1/2‖f‖p for 2 ≤ p <∞.
By interpolation between (4.9) and (4.10) we get (4.8), which ends the proof
of (4.5) in the case γ = 2.

Now, we handle the case 1 < γ < 2. We shall use an idea employed in
[Le]. By duality and a change of variable we have

M̃
(γ)
φ,ψ,Ωm

f(x, xn+1) ≤
(∞�

0

( 1�

1/2

|EΩmf(x, xn+1, st)|γ
′ ds

s

)2/γ′ dt

t

)1/2

.

Thus,

‖M̃ (γ)
φ,ψ,Ωm

f‖Lp(Rn+1) = ‖L(f)‖Lp(L2(Lγ
′
([1/2,1],ds/s),R+,dt/t),Rn+1),

where L : Lp(Rn+1) → Lp(L2(Lγ
′
([1/2, 1], ds/s),R+, dt/t),Rn+1) is defined

by

L(f)(x, xn+1, t, s) =
�

Sn−1

f(x− φ(st)u, xn+1 − ψ(st))Ωm(u) dσ(u).

By (4.5) (for γ = 2) and (4.6) (for γ = 1), we find that

‖L(f)‖Lp(L2(L2([1/2,1],ds/s),R+,dt/t),Rn+1) ≤ C(m+ 1)1/2‖f‖Lp(Rn+1)

for 2 < p <∞ and

‖L(f)‖L∞(L2(L∞([1/2,1],ds/s),R+,dt/t),Rn+1) ≤ C‖f‖L∞(Rn+1).
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Applying the real interpolation theorem for Lebesgue mixed normed spaces
(see [BP]), we conclude that

‖L(f)‖Lp(L2(Lγ′ ([1/2,1],ds/s),R+,dt/t),Rn+1) ≤ C(m+ 1)1/γ
′‖f‖Lp(Rn+1)

for γ′ ≤ p < ∞, which in turn implies (4.5) for 1 < γ < 2. The proof of
Theorem 3.1(a) and (c) is complete.

Proof of Theorem 1.3(b). Assume that 2 < γ ≤ ∞ and 2 < p < ∞. As
above, we have

M̃
(γ)
φ,ψ,Ωm

f(x, xn+1) ≤
(∞�

0

( 1�

1/2

|EΩmf(x, xn+1, st)|γ
′ ds

s

)2/γ′ dt

t

)1/2

.

By applying the generalized Minkowski inequality, since γ′ < 2 we get

(4.11) M̃
(γ)
φ,ψ,Ωm

f(x, xn+1) ≤
( 1�

1/2

|Hs,mf(x, xn+1)|γ′ ds
s

)1/γ′

,

where

Hs,mf(x, xn+1) =
(∞�

0

∣∣∣ �

Sn−1

f(x−φ(st)u, xn+1−ψ(st))Ωm(u) dσ(u)
∣∣∣2 dt

t

)1/2

.

Now, we notice that Theorem 1.3(b) is proved once we prove that

(4.12) ‖Hs,m(f)‖Lp(Rn+1) ≤ Cp(m+ 1)1/2‖f‖Lp(Rn+1)

for 2 < p < ∞ and for some constant Cp independent of s. To this end, by
(4.11)–(4.12), applying the generalized Minkowski inequality and noticing
that 1 ≤ γ′ < 2 we get

‖M̃ (γ)
φ,ψ,Ωm

f‖Lp(Rn+1) ≤
∥∥∥∥ 1�

1/2

|Hs,m(f)|γ′ ds
s

∥∥∥∥1/γ′

Lp/γ
′
(Rn+1)

≤
( 1�

1/2

‖Hs,m(f)‖γ
′

Lp(Rn+1)

ds

s

)1/γ′

≤ Cp(m+ 1)1/2‖f‖Lp(Rn+1).

Let us now turn to the proof of (4.12). Let

Fm,k,s(ξ, η) =
(ak+1

m�

akm

∣∣∣ �

Sn−1

Ωm(x)e−i(φ(st)ξ·x+ηψ(st)) dσ(x)
∣∣∣2 dt

t

)1/2

.
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By the proof of Lemma 3.2, it is easy to see that

|Fm,k,s(ξ, η)| ≤ C(m+ 1)1/2,(4.13)

|Fm,k,s(ξ, η)| ≤ C(m+ 1)1/2|φ(ak−1
m )ξ|−α/(m+1),(4.14)

|Fm,k,s(ξ, η)| ≤ C(m+ 1)1/2|φ(ak+1
m )ξ|α/(m+1),(4.15)

for some constants C and α, where (ξ, η) ∈ Rn × R. By (4.13)–(4.15),
Lemma 3.7, using the partition of unity {ψk,m}∞k=−∞ and adapting a similar
argument employed in the proof of Theorem 1.3(a) we get (4.12) (see also
[A2]). The details will be omitted.

Proof of Theorem 1.2. Notice that

M%
Ω,φ,ψ,hf(x, xn+1) ≤M (γ)

φ,ψ,Ωf(x, xn+1)

= sup
‖h‖Lγ (R+,dt/t)

≤1
|M%

Ω,φ,ψ,hf(x, xn+1)|

and apply Theorem 1.3.

Proof of Theorem 1.1(a). Let us adopt the same notations as in the
proof of Theorem 1.3. From (4.1) and (4.4) we can see that M%

Ω,φ,ψ,h(f) ≤∑
m∈I∪{0}CmM̃

%
Ωm,φ,ψ,h

(f). Therefore, Theorem 1.1(a) is proved if we can
show that

(4.16) ‖M̃%
Ωm,φ,ψ,h

(f)‖Lp(Rn+1) ≤ Cp(m+ 1)1/2‖f‖Lp(Rn+1)

for m ∈ I ∪ {0} and 2 ≤ p < 1/(1/2− α(γ)), where α(γ) = min{1/2, 1/γ′}.
So let us prove (4.16). Since ∆γ(R+) ⊆ ∆2(R+) for γ ≥ 2, we may assume
that 1 < γ ≤ 2 and 2 ≤ p < 2γ/(2− γ). By Minkowski’s inequality, it is
easy to verify that M̃%

Ωm,φ,ψ,h
f(x, xn+1) ≤

∑
j∈ZQm,jf(x, xn+1), where

Qm,jf(x, xn+1) =
(∞�

0

∣∣∣∑
k∈Z

Tk+j,m(σebµ,t ∗ f(x, xn+1))
∣∣∣2 dt

t

)1/2

.

Therefore, to prove (4.16), it is enough to show that

(4.17) ‖Qm,j(f)‖Lp(Rn+1) ≤ Cp(m+ 1)1/22−δp|j|‖f‖Lp(Rn+1)

for some δp > 0 and for 2 ≤ p < 2γ/(2− γ). To this end, we first compute the
L2-norm of Qm,j(f). By Plancherel’s theorem and the estimates (3.1)–(3.3)
we have

‖Qm,j(f)‖2L2(Rn+1) ≤ C(m+ 1)2−α|j|‖f‖2L2(Rn+1)

and hence

(4.18) ‖Qm,j(f)‖L2(Rn+1) ≤ C(m+ 1)1/22−α|j|/2‖f‖L2(Rn+1).

Also, by Littlewood–Paley theory and Lemma 3.9 we have

(4.19) ‖Qm,j(f)‖Lp(Rn+1) ≤ Cp(m+ 1)1/2‖f‖Lp(Rn+1) for 2 ≤ p < 2γ
2− γ

.
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By interpolating between (4.18) and (4.19) we get (4.17). This completes
the proof of Theorem 1.1(a).

Now, as in the proof of Theorem 1.1(a), to prove Theorem 1.1(b)–(d),
we need to obtain similar Lp estimates for Qm,j(f) as in (4.19), and this
can be achieved by applying respectively Lemmas 3.8, 3.10 and 3.11. Thus,
Theorem 1.1 is proved.
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