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Locally Lipschitz continuous integrated semigroups

by

Naoki Tanaka (Okayama)

Abstract. This paper is concerned with the problem of real characterization of locally
Lipschitz continuous (n+1)-times integrated semigroups, where n is a nonnegative integer.
It is shown that a linear operator is the generator of such an integrated semigroup if and
only if it is closed, its resolvent set contains all sufficiently large real numbers, and a
stability condition in the spirit of the finite difference approximation theory is satisfied.

1. Introduction. Let X be a Banach space and B(X) the set of all
bounded linear operators from X into itself. Let n be a positive integer.
A family {U(t); t ≥ 0} in B(X) is called an n-times integrated semigroup
on X if the following conditions are satisfied:

(I1) U(·)x : [0,∞)→ X is continuous for x ∈ X.

(I2) U(t)U(s)x =
1

(n− 1)!

( t+s�

t

(t+ s− r)n−1U(r)x dr

−
s�

0

(t+ s− r)n−1U(r)x dr
)

for x ∈ X and t, s ≥ 0.

(I3) U(t)x = 0 for all t > 0 implies x = 0.

Let {U(t); t ≥ 0} be an n-times integrated semigroup on X. Then the
generator A of {U(t); t ≥ 0} is defined in the following way: x ∈ D(A) and
y = Ax if and only if

(1.1) U(t)x =
t�

0

U(r)y dr +
tn

n!
x for t ≥ 0.

The densely defined generators in the exponentially bounded case were
characterized by Neubrander [10], and his result was extended to the follow-
ing two cases:
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(i) Arendt [1] gave a characterization of the generator of an (n+1)-times
integrated semigroup {U(t); t ≥ 0} on X which is exponentially Lipschitz
continuous in the sense that ‖U(t+ h)− U(t)‖ ≤ Meω(t+h)h for t ≥ 0 and
h ≥ 0, in the case where the domain of the generator is not necessarily dense
in X.

(ii) Tanaka and Okazawa [14] characterized the densely defined genera-
tors of n-times integrated semigroups which are not necessarily exponentially
bounded.

An integrated semigroup {U(t); t ≥ 0} on X is said to be locally Lipschitz
continuous if for each τ > 0 there exists Lτ > 0 such that ‖U(t)− U(s)‖ ≤
Lτ |t− s| for t, s ∈ [0, τ ]. It is shown in the final part of Section 3 that there
exists a non-densely defined operator which is the generator of a locally Lip-
schitz continuous twice integrated semigroup on l∞ but not the generator of
any exponentially Lipschitz continuous (n + 1)-times integrated semigroup
on l∞ for every nonnegative integer n. The twice integrated semigroup con-
structed cannot be dealt with by the above-mentioned results.

We are interested in locally Lipschitz continuous (n+1)-times integrated
semigroups which are not necessarily exponentially bounded and in charac-
terizing their generators whose domains are not necessarily dense in X. If
n = 0 then our objective has already been accomplished, since Kellerman
and Hieber [5] showed that every locally Lipschitz continuous once inte-
grated semigroup is always exponentially Lipschitz continuous. The main
result of this paper is given by

Main Theorem. Let n be a nonnegative integer. An operator A is the
generator of a locally Lipschitz continuous (n+1)-times integrated semigroup
{U(t); t ≥ 0} on X if and only if the following conditions are satisfied :

(A1) A is a closed linear operator in X whose resolvent set contains
(ω,∞) for some ω ≥ 0.

(A2) For each τ > 0 there exists Mτ > 0 such that
∥∥∥
k∏

l=1

(I − hlA)−1x
∥∥∥ ≤Mτ‖x‖n

for x ∈ D(An) and every finite sequence {hl}kl=1 of positive numbers
such that hlω < 1 for 1 ≤ l ≤ k and

∑k
l=1 hl ≤ τ . Here ‖x‖n =∑n

j=0 ‖Ajx‖ for x ∈ D(An).

Condition (A2) can be regarded as a stability condition from the view-
point of the finite difference approximation theory. In fact, if {0 = t0 < t1 <
· · · < tk ≤ τ} is a partition of [0, tk] with (tl − tl−1)ω < 1 for 1 ≤ l ≤ k and
{xl}kl=1 is a solution of the finite difference equation

(xl − xl−1)/(tl − tl−1) = Axl for 1 ≤ l ≤ k
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with the initial condition x0 = x ∈ D(An), then condition (A2) gives the
estimate ‖xl‖ ≤ Mτ‖x‖n for 1 ≤ l ≤ k. For this reason, condition (A2) is
natural in the study of the abstract Cauchy problem

(ACP; x) u′(t) = Au(t) for t ≥ 0, u(0) = x.

By a solution u to (ACP;x) we mean that u ∈ C1([0,∞);X) and u satisfies
the equation (ACP;x).

In Section 2 we investigate some basic properties of generators of lo-
cally Lipschitz continuous (n + 1)-times integrated semigroups and prove
the necessity part of the main theorem. Section 3 concerns the generation of
locally Lipschitz continuous (n+ 1)-times integrated semigroups on X and
the relationship between the main theorem and some previous results.

2. Basic properties of generators of locally Lipschitz continuous
integrated semigroups. Let n be a nonnegative integer. Let A be the gen-
erator of a locally Lipschitz continuous (n+ 1)-times integrated semigroup
{U(t); t ≥ 0} on X. Then it is known [9] that A is a closed linear operator
in X with the following properties:

(2.1) U(t)x ∈ D(A), AU(t)x = U(t)Ax for x ∈ D(A) and t ≥ 0,

(2.2)
t�

0

U(s)x ds ∈ D(A), A

t�

0

U(s)x ds = U(t)x− tn+1

(n+ 1)!
x

for x ∈ X and t ≥ 0.

To investigate some properties of the generator of a locally Lipschitz
continuous (n+ 1)-times integrated semigroup, we use a method similar to
that due to Sanekata [12], but more delicate arguments are required here.
For each λ ∈ C with Reλ > 0, define R0(λ) ∈ B(X) by

R0(λ)x = λn+1
1�

0

e−λtU(t)x dt for x ∈ X.

Lemma 2.1. There exists M > 0 such that

‖R0(λ)‖ ≤M |λ|n for λ ∈ C with Reλ > 0.

Proof. Let λ ∈ C and Reλ > 0. Let x ∈ X and x∗ ∈ X∗. By the local
Lipschitz continuity of {U(t); t ≥ 0}, we see that 〈x∗, U(t)x〉 is Lipschitz
continuous on [0, 1] and |(d/dt)〈x∗, U(t)x〉| ≤ L‖x∗‖ ‖x‖ for almost all t ∈
(0, 1), where L > 0 is a constant. By integration by parts we have

〈x∗, R0(λ)x〉 = λn
(
−e−λ〈x∗, U(1)x〉+

1�

0

e−λt(d/dt)〈x∗, U(t)x〉 dt
)
.

The desired inequality follows readily from this equality.
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For each λ ∈ C with Reλ > 0, define Q0(λ) ∈ B(X) by

Q0(λ)x = λn+1e−λU(1)x+
n∑

k=0

e−λ
λk

k!
x for x ∈ X.

Lemma 2.2. (i) There exists M > 0 such that

‖Q0(λ)‖ ≤Me−Reλ(1 + |λ|)n+1 for λ ∈ C with Reλ > 0.

(ii) For each λ ∈ C with Reλ > 0 we have

R0(λ)(λI −A)x = (I −Q0(λ))x for x ∈ D(A),(2.3)

R0(λ)x ∈ D(A), (λI − A)R0(λ) = (I −Q0(λ))x for x ∈ X.(2.4)

Proof. Let λ ∈ C and Reλ > 0. Since max0≤k≤n(1/k!) ≤ e and

(1 + |λ|)n+1 ≥
n+1∑

k=0

|λ|k,

assertion (i) is easily verified. To prove (ii), let x ∈ X. Since

R0(λ)x = λn+1
(
e−λ

1�

0

U(s)x ds+
1�

0

λe−λt
( t�

0

U(s)x ds
)
dt
)
,

it follows from (2.2) that R0(λ)x ∈ D(A) and

(λI − A)R0(λ)x =
λn+1

(n+ 1)!
e−λx+

1�

0

λe−λt
(λt)n+1

(n+ 1)!
x dt(2.5)

− λn+1e−λU(1)x.

Integration by parts yields
1�

0

λe−λt
(λt)n+1

(n+ 1)!
dt = 1− e−λ

n+1∑

k=0

λk

k!
.

Substituting this equality into (2.5) we obtain (2.4). Since A is closed, by
(2.1) we have R0(λ)z ∈ D(A) and AR0(λ)z = R0(λ)Az for z ∈ D(A). This
fact together with (2.4) implies (2.3).

Proposition 2.3. (i) The resolvent set of A contains a region

Ω = {λ ∈ C \ R; Reλ ≥ α log |Imλ|+ β, Reλ ≥ γ}
∪ {λ ∈ R; λ ≥ γ},

where α, β and γ are positive numbers.
(ii) There exists M > 0 such that

‖(λI − A)−1‖ ≤M |λ|n for λ ∈ Ω.
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Proof. Let ξ ∈ R and η ∈ R satisfy

η 6= 0, ξ ≥ α log |η|+ β, ξ ≥ γ,
where α, β and γ are yet to be determined. Then we have |η|α ≤ e−β+ξ. If
α > 0 is chosen such that α = n+1, then e−ξ((1+ |ξ|)n+1 + |η|n+1) vanishes
as ξ → ∞ and β → ∞. This fact implies that the positive numbers γ and
β can be chosen so large that ‖Q0(λ)‖ ≤ 1/2 for λ ∈ Ω, by Lemma 2.2(i).
Since (I −Q0(λ))−1 ∈ B(X) exists and ‖(I −Q0(λ))−1‖ ≤ 2 for λ ∈ Ω, the
proposition follows from Lemmas 2.1 and 2.2.

To prove the necessity part of the main theorem, we define

Th(t)x = h−1(U(t+ h)− U(t))Anx+
n−1∑

k=0

tk

k!
Akx

for x ∈ D(An), t ≥ 0 and h 6= 0, and

εh(t) =
tn

n!
− 1
h

(
(t+ h)n+1

(n+ 1)!
− tn+1

(n+ 1)!

)

for t ≥ 0 and h 6= 0.

Lemma 2.4. Let x ∈ D(An) and λ ∈ Ω. Then

(λI −A)−1x =
τ0�

0

e−λtTh(t)x dt+ e−λτ0Th(τ0)(λI − A)−1x(2.6)

+
(
e−λτ0εh(τ0) +

τ0�

0

λe−λtεh(t) dt
)

(λI − A)−1Anx

− h−1
h�

0

U(s)An+1(λI − A)−1x ds

for any τ0 > 0 and h 6= 0.

Proof. Let x ∈ D(An), λ ∈ Ω, τ0 > 0 and h 6= 0. Integration by parts
yields

τ0�

0

e−λt(U(t+ h)− U(t))Anx dt

= e−λτ0
τ0�

0

(U(s+ h)− U(s))Anx ds

+
τ0�

0

λe−λt
(t�

0

(U(s+ h)− U(s))Anx ds
)
dt.
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By (2.2) we see that the right-hand side belongs to D(A) and

A

τ0�

0

e−λt(U(t+ h)− U(t))Anx dt

= e−λτ0
(
U(τ0 + h)Anx− (τ0 + h)n+1

(n+ 1)!
Anx− U(τ0)Anx+

τn+1
0

(n+ 1)!
Anx

)

+
τ0�

0

λe−λt
(
U(t+ h)Anx− (t+ h)n+1

(n+ 1)!
Anx

− U(t)Anx+
tn+1

(n+ 1)!
Anx

)
dt

−
(
U(h)Anx− hn+1

(n+ 1)!
Anx

)
.

The last term on the right-hand side is equal to −A � h0 U(s)Anx ds by (2.2).
By integration by parts we have

A

τ0�

0

e−λt
n−1∑

k=0

tk

k!
Akx dt = e−λτ0

n∑

k=1

(τ0A)k

k!
x+ λ

τ0�

0

e−λt
n∑

k=1

(tA)k

k!
x dt.

The desired equality is obtained by combining the equalities above.

Let τ > 0 and choose τ0 > 2τ . By the local Lipschitz continuity of
{U(t); t ≥ 0} there exists Mτ > 0 such that ‖Th(t)x‖ ≤ Mτ‖x‖n for
t ∈ [0, τ0] and h ∈ (0, 1]. Here and below Mτ denotes various constants
depending on τ .

Let α, β and γ be the positive numbers in Proposition 2.3(i), and let
α0 > max{α, (n+1)/(τ0−2τ)}, β0 > β, ω0 > max{γ, β0} and η0 = exp((ω0−
β0)/α0). Then we define Γ = Γ1 ∪Γ2, where Γ1 = {ζ = ξ+ iη; ξ = α0 log |η|
+ β0, |η| ≥ η0} and Γ2 = {ζ = ω0 + iη; |η| ≤ η0}. Here i stands for the
imaginary unit. Notice that Γ is oriented so that Im ζ increases along Γ .

Lemma 2.5. Let x∗ ∈ X∗ and x ∈ D(An). Then there exist a measurable
function f on (0, τ0) and a holomorphic function g on Ω such that

|f(t)| ≤Mτ‖x∗‖ ‖x‖n for almost all t ∈ (0, τ0),(2.7)

|g(ζ)| ≤Mτ |ζ|n‖x∗‖ ‖x‖n for ζ ∈ Ω,(2.8)

〈x∗, (λI −A)−1x〉 =
τ0�

0

e−λtf(t) dt+
1

2πi

�

Γ

1
λ− ζ e

−ζτ0g(ζ) dζ(2.9)

for λ > ω0.

Proof. Let x∗ ∈ X∗ and x ∈ D(An). Since 〈x∗, U(t)Anx〉 is Lipschitz
continuous on [0, τ0], it is differentiable for almost all t ∈ (0, τ0), so that the
limit f(t) := limh↓0〈x∗, Th(t)x〉 exists for almost all t ∈ (0, τ0). Clearly,



Integrated semigroups 7

f is measurable and satisfies (2.7). If α0τ0 > n + 1 and λ > ω0 then
�
Γ
|λ− ζ|−1e−(Re ζ)τ0 |ζ|n |dζ| <∞ and the integral

R+sRi�

R−sRi
|λ− ζ|−1e−(Re ζ)τ0 |ζ|n |dζ|

tends to zero as R → ∞, where sR = exp((R − β0)/α0). Since Γ ⊂ Ω, by
Cauchy’s integral formula we have

e−λτ0Th(τ0)(λI −A)−1x =
1

2πi

�

Γ

1
λ− ζ e

−ζτ0Th(τ0)(ζI − A)−1x dζ

for λ > ω0 and h ∈ (0, 1]. Here we have used Proposition 2.3(ii) and the
condition α0τ0 > n + 1. Since U(·)z : [0,∞) → X is differentiable for
z ∈ D(A), the limit g(ζ) := limh↓0〈x∗, Th(τ0)(ζI − A)−1x〉 exists for all
ζ ∈ Ω. By Proposition 2.3(ii) we see that g satisfies (2.8). Taking the weak
limit in (2.6) as h ↓ 0 we obtain (2.9) by Lebesgue’s convergence theorem.
Here we have used the strong continuity of {U(t); t ≥ 0} and U(0) = 0.

Set R(λ) = (λI − A)−1 for λ ∈ Ω. By applying the resolvent equation
(λ − µ)R(λ)R(µ) = R(µ)− R(λ) for λ, µ ∈ Ω, the following lemma can be
proved by induction.

Lemma 2.6. Let k ≥ 2. Then

(2.10)
k∏

l=1

R(λl) = (−1)k−1
�

Dk−1

Fλk,...,λ1(σ1, . . . , σk−1) dσ1 · · · dσk−1

for every finite sequence {λl}kl=1 with λl > ω0 for 1 ≤ l ≤ k, where

Fλk,...,λ1(σ1, . . . , σk−1)

= R(k−1)
(
λ1σ1 + · · ·+ λk−1σk−1 + λk

(
1−

k−1∑

l=1

σl

))
,

Dk−1 =
{

(σ1, . . . , σk−1); σl ≥ 0 for 1 ≤ l ≤ k − 1 and
k−1∑

l=1

σl ≤ 1
}
.

Lemma 2.7. For x ∈ D(An) and every finite sequence {hl}kl=1 of positive
numbers with hlω0 < 1 for 1 ≤ l ≤ k and k ≥ 1, we have

(2.11)
∥∥∥
k∏

l=1

(I − hlA)−1x
∥∥∥

≤Mτ

(
1 +

1
2π

�

Γ

k∏

l=1

|1− ζhl|−1e−(Re ζ)τ0 |ζ|n |dζ|
)
‖x‖n.
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Proof. Let x ∈ D(An) and x∗ ∈ X∗. Let k ≥ 2 and let {λl}kl=1 be any
sequence such that λl > ω0 for 1 ≤ l ≤ k. If (σ1, . . . , σk−1) ∈ Dk−1 then
λ1σ1 + · · ·+ λk−1σk−1 + λk(1−∑k−1

l=1 σl) > ω0. By (2.9) and (2.10) we see
that 〈x∗,∏k

l=1R(λl)x〉 can be written as

�

Dk−1

dσ1 · · · dσk−1

(τ0�

0

tk−1e−(λ1σ1+···+λk−1σk−1+λk(1−∑k−1
l=1 σl))tf(t) dt

+
1

2πi

�

Γ

(−1)k−1r
(k−1)
ζ

(
λ1σ1+· · ·+λk−1σk−1+λk

(
1−

k−1∑

l=1

σl

))
e−ζτ0g(ζ) dζ

)
,

where rζ(λ) = (λ − ζ)−1 for λ > ω0 and ζ ∈ Γ . Changing the variable, by
Lemma 2.6 we have

�

Dk−1

dσ1 · · · dσk−1

∞�

0

tk−1e−(λ1σ1+···+λk−1σk−1+λk(1−∑k−1
l=1 σl))t dt

= (λ1 · · ·λk)−1.

Since�

Γ

|r(k−1)
ζ (λ1σ1 + · · ·+ λk−1σk−1 + λk(1− σ1 − · · · − σk−1))e−ζτ0g(ζ)| |dζ|

≤ ((−1)k−1r(k−1)
ω0

(λ1σ1 + · · ·+ λk−1σk−1 + λk(1− σ1 − · · · − σk−1)) + 1)

×Mτ‖x∗‖ ‖x‖n
and the right-hand side is integrable on Dk−1, we apply Fubini’s theorem
to find

(−1)k−1
�

Dk−1

dσ1 · · · dσk−1

�

Γ

r
(k−1)
ζ

( k−1∑

l=1

λlσl + λk

(
1−

k−1∑

l=1

σl

))
e−ζτ0g(ζ) dζ

=
�

Γ

k∏

l=1

(λl − ζ)−1e−ζτ0g(ζ) dζ.

The desired inequality is obtained by combining these equalities.

Once the following lemma is shown, the proof of the necessity part of the
main theorem is completed, since the right-hand side of (2.11) is bounded
by Mτ‖x‖n, under the condition α0 > (n+ 1)/(τ0 − 2τ).

Lemma 2.8. There exists Mτ > 0 such that
k∏

l=1

|1− ζhl|−1 ≤Mτ exp(2τ Re ζ)

for ζ ∈ Γ and every finite sequence {hl}kl=1 of positive numbers with hlω0 ≤
1/2 for 1 ≤ l ≤ k and

∑k
l=1 hl ≤ τ .
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Proof. Let ζ = ξ+ iη ∈ Γ and let {hl}kl=1 be a finite sequence of positive
numbers such that hlω0 ≤ 1/2 for 1 ≤ l ≤ k and

∑k
l=1 hl ≤ τ . We divide

the set {1, . . . , k} into the disjoint sets I1 = {l; hlξ ∈ [0, 1/2]} and I2 =
{l; ζ = ξ + iη ∈ Γ1, hlξ > 1/2}. If l ∈ I1 then

|1− ζhl|−1 ≤ (1− (Re ζ)hl)−1 ≤ exp(2(Re ζ)hl).

Here we have used the fact (1− t)−1 ≤ exp(2t) for t ∈ [0, 1/2]. If l ∈ I2 then

|1− ζhl|−1 ≤ |η|−1h−1
l ≤ 2ξ/|η|.

Hence
k∏

l=1

|1− ζhl|−1 ≤ exp(2ξτ) sup{(2(α0 log |η|+ β0)/|η|)|I2|; |η| ≥ η0},

where |I2| denotes the number of elements in I2. To estimate |I2|, let ξ+ iη
∈ Γ1 and hlξ > 1/2. Since ξ = α0 log |η|+ β0 > 0 we have

|I2|/2 =
∑

l∈I2
(1/2) < ξ

∑

l∈I2
hl ≤ (α0 log |η|+ β0)τ,

so that |I2| ≤ 2(α0 log |η| + β0)τ . Since limt→∞(α0 log t + β0)/t = 0, it
follows that the set {η; 2(α0 log |η| + β0)/|η| > 1} is bounded in R. These
facts together imply that (2(α0 log |η| + β0)/|η|)|I2| is bounded from above
for |η| ≥ η0. The proof is thus complete.

3. Generation of locally Lipschitz continuous integrated semi-
groups. Let A be an operator in X satisfying conditions (A1) and (A2).
For simplicity of notation, we write Jh = (I − hA)−1 for h ∈ (0, h0], where
h0 > 0 is such that h0ω < 1. Let λ, µ ∈ (0, h0] and set Ak,l = Jkλ − J lµ for
k, l ≥ 0. To prove the sufficiency part of the main theorem, let τ > 0 and
z ∈ D(An+1). For 0 ≤ k ≤ [τ/λ] and 0 ≤ l ≤ [τ/µ] we define

ak,l = max
p
‖JpσAk,lz‖,

where σ = λµ/(λ + µ) and the maximum is taken over all nonnegative
integers p such that σp+λk+µl ≤ 2τ . The use of the quantity ak,l is a new
idea.

Lemma 3.1. For 0 ≤ k ≤ [τ/λ] and 0 ≤ l ≤ [τ/µ] we have

ak,l ≤M2τ ((kλ− lµ)2 + kλ2 + lµ2)1/2‖Az‖n.
Proof. Let 0 ≤ k ≤ [τ/λ] and consider any nonnegative integer p such

that σp+ kλ ≤ 2τ . Since

JpσAk,0z = Jpσ

k∑

j=1

(Jjλz − J
j−1
λ z) = λ

k∑

j=1

JpσJ
j
λAz
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and ‖JpσJjλAz‖ ≤ M2τ‖Az‖n for 1 ≤ j ≤ k (by condition (A2)), we have
ak,0 ≤M2τ‖Az‖nkλ. Similarly, a0,l ≤M2τ‖Az‖nlµ.

Now, let 1 ≤ k ≤ [τ/λ] and 1 ≤ l ≤ [τ/µ], and consider any positive
integer p with pσ + kλ+ lµ ≤ 2τ . By the resolvent equation we have

Jλv = Jσ

(
µ

λ+ µ
v +

λ

λ+ µ
Jλv

)
,

Jµw = Jσ

(
λ

λ+ µ
w +

µ

λ+ µ
Jµw

)
for v, w ∈ X.

Using these equalities with v = Jk−1
λ z and w = J l−1

µ z we find

JpσAk,lz =
λ

λ+ µ
Jp+1
σ Ak,l−1z +

µ

λ+ µ
Jp+1
σ Ak−1,lz.

Since σ ≤ λ and σ ≤ µ, we notice that (p + 1)σ + kλ + (l − 1)µ ≤ 2τ and
(p+ 1)σ+ (k− 1)λ+ lµ ≤ 2τ . By the definition of ak,l−1 and ak−1,l we have

ak,l ≤
λ

λ+ µ
ak,l−1 +

µ

λ+ µ
ak−1,l.

The desired inequality is proved by induction. (See also [7] and [16, Chap-
ter XIV, Section 7].)

Proof of the sufficiency part of the main theorem. Let x ∈ X and τ > 0.
Choose c > ω and set C = (cI −A)−(n+1). By Lemma 3.1 we have

‖J [t/λ]
λ Cx− J [s/µ]

µ Cx‖
≤M2τ (([t/λ]λ− [s/µ]µ)2 + [t/λ]λ2 + [s/µ]µ2)1/2‖ACx‖n

for λ, µ ∈ (0, h0] and t ∈ [0, τ ]. This implies that S(t)x = limλ↓0 J
[t/λ]
λ Cx

exists for all t ≥ 0 and the family {S(t); t ≥ 0} is a locally Lipschitz contin-
uous C-regularized semigroup on X.

Let z ∈ X and t ≥ 0. Since

J
[t/λ]
λ Cz − Cz =

[t/λ]∑

k=1

(JkλCz − Jk−1
λ Cz) = A

(
λ

[t/λ]∑

k=1

JkλCz
)

= A

([t/λ]+1)λ�

λ

J
[s/λ]
λ Cz ds,

by the closedness of A we have � t0 S(s)z ds ∈ D(A) and

(3.1) A

t�

0

S(s)z ds = S(t)z − Cz.
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For k = 1, . . . , n+ 1, define a family {Vk(t); t ≥ 0} in B(X) by

Vk(t)z =
t�

0

t1�

0

· · ·
tk−1�

0

S(tk)z dtk · · · dt1

for z ∈ X and t ≥ 0. Then it is proved similarly to [13, Lemma] that the
following hold for k = 1, . . . , n+ 1.

(i) Vk(t)z ∈ D(Ak) and � t0(cI − A)k−1Vk−1(s)z ds ∈ D(A) for z ∈ X
and t ≥ 0.

(ii) (cI − A)kVk(t) ∈ B(X) and there exist Kk > 0 and ωk ≥ 0 such
that

(3.2) ‖(cI − A)kVk(t)− (cI − A)kVk(s)‖ ≤ max(M2τ , 1)Kke
ωkt(t− s)

for 0 ≤ s ≤ t ≤ τ and τ > 0.
(iii) We have

(cI − A)kVk(t) = c(cI − A)k−1Vk(t)− (cI − A)k−1Vk−1(t)

+
tk−1

(k − 1)!
(cI − A)k−1C for t ≥ 0.

By the above fact with k = n+ 1, the family {U(t); t ≥ 0} in B(X) de-
fined by U(t) = (cI−A)n+1Vn+1(t) for t ≥ 0 is locally Lipschitz continuous.
By [14, Lemma 4.8] we see that {U(t); t ≥ 0} is an (n+ 1)-times integrated
semigroup on X.

To prove that A is the generator of {U(t); t ≥ 0}, let u ∈ D(A). The
(n+ 1)-fold integration of (3.1) implies

U(t)u =
tn+1

(n+ 1)!
u+

t�

0

U(s)Auds

for t ≥ 0. Hence A ⊂ A, where A denotes the generator of {U(t); t ≥ 0}.
Since the intersection of the resolvent sets of A and A is nonempty, we have
A = A.

The following asserts that a densely defined operator in X is the gen-
erator of an n-times integrated semigroup on X if and only if it satisfies
conditions (A1) and (A2) of this paper.

Corollary 1. Let n be a nonnegative integer. Let A be a densely defined
linear operator in X. Then the following statements are mutually equivalent.

(i) A is the generator of an n-times integrated semigroup on X.
(ii) A is closed and the resolvent set %(A) of A contains (ω,∞) for some

ω ≥ 0. For each τ > 0 there exists Mτ > 0 such that
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∥∥∥
k∏

l=1

(I − hlA)−1x
∥∥∥ ≤Mτ‖x‖n

for x ∈ D(An) and every finite sequence {hl}kl=1 of positive numbers
with hlω < 1 for 1 ≤ l ≤ k and

∑k
l=1 hl ≤ τ .

(iii) A is closed and %(A) ⊃ (β,∞) for some β ≥ 0. For each τ > 0
there exists Kτ > 0 such that

sup{‖λk(λI − A)−kx‖; 0 ≤ k/λ ≤ τ, λ > β, k ≥ 1} ≤ Kτ‖x‖n
for x ∈ D(An).

(iv) A is closed and %(A) 6= ∅. The problem (ACP;x) has a unique solu-
tion for each x ∈ D(An+1).

Proof. If A is the generator of an n-times integrated semigroup {U(t);
t ≥ 0} on X, then it is also the generator of the locally Lipschitz contin-
uous (n + 1)-times integrated semigroup {V (t); t ≥ 0} on X defined by
V (t)x = � t0 U(s)x ds for x ∈ X and t ≥ 0. We therefore deduce from the
Main Theorem that (i) implies (ii). The implication (ii)⇒(iii) is obvious. It
was proved by Oharu [11] that (iii) implies (iv). The implication (iv)⇒(i)
was shown in [9, Theorem 3.3].

We next deduce the Arendt theorem from the Main Theorem (although
Arendt’s original proof is quite elegant).

Corollary 2. Let n be a nonnegative integer. Then A is the generator
of an exponentially Lipschitz continuous (n+ 1)-times integrated semigroup
on X if and only if it is a closed linear operator in X and there exist M > 0
and a ≥ 0 such that %(A) ⊃ (a,∞) and

(3.3) ‖(1/(k − 1)!)(d/dλ)k−1((λI − A)−1/λn)‖ ≤M(λ− a)−k

for λ > a and k ≥ 1.

Proof. The necessity part is straightforward. We prove the sufficiency
part using the Main Theorem. Since A(λI − A)−1 = λ(λI − A)−1 − I for
λ > a, it is shown inductively that

An(λI − A)−1x = λn(λI −A)−1x−
n−1∑

l=0

λlAn−1−lx

for x ∈ D(An) and λ > a. Dividing this equality by λn and differentiating
the resulting equality k − 1 times, we find

‖(λI − A)−kx‖ ≤ 1
(k − 1)!

‖(d/dλ)k−1((λI − A)−1/λn)Anx‖

+ λ−k
n−1∑

l=0

(
n− l + k − 2
n− l − 1

)
λ−(n−l−1)‖An−l−1x‖
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for x ∈ D(An), λ > a and k ≥ 1. By (3.3) the first term on the right-
hand side is estimated by M(λ − a)−k‖Anx‖ for λ > a. Since (1 − t)−k =∑∞
p=0

(
k+p−1
p

)
tp for |t| < 1 and k ≥ 0, the second term is bounded by

λ−k(1 − 1/λ)−k max0≤p≤n−1 ‖Apx‖ for λ > max(a, 1). Let β = max(a, 1)
and K = max(M, 1). Then we have (β,∞) ⊂ %(A) and ‖(λI − A)−kx‖ ≤
K(λ− β)−k‖x‖n for x ∈ D(An), λ > β and k ≥ 1.

By an argument similar to that in [8, Section 4] there exists a norm
N(·) on the Banach space D(An) equipped with the norm ‖ · ‖n such that
‖x‖ ≤ N(x) ≤ K‖x‖n for x ∈ D(An) and N((λI−A)−1x) ≤ (λ−β)−1N(x)
for x ∈ D(An) and λ > β. This fact shows that

∥∥∥
k∏

l=1

(I − hlA)−1x
∥∥∥ ≤ K

k∏

l=1

(1− hlβ)−1‖x‖n

for x ∈ D(An) and every finite sequence {hl}kl=1 of positive numbers with
hlβ < 1 for 1 ≤ l ≤ k. Since (1− t)−1 ≤ exp(2t) for 0 ≤ t ≤ 1/2, we see that
condition (A2) is satisfied with Mτ = K exp(2βτ) and ω = 2β. By the Main
Theorem together with (3.2),A is the generator of an (n+1)-times integrated
semigroup {U(t); t ≥ 0} on X and ‖U(t)−U(s)‖ ≤ max(M2τ , 1)Lebt(t− s)
for 0 ≤ s ≤ t ≤ τ and τ > 0. This means that A is the generator of
an exponentially Lipschitz continuous (n + 1)-times integrated semigroup
on X.

Example. Let X = l∞. Let (ak) be the sequence in C defined by ak =
k + iek

2
for k ≥ 1, and define a linear operator A in X by D(A) = {x =

(xk) ∈ X; (akxk) ∈ X} and Ax = (akxk) for x = (xk) ∈ D(A). Then:

(i) D(A) is not dense in X.
(ii) A is not the generator of any exponentially Lipschitz continuous

(n+ 1)-times integrated semigroup on X, for any nonnegative inte-
ger n.

(iii) A is the generator of the locally Lipschitz continuous twice integrated
semigroup {U(t); t ≥ 0} on X defined by

U(t)x =
( t�

0

(t− s) exp(aks)xk ds
)

for x = (xk) ∈ X and t ≥ 0.

Proof. Since limk→∞ |ak| = ∞ we have limk→∞ xk = 0 for x = (xk) ∈
D(A), which implies (i). To prove (ii), assume to the contrary that A is the
generator of an exponentially Lipschitz continuous (n+ 1)-times integrated
semigroup {S(t); t ≥ 0} on X for some nonnegative integer n. By (2.2)
we have S(t)x = ( � t0((t − s)n/n!) exp(aks)xk ds) for x = (xk) ∈ X and
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t ≥ 0, since the kth component fk(t) of S(t)x must satisfy the equation
fk(t) = � t0 akfk(s) ds+ (tn+1/(n+ 1)!)xk for t ≥ 0.

Let l ≥ 1. Then we have

|ak|−l| exp(akt)| = exp(k(t− lk))(1 + k2e−2k2
)−l/2

and supk≥1 exp(k(t− lk)) = exp(t2/4l) for t ≥ 2l. Since

t�

0

(t− s)l−1

(l − 1)!
exp(aks) ds = (ak)−l exp(akt)−

l∑

p=1

(ak)−p
tl−p

(l − p)!

and |∑l
p=1(ak)−ptl−p/(l − p)!| ≤ et for t ≥ 0 and k ≥ 1, there exist Cl ≥

cl > 0 such that

(3.4) cl exp(t2/4l)−et ≤ sup
k≥1

∣∣∣∣
t�

0

(t− s)l−1

(l − 1)!
exp(aks) ds

∣∣∣∣ ≤ Cl exp(t2/4l)+et

for t ≥ 2l, where the second inequality is true for all t ≥ 0. By (3.4) with
l = n + 1 we see that ‖S(t)‖ (= supk≥1 | � t0((t − s)n/n!) exp(aks) ds|) is
not exponentially bounded, which contradicts the fact that {S(t); t ≥ 0} is
exponentially Lipschitz continuous.

Finally, we prove (iii). We use the inequality (3.4) with l = 1 to obtain
‖U(t) − U(s)‖ ≤ (C1e

t2/4 + et)(t − s) for t ≥ s ≥ 0, which implies that
{U(t); t ≥ 0} is a locally Lipschitz continuous family in B(X). The func-
tional equation (I2) with n = 2 is clearly satisfied. If B is the generator of
{U(t); t ≥ 0} then it is obvious that A ⊂ B. Since %(A) ⊃ R, the inter-
section of %(A) and %(B) is nonempty. The above two facts together imply
A = B.

Remark 3.1. In [4], the relationship between integrated semigroups and
regularized semigroups was investigated. In this direction, it is seen from the
above proof that the following result holds: Let A be a closed linear operator
in X with nonempty resolvent set %(A). Let n be a nonnegative integer and
c ∈ %(A). Then the following statements are mutually equivalent:

(i) A is the generator of a locally Lipschitz continuous (n + 1)-times
integrated semigroup on X.

(ii) A is the generator of a locally Lipschitz continuous C-regularized
semigroup on X with C = (cI − A)−(n+1).

(iii) The resolvent set of A contains (ω,∞) for some ω ≥ 0. For each
τ > 0 there exists Mτ > 0 such that ‖∏k

l=1(I−hlA)−1x‖ ≤Mτ‖x‖n
for x ∈ D(An) and every finite sequence {hl}kl=1 of positive numbers
such that hlω < 1 for 1 ≤ l ≤ k and

∑k
l=1 hl ≤ τ .
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Remark 3.2. In [9], the generators of integrated semigroups were char-
acterized in terms of the associated abstract Cauchy problems. See also [3]
and [4].

Remark 3.3. Even for any local (n + 1)-times integrated semigroup
{U(t); t ∈ [0, T )} which is locally Lipschitz continuous, the definition (1.1) of
generators makes sense. However, we do not know whether the non-densely
defined generators satisfy (2.1) and (2.2) for t ∈ [0, T ). Notice that a complex
characterization of another type of “generators” was given in [2]. The prob-
lem of real characterization of the non-densely defined generators of such
local integrated semigroups remains open except for our case of T = ∞,
although a Hille–Yosida type theorem was found in [15, Theorem 4.2]. (See
also [6].)
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