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Locally Lipschitz continuous integrated semigroups
by

NaokI TANAKA (Okayama)

Abstract. This paper is concerned with the problem of real characterization of locally
Lipschitz continuous (n+1)-times integrated semigroups, where n is a nonnegative integer.
It is shown that a linear operator is the generator of such an integrated semigroup if and
only if it is closed, its resolvent set contains all sufficiently large real numbers, and a
stability condition in the spirit of the finite difference approximation theory is satisfied.

1. Introduction. Let X be a Banach space and B(X) the set of all
bounded linear operators from X into itself. Let n be a positive integer.
A family {U(t); t > 0} in B(X) is called an n-times integrated semigroup
on X if the following conditions are satisfied:

(I1) U(-)x:[0,00) — X is continuous for x € X.
1 t+s )
(I12) U@)U(s)z = m( § (t+s—r) SU(T’)xdr
— S (t+s—r)""tU(r)x dr>
0

forx € X and t,s > 0.
(I3)  U(t)z =0 for all ¢ > 0 implies = = 0.
Let {U(t);t > 0} be an n-times integrated semigroup on X. Then the

generator A of {U(t);t > 0} is defined in the following way: € D(A) and
y = Az if and only if

t
tn

(1.1) U(t):r::SU(r)ydr—i—Ex for t > 0.
; !

The densely defined generators in the exponentially bounded case were
characterized by Neubrander [10], and his result was extended to the follow-
ing two cases:
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(i) Arendt [1] gave a characterization of the generator of an (n+1)-times
integrated semigroup {U(t); ¢ > 0} on X which is exponentially Lipschitz
continuous in the sense that ||U(t 4+ k) — U(t)|| < Me““+Mh for t > 0 and
h > 0, in the case where the domain of the generator is not necessarily dense
in X.

(ii) Tanaka and Okazawa [14] characterized the densely defined genera-
tors of n-times integrated semigroups which are not necessarily exponentially
bounded.

An integrated semigroup {U(t);t > 0} on X is said to be locally Lipschitz
continuous if for each 7 > 0 there exists L, > 0 such that ||U(t) — U(s)|| <
L.|t —s| for t,s € [0, 7]. It is shown in the final part of Section 3 that there
exists a non-densely defined operator which is the generator of a locally Lip-
schitz continuous twice integrated semigroup on [*° but not the generator of
any exponentially Lipschitz continuous (n + 1)-times integrated semigroup
on [*° for every nonnegative integer n. The twice integrated semigroup con-
structed cannot be dealt with by the above-mentioned results.

We are interested in locally Lipschitz continuous (n+ 1)-times integrated
semigroups which are not necessarily exponentially bounded and in charac-
terizing their generators whose domains are not necessarily dense in X. If
n = 0 then our objective has already been accomplished, since Kellerman
and Hieber [5] showed that every locally Lipschitz continuous once inte-
grated semigroup is always exponentially Lipschitz continuous. The main
result of this paper is given by

MAIN THEOREM. Let n be a nonnegative integer. An operator A is the

generator of a locally Lipschitz continuous (n+1)-times integrated semigroup
{U(t); t > 0} on X if and only if the following conditions are satisfied:

(A1) A is a closed linear operator in X whose resolvent set contains
(w,00) for some w > 0.
(A2)  For each T > 0 there exists M; > 0 such that

Hﬁu ~ hid) x| < M

for x € D(A™) and every finite sequence {h;}F_, of positive numbers
such that hiw < 1 for 1 <1 < k and Ele hi < 7. Here ||x|, =
S Az for o € D(A™).

Condition (A2) can be regarded as a stability condition from the view-
point of the finite difference approximation theory. In fact, if {0 =t¢ < t; <
-+ <t < 7} is a partition of [0, tx] with (¢, —t;—1)w < 1 for 1 <[ <k and
{x;}F_, is a solution of the finite difference equation

(:171 — 1‘1_1)/(tl — tl—l) = Al‘l for 1 < l < k
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with the initial condition zo = = € D(A™), then condition (A2) gives the
estimate ||z;|| < M,||z||,, for 1 <1 < k. For this reason, condition (A2) is
natural in the study of the abstract Cauchy problem

(ACP; 2) u'(t) = Au(t) fort>0, wu(0)=uz.

By a solution u to (ACP;z) we mean that u € C1([0, 00); X) and u satisfies
the equation (ACP;z).

In Section 2 we investigate some basic properties of generators of lo-
cally Lipschitz continuous (n + 1)-times integrated semigroups and prove
the necessity part of the main theorem. Section 3 concerns the generation of
locally Lipschitz continuous (n + 1)-times integrated semigroups on X and
the relationship between the main theorem and some previous results.

2. Basic properties of generators of locally Lipschitz continuous
integrated semigroups. Let n be a nonnegative integer. Let A be the gen-
erator of a locally Lipschitz continuous (n + 1)-times integrated semigroup
{U(t);t > 0} on X. Then it is known [9] that A is a closed linear operator
in X with the following properties:

(2.1) U(t)re D(A), AU(t)x=U(t)Ax for xz € D(A) and ¢t > 0,

$ntl
(2.2) CE x

forzx € X and t > 0.

O ey

U(s)xds € D(A), AS U(s)xds =U(t)x —
0

To investigate some properties of the generator of a locally Lipschitz
continuous (n + 1)-times integrated semigroup, we use a method similar to
that due to Sanekata [12], but more delicate arguments are required here.
For each A € C with Re A > 0, define Ry(\) € B(X) by

1
Ro(\)x = A"t S e MU(t)xdt  forz € X.
0

LEMMA 2.1. There exists M > 0 such that
[Ro(N)|| < M|A™  for XA € C with Re A > 0.

Proof. Let A € C and ReX > 0. Let x € X and z* € X*. By the local
Lipschitz continuity of {U(t); t > 0}, we see that (x*,U(t)x) is Lipschitz
continuous on [0, 1] and [(d/dt)(z*,U(t)x)| < L||z*| ||z| for almost all ¢t €
(0,1), where L > 0 is a constant. By integration by parts we have

1
(z*, Ro(\)z) = A" (—eﬂx*, U(1)z) + e (d/dt) (2", U (t)z) dt).
0
The desired inequality follows readily from this equality. =
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For each A € C with Re A > 0, define Qo(\) € B(X) by

Qo(N)z = A"l Uz + Ze e for x € X.

LEMMA 2.2. (i) There exists M > 0 such that
1Qo(N)|| < Me™ReA1 + A" for A € C with Re X > 0.
(ii) For each A € C with Re A > 0 we have
(2.3) Ro(AM)(M — A)x = (I — Qo(N)z  for x € D(A),
(2.4) Ro(N)z e D(A), (M —ARy(N)=I—-Qo(\)x forxelX.
Proof. Let A € C and Re A > 0. Since maxo<x<n(1/k!) < e and

n+1
(LAY = ST,

k=0

assertion (i) is easily verified. To prove (ii), let z € X. Since

1 1 t
Ro(\)x = Ant? (e*A S U(s)xds + S Ae M (S U(s)x ds) dt),
0 0 0
it follows from (2.2) that Ro(A)x € D(A) and
)\n+1 N 1 )\t n+1
(25) (M — A)Ry(A\)z = CEmY e+ | Ae™ T  dt

— A"l AU (1)

Integration by parts yields
1

o ()\t)n+1 B . n+1
(S)Ae ' (n +1) AZ

Substituting this equality into (2.5) we obtain (2.4). Since A is closed, by
(2.1) we have Rg(A\)z € D(A) and ARy(\)z = Ro(\)Az for z € D(A). This
fact together with (2.4) implies (2.3). m

PROPOSITION 2.3. (i) The resolvent set of A contains a region
N={AeC\R; Re) > alog|[Im\| + 3, ReA >~}
U{N e R A > 7},

where o, B and v are positive numbers.
(ii) There exists M > 0 such that

A= A7 < M\ for A e 2.
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Proof. Let € € R and n € R satisfy

n#0, &{>aloglnl+8, &>,

where a, 3 and v are yet to be determined. Then we have |n|® < e #+E, If
a > 0 is chosen such that a = n+1, then e=¢((1+ |£])"F! + |n|" 1) vanishes
as £ — oo and 8 — oo. This fact implies that the positive numbers v and
B can be chosen so large that ||Qo(\)|| < 1/2 for A € 2, by Lemma 2.2(i).
Since (I — Qo(\))™! € B(X) exists and [|(I — Qo(N\)) Y| < 2 for X € £, the
proposition follows from Lemmas 2.1 and 2.2. =

To prove the necessity part of the main theorem, we define

n—1 L
_ n t
Th(t)e =h~ ' (U(t+h) - U@t)A s+ o Az
k=0

for x € D(A™), t > 0 and h # 0, and

" 1<(t+h)”+1 ¢t )

Eh(t):m_ﬁ (n+1)!  (n+1)!

for t > 0 and h # 0.
LEMMA 2.4. Let x € D(A™) and X € £2. Then

(2.6) (M —A) o= S e M, )z dt + e ATy (1) (M — A) "t
0

+ (e*’\msh(m) + S e Mey (1) dt)()J —A) Ay
0

h
— b U (s) A" — A) e ds
0

for any 79 > 0 and h # 0.

Proof. Let x € D(A™), A € £2, 7o > 0 and h # 0. Integration by parts
yields

To

Ve MUt +h) -U®)Amxdt

0



6 N. Tanaka

By (2.2) we see that the right-hand side belongs to D(A) and
70

A\ e MUt +h) - Ut) Az dt

0
_ ,—ATo n _(70+h)n+1 n,. n T(?Jrl n
=e <U(Tg+h)AIE NCESN A"x —U(1p)A x+(n+1)!A:c

T0 t+h)n+]_

A (Ut 4+ hyarg — LD g
+§e <(+) x (1 D
A" ! A"
—U(t) a:+(n+1)! l’)dt

hn+1
- Uh)A" — —— A"z ).
< WA G x)
The last term on the right-hand side is equal to —A S(})L U(s)A™z ds by (2.2).
By integration by parts we have

70

n—1 n k T0 n k
g 3 () g ()
At k _ AT At
0 k=0 k=1 0 k=1

The desired equality is obtained by combining the equalities above. m

Let 7 > 0 and choose 79 > 27. By the local Lipschitz continuity of
{U(t); t > 0} there exists M, > 0 such that ||T,(¢t)z| < M|z, for
t € [0,70] and h € (0,1]. Here and below M, denotes various constants
depending on 7.

Let a, 0 and v be the positive numbers in Proposition 2.3(i), and let
oo > max{a, (n+1)/(10—27)}, Bo > B, wo > max{7y, fo} and 1o = exp((wo—
Bo)/ap). Then we define I' = I'y U T, where I'T = {{ = {+in; § = aplog|n|
+ Bo, In| = no} and Iy = {¢ = wo + in;|n| < no}. Here i stands for the
imaginary unit. Notice that I" is oriented so that Im ( increases along I

LEMMA 2.5. Let z* € X* and x € D(A™). Then there exist a measurable
function f on (0,79) and a holomorphic function g on 2 such that

(2.7) lf(O)] < My||z*||||z||n  for almost all t € (0, 79),
(2.8) 9O < M| lz" [ |zl for ¢ € 2,
* — T — 1 —(To
(2.9) (z*, (M — A)"'a) = (X)e *tf(t)dt+%;A—_Ce $Tog(¢) d¢

for A > wy.

Proof. Let z* € X* and x € D(A™). Since (z*,U(t)A"x) is Lipschitz
continuous on [0, 79], it is differentiable for almost all ¢ € (0, 7p), so that the
limit f(¢) := lmp o(z*, Tp(t)z) exists for almost all t € (0,7). Clearly,
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f is measurable and satisfies (2.7). If ap79 > n + 1 and A > wy then
§, 1A —¢|7tem(ReOm0|¢|" |d(| < oo and the integral

R+$Ri

JIA= ¢ teRedmi¢ )

R—sRi
tends to zero as R — oo, where sg = exp((R — (o)/ao). Since I' C 2, by
Cauchy’s integral formula we have
1 S 1

—>\T0 . -1 e
e T (o) (M — A"z i ¢

e ST (10) (¢TI — A) "tz dC¢

r

for A > wo and h € (0,1]. Here we have used Proposition 2.3(ii) and the
condition agry > n + 1. Since U(:)z : [0,00) — X is differentiable for
z € D(A), the limit g(¢) := limp o{z*, Th(70)(¢I — A)~'z) exists for all
¢ € 2. By Proposition 2.3(ii) we see that g satisfies (2.8). Taking the weak
limit in (2.6) as h | 0 we obtain (2.9) by Lebesgue’s convergence theorem.
Here we have used the strong continuity of {U(t); ¢ > 0} and U(0) =0. =

Set R(\) = (A — A)~! for A € £2. By applying the resolvent equation
A=) RAN)R(p) = R(p) — R(A) for A, pu € £2, the following lemma can be
proved by induction.

LEMMA 2.6. Let k > 2. Then

k
(210)  JIROWD = (-DF" | Fyoa(o1,... 0k-1)doy - dog

=1 Dyp_1
for every finite sequence {\}F_, with \; > wo for 1 <1 <k, where

Fr.ooan(o1, ..., 05-1)

e

—1
:R(kfl) ()\10—1 +...+)\k_10k_1 +)\k (1 - Ul))’
=1

k—1
Dy, = {(01,...,0k_1); 01>0for1<1<k-1and Zal < 1}.
=1

LEMMA 2.7. Forz € D(A™) and every finite sequence {h;}¥_, of positive
numbers with hjwg <1 for 1 <1 <k and k > 1, we have

(2.11) Hﬁ([ - hlA)*lmH

k
1 ~1,~(Re)To| |0
< 817 (14 5o J T = ol ®e0rmigl® gl

Iri=1
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Proof. Let x € D(A™) and z* € X*. Let k > 2 and let {\;}}_; be any
sequence such that \; > wg for 1 <1 < k. If (01,...,0k-1) € Dg_1 then
Aoy + 4 10kt 4 AR(1 = Y7 01) > wo. By (2.9) and (2.10) we see
that (z*, Hle R(M\;)x) can be written as
S doy -+ -dog_1 ( SO tk—le—(hﬂl+"'+>\k—10k—1+>\k(1—Zf:11 Ul))tf(t) dt

Dy 0
1 k—1

to S(—l)kflrék_l) <A1U1+- At Ap—10k—1+ Ak (1 Ul)) g )dC)
™ =1

where 7¢(A) = (A — ¢)7! for A > wp and ¢ € I'. Changing the variable, by

Lemma 2.6 we have

S do_l . dak—l S tk}*le*(klo'l«k--_k)\k,lo'k,l+Ak(l—zf:_ll o'l))t dt

Di—1 0 )
= (Al..)\k)i .
Since
PIrd D ot Maoior + k(1 =01 == = opn))e g€ ]
r
< ((—1)]‘3_17’%_1)()\101 4+ 4+ Ap10k—1 + )\k(l — 01— — O'kfl)) + 1)

X Me[lz™|| [l

and the right-hand side is integrable on Dj_1, we apply Fubini’s theorem
to find

k—1
(-0t | doy---dop s | Tékfl) (Z Aoy + >\k( 01))674709(0 dg
Dy_1 r =1
k
= [T = ¢ e mg(¢) d¢.
ri=1

The desired inequality is obtained by combining these equalities. m

Once the following lemma is shown, the proof of the necessity part of the
main theorem is completed, since the right-hand side of (2.11) is bounded
by M. ||z|,, under the condition oy > (n+1)/(m9 — 27).

LEMMA 2.8. There exists M, > 0 such that

k
[T11 = ¢hul™ < M, exp(27 Re )
=1

for ¢ € I' and every finite sequence {hl}le of positive numbers with hjwy <
1/2 for 1 <1<k and Zle h <.
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Proof. Let ¢ = £+in € I" and let {h;}_, be a finite sequence of positive
numbers such that hwy < 1/2 for 1 <1 < k and 2}, by < 7. We divide
the set {1,...,k} into the disjoint sets Iy = {l; ;¢ € [0,1/2]} and I, =
{l; (=&+in e Iy, h§ > 1/2}. If | € I; then

1= |~ < (1= (ReQ)h) ™" < exp(2(Re¢)lu).
Here we have used the fact (1 —)~! < exp(2t) for t € [0,1/2]. If | € I5 then
1= Chul ™ < fnl ™y < 26/ Il

Hence
k

T 11— ¢hul™ < exp(26r) sup{(2(ao log n] + fo)/11]) ™!; Il > o},

=1
where |I5| denotes the number of elements in I5. To estimate |3, let £+ in
e Il and h¢ > 1/2. Since € = aglog |n| + By > 0 we have

L[/2 =" (1/2) <€) hi < (anlog|n| + Bo)T,
Il lely
so that |I2| < 2(aglog|n| + Bo)7. Since lim; . (aologt + (o)/t = 0, it
follows that the set {n; 2(aglog|n| + Bo)/|n| > 1} is bounded in R. These
facts together imply that (2(aglog|n| + Bo)/|n])!2! is bounded from above
for |n| > no. The proof is thus complete. m

3. Generation of locally Lipschitz continuous integrated semi-
groups. Let A be an operator in X satisfying conditions (Al) and (A2).
For simplicity of notation, we write J, = (I — hA)~! for h € (0, hg], where
ho > 0 is such that how < 1. Let A\, u € (0, ho] and set Ay, = Jf — JfL for
k,l > 0. To prove the sufficiency part of the main theorem, let 7 > 0 and
z€ D(A™). For 0 < k < [r/)A and 0 <[ < [7/u] we define

ak, = max | J7 Agz]),
where ¢ = Au/(A + p) and the maximum is taken over all nonnegative

integers p such that op+ Ak + pl < 27. The use of the quantity ay; is a new
idea.

LEMMA 3.1. For 0 <k <[t/ and 0 <1 < [r/u] we have
i < Mar (kX = 1p)* + kX + 1?) V2| A2

Proof. Let 0 < k < [r/A] and consider any nonnegative integer p such
that op + kX < 27. Since
k k
JPApoz=J0Y (Jz—JF'2)=X) JPJAz

i=1 j=1
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and HJ(];—?JiAZ” < M ||Az||, for 1 < j < k (by condition (A2)), we have
a0 < Mo, ||Az||p k. Similarly, ag; < Mo || Az || lp.

Now, let 1 < k < [r/A] and 1 <[ < [r/p], and consider any positive
integer p with po + kA + [u < 27. By the resolvent equation we have

_ P A
J,\U—JU()\+MU+>\+MJ)\U>,

Juw:,]g<)\iuw+>\i Jw> for v,w € X.

Using these equalities with v = J f\“*lz and w=J fflz we find

JPAR 1z = Jg—HAkJ,lZ + Jp+1Ak 1,12

A A+

Since o < A and o < pu, we notice that (p+ 1)o + kA + (I — 1) < 27 and
(p+1)o+ (k—1)A+1p < 27. By the definition of ax;—1 and ax_1,; we have

I
ap ] < ar1—1 +
k,l_)\_’_u k,l—1 Py

The desired inequality is proved by induction. (See also [7] and [16, Chap-
ter XIV, Section 7].) m

Qr—1,1-

Proof of the sufficiency part of the main theorem. Let x € X and 7 > 0.
Choose ¢ > w and set C = (cI — A)~(™*Y, By Lemma 3.1 we have

17N Cw — gl o))
< Mo (([E/ NN = [s/pl)® + [t/ NN + [s/1)i®) V|| ACz |,

for A, it € (0,ho] and t € [0,7]. This implies that S(t)z = limy o J//MCx
exists for all ¢ > 0 and the family {S(¢); ¢ > 0} is a locally Lipschitz contin-
uous C-regularized semigroup on X.

Let z € X and ¢t > 0. Since

[t/A] [t/A]
J;t/’\]Cz—Cz: z:(JAC’z—J’C 102) = ()\ZJACZ)
k=1
([t/A]+1D)A
=A S J;S/)‘]Cz ds,
A

by the closedness of A we have So )zds € D(A) and

(3.1) ASS(s)z ds = S(t)z — Cxz.
0
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For k =1,...,n+ 1, define a family {Vj(¢); t > 0} in B(X) by

tty tr—1
Vit)z =\ | St)zdty---dt,
00 0

for z € X and t > 0. Then it is proved similarly to [13, Lemma] that the
following hold for k =1,...,n+ 1.

(i) Vi(t)z € D(A¥) and §(cI — A)*~1Vj_1(s)zds € D(A) for z € X

and t > 0.
(ii) (cI — A)*Vi(t) € B(X) and there exist K; > 0 and wy > 0 such
that

(3.2) (eI — A)*Vi(t) — (eI — A)FVi(s)|| < max(Ma,, 1) Kpe“rt(t — s)

for0<s<t<g7andrT>0.
(iii) We have

(eI — A)*Vi(t) = clel — AV (t) — (el — AV 1 (1)
tk_l

G

By the above fact with k& = n + 1, the family {U(¢); t > 0} in B(X) de-
fined by U(t) = (cI — A)"™1V,,41(t) for t > 0 is locally Lipschitz continuous.
By [14, Lemma 4.8 we see that {U(t); ¢t > 0} is an (n + 1)-times integrated
semigroup on X.

To prove that A is the generator of {U(t); t > 0}, let u € D(A). The
(n + 1)-fold integration of (3.1) implies

+ el — AF1C fort > 0.

tn+1 t
Ult)u = i + (S)U(S)Au ds
for ¢ > 0. Hence A C 2, where 2 denotes the generator of {U(t); ¢t > 0}.

Since the intersection of the resolvent sets of A and 2l is nonempty, we have
A=A n

The following asserts that a densely defined operator in X is the gen-
erator of an n-times integrated semigroup on X if and only if it satisfies
conditions (A1) and (A2) of this paper.

COROLLARY 1. Letn be a nonnegative integer. Let A be a densely defined
linear operator in X . Then the following statements are mutually equivalent.

(i) A is the generator of an n-times integrated semigroup on X.

(ii) A is closed and the resolvent set p(A) of A contains (w,00) for some
w > 0. For each T > 0 there exists M, > 0 such that
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Hf[u — )| < M el
=1

for x € D(A™) and every finite sequence {h;}}_, of positive numbers
with hjw < 1 for 1 <1 <k and Zle h <.

(iii) A is closed and p(A) D (B,00) for some 3 > 0. For each 7 > 0
there exists K, > 0 such that

sup{[[\*(A\I — A)Fz|; 0 < k/A< 7, A> B, k> 1} < K. ||zl

for x € D(A™).
(iv) A is closed and o(A) # 0. The problem (ACP;x) has a unique solu-
tion for each x € D(A™T1).

Proof. If A is the generator of an n-times integrated semigroup {U(t);
t > 0} on X, then it is also the generator of the locally Lipschitz contin-
uous (n + 1)-times integrated semigroup {V'(¢); ¢ > 0} on X defined by
V(t)r = Sg U(s)xds for x € X and t > 0. We therefore deduce from the
Main Theorem that (i) implies (ii). The implication (ii)=-(iii) is obvious. It
was proved by Oharu [11] that (iii) implies (iv). The implication (iv)=-(i)
was shown in [9, Theorem 3.3]. m

We next deduce the Arendt theorem from the Main Theorem (although
Arendt’s original proof is quite elegant).

COROLLARY 2. Let n be a nonnegative integer. Then A is the generator
of an exponentially Lipschitz continuous (n + 1)-times integrated semigroup
on X if and only if it is a closed linear operator in X and there exist M > 0
and a > 0 such that o(A) D (a,00) and

(3:3) (/= 1N(/dN* A = A) /AN < M(A —a)~"
for X\ >a and k> 1.

Proof. The necessity part is straightforward. We prove the sufficiency
part using the Main Theorem. Since A\ — A)~! = \(A\I — A)~! — I for
A > a, it is shown inductively that

n—1
AP = A)Tle = A" AT - A) e = Y NATT
=0

for x € D(A™) and A > a. Dividing this equality by A" and differentiating
the resulting equality £ — 1 times, we find

— 1 — — ny AN
(AT — A)~Fz]| < (=] [(d/dA) (AT = A) /A A x|
n—1
- —2
+ )\—k n—Il+k )\—(n—l—l)HAn—l—le
n—101-—1

=0
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for € D(A™), A > a and k > 1. By (3.3) the first term on the right-
hand side is estimated by M (X — a)~F||A™z| for A > a. Since (1 —t)~F =
2 p0 (kJrg*l)tp for [t| < 1 and k£ > 0, the second term is bounded by
A7F(1 = 1/X)"*maxo<p<n_1 ||APz| for A > max(a,1). Let 3 = max(a,1)
and K = max(M,1). Then we have (3,00) C o(A) and [|[(A] — A)"Fz| <
K\ —B)7*||z||,, for x € D(A"), A\ > B and k > 1.

By an argument similar to that in [8, Section 4] there exists a norm
N(+) on the Banach space D(A™) equipped with the norm || - ||,, such that
l|lz|| < N(z) < K||z||, for z € D(A™) and N((\—A)"tz) < (A=B)"IN(2)
for x € D(A™) and X\ > (. This fact shows that

HﬁU —A) 'z < KT =) el
=1 =1

for x € D(A™) and every finite sequence {h;}F_, of positive numbers with
hiB < 1for1 <1<k Since (1—¢t)~! <exp(2t) for 0 <t < 1/2, we see that
condition (A2) is satisfied with M, = K exp(247) and w = 2. By the Main
Theorem together with (3.2), A is the generator of an (n+1)-times integrated
semigroup {U(t); t > 0} on X and ||U(t) — U(s)|| < max(Ma,,1)Leb(t — s)
for 0 < s <t < 7 and 7 > 0. This means that A is the generator of
an exponentially Lipschitz continuous (n + 1)-times integrated semigroup
on X. m

EXAMPLE. Let X = 1. Let (ax) be the sequence in C defined by ap, =
k + iek” for k > 1, and define a linear operator A in X by D(A) = {x =
(xx) € X; (agzy) € X} and Az = (agzy) for x = (x) € D(A). Then:

(i) D(A) is not dense in X.

(ii) A is not the generator of any exponentially Lipschitz continuous
(n+ 1)-times integrated semigroup on X, for any nonnegative inte-
gern.

(iii) A is the generator of the locally Lipschitz continuous twice integrated
semigroup {U(t); t > 0} on X defined by

t

Ut)r = (S (t — s) exp(axs)xg ds)
0

forz = (zr) € X and t > 0.

Proof. Since limy_, o0 |ax| = 0o we have limy_o x = 0 for © = (xy) €
D(A), which implies (i). To prove (ii), assume to the contrary that A is the
generator of an exponentially Lipschitz continuous (n 4 1)-times integrated
semigroup {S(t); t > 0} on X for some nonnegative integer n. By (2.2)
we have S(t)r = (Sé((t — s)"/n!)exp(ags)xi ds) for x = (zr) € X and
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t > 0, since the kth component fj(t) of S(tf)xr must satisfy the equation
Fe(t) = §, anful(s) ds + (¢ /(n + 1))ay, for t > 0.
Let [ > 1. Then we have
] ™| exp(axt)| = exp(k(t — 1k))(1 + ke~ 2K)~1/2
and sup,,> exp(k(t — lk)) = exp(t?/41) for ¢ > 2I. Since

l

exp(axs) ds = (a) ' exp(agt) — Z
p=1

tlp

—p)!

C(t—s) !
N

and |Z;Zl(ak)*ptl*p/(l —p)l| <elfort >0 and k > 1, there exist C; >
¢; > 0 such that

t

2 t (t—s)""
(3.4) c¢rexp(t=/4l)—e" < sup S N exp(axs) ds

; < Crexp(t?/4l) +e'
k>1 1 [ — 1)

for t > 2l, where the second inequality is true for all ¢ > 0. By (3.4) with
I = n+1 we see that ||S(t)|| (= supg> | Sg((t — s)"/n!)exp(ags) ds|) is
not exponentially bounded, which contradicts the fact that {S(¢); ¢ > 0} is
exponentially Lipschitz continuous.

Finally, we prove (iii). We use the inequality (3.4) with [ = 1 to obtain
|U(t) = U(s)|| < (Cret™/* + et)(t — s) for t > s > 0, which implies that
{U(t); t > 0} is a locally Lipschitz continuous family in B(X). The func-
tional equation (I2) with n = 2 is clearly satisfied. If B is the generator of
{U(t); t > 0} then it is obvious that A C B. Since p(A) D R, the inter-
section of p(A) and o(B) is nonempty. The above two facts together imply
A=B. =

REMARK 3.1. In [4], the relationship between integrated semigroups and
regularized semigroups was investigated. In this direction, it is seen from the
above proof that the following result holds: Let A be a closed linear operator
in X with nonempty resolvent set p(A). Let n be a nonnegative integer and
¢ € 9(A). Then the following statements are mutually equivalent:

(i) A is the generator of a locally Lipschitz continuous (n + 1)-times
integrated semigroup on X.
(ii) A is the generator of a locally Lipschitz continuous C-regularized
semigroup on X with C' = (cI — A)~("+1),
(iii) The resolvent set of A contains (w,o0) for some w > 0. For each

7 > 0 there exists M, > 0 such that || Hle(l—hlA)*:l:EH < M. ||z,
for x € D(A™) and every finite sequence {h;}_, of positive numbers

such that hjw <1 for 1 <[ <k and Zle h <.
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REMARK 3.2. In [9], the generators of integrated semigroups were char-
acterized in terms of the associated abstract Cauchy problems. See also [3]
and [4].

REMARK 3.3. Even for any local (n + 1)-times integrated semigroup
{U(t); t € [0,T)} which is locally Lipschitz continuous, the definition (1.1) of
generators makes sense. However, we do not know whether the non-densely
defined generators satisfy (2.1) and (2.2) for t € [0, 7). Notice that a complex
characterization of another type of “generators” was given in [2]. The prob-
lem of real characterization of the non-densely defined generators of such
local integrated semigroups remains open except for our case of T = oo,
although a Hille-Yosida type theorem was found in [15, Theorem 4.2]. (See
also [6].)
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