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Boundedness of higher order commutators of oscillatory
singular integrals with rough kernels

by

Huoxiong Wu (Xiamen)

Abstract. The author studies the commutators generated by a suitable function a(x)
on Rn and the oscillatory singular integral with rough kernel Ω(x)|x|n and polynomial
phase, where Ω is homogeneous of degree zero on Rn, and a(x) is a BMO function or
a Lipschitz function. Some mapping properties of these higher order commutators on
Lp(Rn), which are essential improvements of some well known results, are given.

1. Introduction. We will work on Rn, n ≥ 2. Let Ω be a function
homogeneous of degree zero with mean value zero on the unit sphere Sn−1.
Define the oscillatory singular integral operator T by

(1) Tf(x) = p.v.
�

Rn
eiP (x,y)Ω(x− y)

|x− y|n f(y) dy,

where P (x, y) is a real-valued polynomial on Rn × Rn. Let k be a positive
integer and a(x) a suitable function on Rn. Define the kth order commutator
Ta,k generated by T and a by

(2) Ta,kf(x) = p.v.
�

Rn
eiP (x,y)(a(x)−a(y))k

Ω(x− y)
|x− y|n f(y) dy, f ∈ C∞0 (Rn).

The operators (1) and (2) are called the oscillatory operators with poly-
nomial phase. As is well known, operators of this type are very useful in the
study of Hilbert transforms along curves, singular integrals supported on
lower dimensional varieties, singular Radon transforms etc. There has been
a considerable amount of relevant research since Ricci and Stein’s pioneering
paper [20] (see e.g. [3, 15, 10, 7, 13]). In this paper, we will focus on the
operator (2) in two cases described below.

1.1. Commutators generated by a BMO function. For a ∈ BMO(R+)
(the radial BMO function class), Ding and Lu [7] (resp., Lu and Wu [13])
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proved the weighted Lp-boundedness of Ta,k (1<p<∞) ifΩ∈L log+ L(Sn−1)
(resp., Ω ∈ B0,0

q (Sn−1), where B0,0
q denotes the block space introduced by

Jiang and Lu [12]). For general a ∈ BMO(Rn), Ding [5] showed that Ta,k is
bounded on Lp(Rn) (1 < p < ∞) with bound C‖a‖kBMO(Rn) independent of

the coefficients of P (x, y) (also see [9]) if Ω ∈ ⋃r>1 L
r(Sn−1). Recently, Ma

and Hu [16] extended the result in [5] to the case of Ω ∈ L(log+L)k+1(Sn−1)
for p = 2.

Obviously, the condition that Ω ∈ L(log+L)k+1(Sn−1) greatly depends
on the order k of Ta,k. Moreover, for p 6= 2, 1 < p < ∞, Ma and Hu [16]
did not obtain the corresponding result. It is natural to ask whether there
exists a condition on Ω, which is strictly weaker than Ω ∈ ⋃r>1L

r(Sn−1)
and independent of k, such that Ta,k is bounded on Lp(Rn) for 1 < p <∞.
In this paper, we will give a positive answer to the above problem. Before
stating the main result, we introduce some concepts (see [12]).

Definition 1. A q-block on Sn−1 is an Lq (1 < q ≤ ∞) function b(·)
that satisfies

(i) supp(b) ⊆ Q, (ii) ‖b‖Lq(Sn−1) ≤ |Q|1/q−1,

where Q = Sn−1 ∩ {y ∈ Rn : |y − ς| < % for some ς ∈ Sn−1 and % ∈ (0, 1]}.
Definition 2. The block spaces B0,0

q on Sn−1 are defined by

B0,0
q (Sn−1) =

{
Ω ∈ L1(Sn−1) : Ω(y′) =

∑

s

Csbs(y′), M0,0
q ({Cs}) <∞

}
,

where each Cs is a complex number, each bs is a q-block supported in Qs,
and

M0,0
q ({Cs}) =

∑

s

|Cs|
{

1 + log+ 1
|Qs|

}
.

It should be pointed out that the method of block decomposition for func-
tions was invented by Taibleson and Weiss [21] in the study of convergence
of Fourier series. Later on, many applications of the block decomposition to
harmonic analysis were discovered (see e.g. [1, 11, 12, 13, 14]). For further
background and information about spaces generated by blocks and their ap-
plications to harmonic analysis, one can consult the book [12]. In particular,
Keitoku and Sato [11] showed that for any q > 1,

⋃

r>1

Lr(Sn−1) ⊂ B0,0
q (Sn−1),

which is a proper inclusion. And we easily see from [11] that B0,0
q (Sn−1) is

not contained in L(log+L)1+ε(Sn−1) for any ε > 0 although the relationship
between B0,0

q (Sn−1) and Llog+L(Sn−1) remains open.
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Definition 3 (see [4]). A locally integrable function a(x) will be said
to belong to BLO(Rn) if there is a constant C such that for any cube Q,

mQ(a)− inf
x∈Q

a(x) ≤ C,

where mQ(a) = |Q|−1 �
Q a(x) dx.

If a ∈ BLO(Rn), then we define ‖a‖BLO(Rn) =supQ{mQ(a)−infx∈Q a(x)}.
Obviously, L∞(Rn) ⊂ BLO(Rn) ⊂ BMO(Rn), and if a ∈ BLO(Rn), then

(3) ‖a‖BMO(Rn) ≤ 2‖a‖BLO(Rn).

Now let us formulate our main result as follows.

Theorem 1. Suppose that Ω is homogeneous of degree zero on Rn and
belongs to B0,0

q (Sn−1) for some q > 1 with mean value zero on Sn−1, a ∈
BMO(Rn), and P (x, y) is a real-valued polynomial. If a ∈ BLO(Rn) and a
is subharmonic, then for 1 < p <∞,

‖Ta,kf‖p ≤ C‖a‖kBLO(Rn)‖f‖p,
where C is independent of the coefficients of P (x, y).

Remark 1. A typical example of a BMO function a satisfying the re-
strictive conditions of Theorem 1 is log |x|.

1.2. Commutators generated by a Lipschitz function. Let Λ̇β(Rn) denote
the Lipschitz space defined by

Λ̇β(Rn) =
{
f : ‖f‖Λ̇β = sup

x, h∈Rn;h6=0

|∆[β]+1
h f(x)|
|h|β <∞

}
,

where ∆1
hf(x) = f(x+ h)− f(x), ∆k+1

h f(x) = ∆1
h(∆k−1

h f)(x). It is easy to
see that if 0 < β < 1 and f ∈ Λ̇β, then

(4) |f(x)− f(y)| ≤ |x− y|β‖f‖Λ̇β , ∀x, y ∈ Rn.

For a ∈ Λ̇β(Rn) and k ∈ N, M. Paluszyński [19] considered the following
commutators related to singular integrals:

T a,kf(x) = p.v.
�

Rn

Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy,

and proved that if Ω ∈ Lip1(Sn−1), then T a,k is bounded from Lp(Rn) to
Lr(Rn), where 1/r = 1/p− β/n with 0 < β < 1.

This result indicates that T a,k enjoys the same mapping properties on
the Lebesgue spaces as the fractional integral operators TΩ,β defined by (see
e.g. [17, 18, 8])

TΩ,βf(x) = p.v.
�

Rn

Ω(x− y)
|x− y|n−β f(y) dy.



32 H. X. Wu

This naturally leads to the question whether Ta,k has the same boundedness
properties as the fractional oscillatory integral operator. This problem will
be resolved by our next Theorem 2.

For fractional oscillatory singular integral operators with smooth kernel,
Ricci and Stein [20] showed the following result.

Theorem A. For each d ≥ 2, there exists an ad > 0 such that whenever
(i) P (x, y) is a real polynomial of total degree ≤ d, which is nontrivial in the
sense that it cannot be written as P0(x)+P1(y), and (ii) K(x, y) is a function
which satisfies |K(x, y)| ≤ C|x−y|−n+β, |∇K(x, y)| ≤ C|x−y|−n+β−1, then
the operator Tβ defined by

Tβf(x) =
�

Rn
eiP (x,y)K(x, y)f(y) dy

is bounded on Lp(Rn), where 0 < β < ad(1/2 − |1/p − 1/2|), and the Lp

norm of the operator does depend on the polynomial P (x, y).

In 1996, Y. Ding [6] improved the above result as follows.

Theorem B. Suppose that Ω is homogeneous of degree zero on Rn and
belongs to Lq(Sn−1), and P (x, y) =

∑
|ξ|≤r, |η|≤l cξηx

ξyη is a nontrivial poly-
nomial on Rn × Rn. Consider the fractional oscillatory singular integral
operator

TΩ,βf(x) =
�

Rn
eiP (x,y) Ω(x− y)

|x− y|n−β f(y) dy.

(i) If 0 < β < min{(l + r)/2r, (l + r)/2l} and q > 1/(1− β), then TΩ,β
is bounded on L2(Rn).

(ii) If 1 < p < ∞ (p 6= 2), 0 < β < min{(l + r)/2r, (l + r)/2l}{1/2 −
|1/p − 1/2|} and q > 1/(1− β), then TΩ,β is bounded on Lp(Rn).
Here the Lp norm of TΩ,β depends on the value of

∑
|ξ|=r, |η|=l |cξη|,

but not on the other coefficients of P (x, y).

In this paper, we will establish the following theorem.

Theorem 2. Suppose that Ω is homogeneous of degree zero on Rn and
belongs to Lq(Sn−1) with q > 1, a ∈ Λ̇β(Rn), 0 < β < 1, and P (x, y) =∑
|ξ|≤r, |η|≤l cξηx

ξyη is a nontrivial polynomial on Rn×Rn, that is, it cannot
be written as P0(x) + P1(y).

(i) If 0 < β < min{(l + r)/2rk, (l + r)/2lk} and q > 1/(1− β), then

‖Ta,kf‖2 ≤ C(n, k,A,degP )‖a‖k
Λ̇β
‖f‖2.

(ii) If 1 < p <∞ (p 6= 2), 0 < β < min{(l + r)/2rk, (l + r)/2lk}{1/2−
|1/p− 1/2|} and q > 1/(1− β), then

‖Ta,kf‖p ≤ C(n, k,A,degP )‖a‖k
Λ̇β
‖f‖p.
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Here A = (
∑
|ξ|=r, |η|=l |cξη|)1/(r+l) and degP denotes the total degree

of P (x, y).

Remark 2. We remark that the bound of the fractional oscillatory inte-
gral operator in Theorem A does depend on the coefficients of P (x, y), but
the bound of Ta,k in our theorem, as those of TΩ,β in Theorem B, depend
only on the value of

∑
|ξ|=r, |η|=l |cξη|, but not on the other coefficients of

P (x, y).

This paper is organized as follows. In Section 2, we will give some pre-
liminary lemmas. Next we will prove Theorem 1 in Section 3. Finally, the
proof of Theorem 2 will be given in Section 4. Some ideas in the proofs of
our theorems are taken from [20, 15, 6]. Throughout the rest of this paper,
C always denotes positive constants that are independent of the essential
variables but whose value may vary at each occurrence.

2. Some lemmas. Let us first give some lemmas, which are crucial in
the proof of our main results.

Lemma 1 (see [14]). Let Ω, a, k be as in Theorem 1. Then for 1 < p
<∞, the maximal operator MΩ

a,k defined by

MΩ
a,kf(x) = sup

r>0

1
rn

�

|x−y|<r
|a(x)− a(y)|k|Ω(x− y)f(y)| dy

satisfies
‖MΩ

a,kf‖p ≤ C‖a‖kBLO(Rn)‖f‖p.
Lemma 2 (see [14]). Let a, k be as in Theorem 1, Ω0 be homogeneous

of degree zero on Rn, and 1 < p < ∞. For λ > 1, if Ω0 ∈ Lλ(Sn−1), then
the operator

MΩ0
a,kf(x) = sup

r>0

1
rn

�

|x−y|<r
|a(x)− a(y)|k|Ω(x− y)f(y)| dy

satisfies
‖MΩ0

a,kf‖p ≤ C‖a‖kBLO(Rn)‖Ω0‖Lλ(Sn−1)‖f‖p.
Lemma 3 (see [14]). Let Ω, a, k be as in Theorem 1. Then the commu-

tator of the singular operator T a,k defined by

T a,kf(x) = p.v.
�

Rn
(a(x)− a(y))k

Ω(x− y)
|x− y|n f(y) dy

is bounded on Lp(Rn), for 1 < p <∞, with norm bounded by C‖a‖kBLO(Rn).

Lemma 4. Let Ω, a, k be as in Theorem 1, ε > 0, and 1 < p < ∞.
Suppose that P (x, y) is any real-valued polynomial on Rn × Rn. If Ta, k is
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bounded on Lp(Rn) with norm bounded by C‖a‖kBLO(Rn), then its truncation
defined by

Tε,a,kf(x) = p.v.
�

|x−y|<ε
eiP (x, y)(a(x)− a(y))k

Ω(x− y)
|x− y|n f(y) dy

is also bounded on Lp(Rn) with norm bounded by C‖a‖kBLO(Rn).

Proof. Decompose Rn as Rn =
⋃
d Id, where each Id is a cube having side

length ε/8n and the cubes Id have disjoint interiors. Set fd = fχId . Since
the support of Tε,a,kfd is contained in a fixed multiple of Id, the supports of
the various terms Tε,a,kfd have bounded overlaps and so we have

‖Tε;a,kf‖pp ≤ C
∑

d

‖Tε,a,kfd‖pp.

Thus we may assume that supp(f) ⊂ I for some cube I with side length
ε/8n and center at x0. Write

�

Rn
|Tε;a,kf(x)|p dx =

( �

|x−x0|≤ε/4n
+

�

ε/4n<|x−x0|≤3ε

+
�

3ε<|x−x0|

)
|Tε;a,kf(x)|p dx.

Since |x − x0| < ε/4n and |y − x0| ≤ ε/8n imply |x − x0| ≤ ε, we have
Tε;a,kf(x) = Ta,kf(x). Thus, for the first term, by the Lp-boundedness of
Ta, k, the desired estimate holds. When ε/4n < |x−x0| ≤ 3ε, since |y−x0| ≤
ε/8n, we have c0ε ≤ |x− y| ≤ c1ε for some constants c0 and c1. Therefore

|Tε;a,kf(x)| ≤
�

c0ε≤|x−y|≤c1ε
|a(x)− a(y)|k |Ω(x− y)|

|x− y|n |f(y)| dy ≤ CMΩ
a,kf(x).

By Lemma 1, we get

‖Tε;a,kf‖p ≤ C‖MΩ
a,kf‖p ≤ C‖a‖kBLO(Rn)‖f‖p,

which is the estimate for the second term. When 3ε < |x − x0|, we get
Tε;a,kf(x) = 0 and complete the proof of Lemma 4.

Lemma 5 (see [19]). Let 0 < β < 1, 1 ≤ t <∞. We have

‖f‖Λ̇β ≈ sup
Q

1
|Q|β/n

(
1
Q

�

Q

|f(x)−mQ(f)|t dx
)1/t

,

where mQ(f) = (1/|Q|) �
Q f(x) dx. For q =∞, the formula should be inter-

preted appropriately.

Lemma 6 (see [19]). Let Q∗ ⊂ Q, g ∈ Λ̇β (0 < β < 1). Then

|mQ∗(g)−mQ(g)| ≤ C|Q|β/n‖g‖Λ̇β .

3. Proof of Theorem 1. The argument is by double induction on
the degrees in x and y of the polynomial P (x, y) as follows. If P (x, y) is
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trivial, it is obvious that the assertion follows from Lemma 3. For the general
polynomial P (x, y), let r and l be two strictly positive integers and write

P (x, y) =
∑

|ξ|≤r, |η|≤l
cξηx

ξyη.

By dilation invariance, we may assume that
∑
|ξ|=r, |η|=l |cξη| = 1. Now we

assume the theorem is known for all polynomials which are sums of mono-
mials of degree less than r in x times polynomials of any degree in y, and of
monomials which are of degree r in x times monomials which are of degree
less than l in y. Rewrite

(5) P (x, y) =
∑

|ξ|=r, |η|=l
cξηx

ξyη + P0(x, y),

where P0(x, y) satisfies the inductive hypothesis. Decompose Ta,k as

Ta,kf(x) =
�

|x−y|<1

eiP (x,y) Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy

+
�

|x−y|≥1

eiP (x,y) Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy

:= T 0
a,kf(x) + T∞a,kf(x).

It suffices to show that the estimate of the theorem holds for T 0
a,k and T∞a,k.

Write

T 0
a,kf(x) =

�

|x−y|<1

eiP0(x,y) Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy

+
�

|x−y|<1

(eiP (x,y) − eiP0(x,y))
Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy

:= T 0,1
a,k f(x) + T 0,2

a,k f(x).

By the inductive hypothesis and Lemma 4, we get

(6) ‖T 0,1
a,k f‖p ≤ C‖a‖kBLO(Rn)‖f‖p.

On the other hand, note that if |x| < 1 and |x− y| < 1, then by (5),

|eiP (x,y) − eiP0(x,y)| ≤ C
∑

|ξ|=r, |η|=l
|cξη| |x− y| = C|x− y|.

Set f0(y) = f(y)χ{|y|≤2}(y). Then T 0,2
a,k f(x) = T 0,2

a,k f0(x) if |x| < 1. Thus

|T 0,2
a,k f(x)| ≤ C

�

|x−y|<1

|Ω(x− y)|
|x− y|n−1 |a(x)− a(y)|k|f0(y)| dy ≤ CMΩ

a,kf(x).
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It follows from Lemma 1 that
�

|x|<1

|T 0,2
a,k f(x)|p dx ≤ C‖a‖pkBLO(Rn)

�

|y|<2

|f(y)|p dy.

Using the same argument as in [20, p. 189], we obtain
�

|x−t|<1

|T 0,2
a,k f(x)|p dx ≤ C‖a‖pkBLO(Rn)

�

|y−t|<2

|f(y)|p dy.

Integrating the above inequality with respect to t, we have

(7) ‖T 0,2
a,k f‖p ≤ C‖a‖kBLO(Rn)‖f‖p.

Putting (6) and (7) together shows that

(8) ‖T 0
a,kf‖p ≤ C‖a‖kBLO(Rn)‖f‖p.

Next we turn to T∞a,k. By the block decomposition of Ω,

Ω(x′) =
∑

s

Csbs(x′),

we have

T∞a,kf(x) =
∑

s

Cs

∞∑

j=0

�

2j≤|x−y|<2j+1

eiP (x,y) bs(x− y)
|x− y|n (a(x)− a(y))kf(y) dy

:=
∑

s

Cs

∞∑

j=0

T j,sa,kf(x).

So

(9) ‖T∞a,kf‖p ≤
∑

s

|Cs|
∞∑

j=0

‖T j,sa,kf‖p.

By Lemma 2, for any λ > 1 we have

(10) ‖T j,sa,kf‖p ≤ C‖M bs
a,kf‖p ≤ C‖bs‖Lλ(Sn−1)‖a‖kBLO(Rn)‖f‖p.

Below, we shall give a more refined estimate on ‖T j,sb,kf‖2. Precisely, we
shall show that for any λ > 1,

(11) ‖T j,sa,kf‖2 ≤ CAδ2−δj‖bs‖Lλ(Sn−1)‖a‖kBLO(Rn)‖f‖2
uniformly for δ ∈ (0, 1] such that δ < min{r/2l, r/(r + l)λ′}, where C, A
depend only on n and, in the latter case, degP .

By the dilation invariance again, we turn to the operators T̃ j,s and T̃ j,sa,k
defined by

T̃ j,sf(x) =
�

1≤|x−y|<2

eiP (2jx,2jy) bs(x− y)
|x− y|n f(y) dy
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and

T̃ j,sa,kf(x) =
�

1≤|x−y|<2

eiP (2jx,2jy)(a(x)− a(y))k
bs(x− y)
|x− y|n f(y) dy.

To prove (11), it suffices to prove that

(12) ‖T̃ j,sa,kf‖2 ≤ CAδ2−δj‖bs‖Lλ(Sn−1)‖a‖kBLO(Rn)‖f‖2,
where δ, C and A are as in (11).

As in the proof of Lemma 4, split Rn into cubes Id having side length 1
and disjoint interiors. Set fd = fχId . Similarly to the proof of Lemma 4, we
have

‖T̃ j,sa,kf‖22 ≤ C
∑

d

‖T̃ j,sa,kfd‖22.

Thus we may assume that supp(f) ⊂ I for a cube I with side length 1.
Choose ϕ ∈ C∞0 (Rn), 0 ≤ ϕ ≤ 1, ϕ is identically one on 50nI and vanishes
outside 100nI. Write I = 100nI and ã(x) = (a(x) − mI(a))ϕ(x), where
mI(a) is the mean value of a on I. When y ∈ I and x is in the support of
T̃ j,sa,kf , we have

(a(x)− a(y))k =
k∑

m=0

(−1)k−mCmk ã
m(x)ãk−m(y)

and

T̃ j,sa,kf(x) =
k∑

m=0

(−1)k−mCmk ã
m(x)T̃ j,s(ãk−mf)(x).

For each fixed integer m, 0 ≤ m ≤ k, notice that supp(T̃ j,s(ãk−mf)) ⊂ 20nI.
We first claim that for any λ > 1,

(13) ‖T̃ j,sf‖2 ≤ CAδ2−δj‖bs‖Lλ(Sn−1)‖f‖2,
where C, A and δ are as in (11).

In fact, consider the operator

T j,sf(x) =
�

2j≤|x−y|<2j+1

eiP (x,y) bs(x− y)
|x− y|n f(y) dy.

By Propositions 2 and 3 in [13], carefully inspecting the proof in [15, pp. 209–
213] and making a minor modification, we easily obtain

‖T j,sf‖2 ≤ CAδ2−δj‖bs‖Lλ(Sn−1)‖f‖2,
where C, A and δ are as in (13). So (13) follows by dilation invariance.

Now recalling that a(x) is subharmonic, we have

‖ã‖∞=sup
x∈I
|a(x)−mI(a)|=sup

x∈I
{mI(a)−a(x)}≤mI− inf

x∈I
a(x)≤‖a‖BLO(Rn).
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Therefore, by (13) we get

‖ãmT̃ j,s(ãk−mf)‖2 ≤ ‖ãm‖∞‖T̃ j,s(|ãk−mf |)‖2
≤ CAδ2−δj‖a‖mBLO(Rn)‖bs‖Lλ(Sn−1)‖ãk−mf‖2
≤ CAδ2−δj‖a‖mBLO(Rn)‖bs‖Lλ(Sn−1)‖ãk−m‖∞‖f‖2
≤ CAδ2−δj‖a‖kBLO(Rn)‖bs‖Lλ(Sn−1)‖f‖2.

Summing over m, we obtain (12) and complete the proof of (11).
Therefore, interpolation between (10) and (11) shows that

(14) ‖T j,sa,kf‖p ≤ CAθδ2−θδj‖bs‖Lλ(Sn−1)‖a‖kBLO(Rn)‖f‖p
for 1 < p <∞, where 0 < θ ≤ 1.

Now we return to the estimate of ‖T∞a,kf‖p. Recall that for each bs,
supp(bs) ⊂ Qs and ‖bs‖Lq(Sn−1) ≤ |Qs|1/q−1. If |Qs| ≥ eq/(1−q), we take
λ = q. Then it follows from (14) that

‖T j,sa,kf‖p ≤ CAδ2−θδj‖a‖kBLO(Rn)‖bs‖Lq(Sn−1)‖f‖p ≤ C2−θδj‖a‖kBLO(Rn)‖f‖p.
So

∑

j≥0

‖T j,sa,kf‖p ≤ C
∑

j≥0

2−θδj‖a‖kBLO(Rn)‖f‖p ≤ C‖a‖kBLO(Rn)‖f‖p.

If |Qs| < eq/(1−q), we take λ = log |Qs|/(1 + log |Qs|) and choose δ = σ/λ′ <
min{r/2l, r/(r + l)λ′}, where σ is a positive constant depending only on r
and l. Then (14) leads again to

‖T j,sa,kf‖p ≤ CAσ/λ
′
2−jθσ/λ

′‖bs‖Lλ(Sn−1)‖a‖kBLO(Rn)‖f‖p
≤ C2jθσ/ log |Qs||Qs|1/λ−1‖a‖kBLO(Rn)‖f‖p
≤ C2jθσ/ log |Qs|‖a‖kBLO(Rn)‖f‖p.

So ∑

j≥0

‖T j,sa,kf‖p ≤ C‖a‖kBLO(Rn)

∑

j≥0

2jθσ/log |Qs|‖f‖p

≤ C‖a‖kBLO(Rn) log
1
|Qs|

‖f‖p.

Therefore, by (9) we obtain

‖T∞a,kf‖p ≤ C
∑

s

|Cs|
(

1 + log+ 1
|Qs|

)
‖a‖kBLO(Rn)‖f‖p(15)

≤ C‖a‖kBLO(Rn)‖f‖p.
This completes the proof of Theorem 1.
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4. Proof of Theorem 2. Similarly to the proof of Theorem 1, we write

Ta,kf(x) =
�

|x−y|<1

eiP (x,y) Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy(16)

+
�

|x−y|≥1

eiP (x,y) Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy

=: T 0
a,kf(x) + T∞a,kf(x).

We will establish the Lp-boundedness of Ta,k in the following two cases:

Case 1.
∑
|ξ|=r, |η|=l |cξη| = 1. First, we estimate ‖T 0

a,kf‖p, 1 < p < ∞.
By (4), we have

|T 0
a,kf(x)| ≤

�

|x−y|<1

|Ω(x− y)|
|x− y|n |a(x)− a(y)|k|f(y)| dy

=
∞∑

j=0

�

2−j−1≤|x−y|<2−j

|Ω(x− y)|
|x− y|n |a(x)− a(y)|k|f(y)| dy

≤ C
∞∑

j=0

2−jkβ‖a‖k
Λ̇β

�

2−j−1≤|x−y|<2−j

|Ω(x− y)|
|x− y|n |f(y)| dy

≤ C‖a‖k
Λ̇β

∞∑

j=0

2−jkβ2jn
�

|x−y|<2−j

|Ω(x− y)| |f(y)| dy

≤ C‖a‖k
Λ̇β

∞∑

j=0

2−jkβMΩf(x) ≤ C‖a‖k
Λ̇β
MΩf(x),

where MΩ is the maximal operator with rough kernel defined by

MΩf(x) = sup
R>0

1
Rn

�

|x−y|<R
|Ω(x− y)| |f(y)| dy.

Since Ω ∈ Lq(Sn−1) (q > 1), from [2] we get

‖MΩf‖p ≤ C‖f‖p, 1 < p <∞.
Thus

(17) ‖T 0
a,kf‖p ≤ C‖a‖kΛ̇β‖MΩf‖p ≤ C‖a‖kΛ̇β‖f‖p,

where C is independent of the coefficients of P (x, y). It remains to show
that

(18) ‖T∞a,kf‖p ≤ C‖a‖kΛ̇β‖f‖p.
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Set

T ja,kf(x) =
�

2j≤|x−y|<2j+1

eiP (x,y) Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy.

Then

T∞a,kf(x) =
∞∑

j=0

T ja,kf(x).

So we only need to prove that there exists a constant θ > 0 such that for
every 0 ≤ j <∞,

(19) ‖T ja,kf‖p ≤ C‖a‖kΛ̇β2−jθ‖f‖p,

where C is independent of f and j.
As in the proof of (11), we turn our attention to the operator

T̃ ja,kf(x) = 2jkβ
�

1≤|x−y|<2

eiP (2jx,2jy)Ω(x− y)
|x− y|n (a(x)− a(y))kf(y) dy.

It is easy to observe that the proof of (19) can be reduced to showing that

(20) ‖T̃ ja,kf‖p ≤ C‖a‖kΛ̇β2−jθ‖f‖p.

As in the proof of Theorem 1, we split Rn into cubes Qd having side
length 1 and disjoint interiors. Set fd = fχQd . Similarly to the arguments
in Lemma 4, we have

‖T̃ ja,kf‖pp ≤ C
∑

d

‖T̃ ja,kfd‖pp.

Thus we may assume that supp(f) ⊂ Q for a cube Q with side length 1.
Choose φ ∈ C∞0 (Rn) such that 0 ≤ φ ≤ 1, φ is identically one on 50nQ and
vanishes outside 100nQ. Define Q = 100nQ and ã(x) = (a(x)−mQ(a))φ(x),
where mQ(a) is the mean value of a on Q. It is easy to deduce from Lemmas
5–6 that

‖ã‖∞ ≤ C|Q|β/n‖a‖Λ̇β ≤ C‖a‖Λ̇β .

When y ∈ Q and x is in the support of T̃ ja,kf , we have

(a(x)− a(y))k =
k∑

m=0

(−1)k−mCmk ã
m(x)ãk−m(y)

and

(21) T̃ ja,kf(x) =
k∑

m=0

(−1)k−mCmk ã
m(x)T̃ j(ãk−mf)(x),
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where T̃ j is defined by

T̃ jh(x) = 2jkβ
�

1≤|x−y|<2

eiP (2jx,2jy) Ω(x− y)
|x− y|n h(y) dy.

We claim that there exists a positive constant θ > 0 such that

(22) ‖T̃ jh‖p ≤ C2−jθ‖h‖p, 1 < p <∞.
In fact, we consider the following operator:

T jh(x) = 2jkβ
�

2j≤|x−y|<2j+1

eiP (x,y) Ω(x− y)
|x− y|n h(y) dy.

Carefully inspecting the arguments of Ding in [6, pp. 73–79], under the as-
sumptions of Theorem 2 we can deduce that there exists a positive constant
δ = δ(n,degP ) such that

(i) β − δ − δl/r < 0 and δ < min{r/2kl, r/kq′(r + l)} and

(23) ‖T jh‖2 ≤ C2(β−δ−δl/r)j‖h‖2;

(ii) β − δσ − δσl/r < 0 and δ < min{1/2k, r/2lk, r/kq′σ(r + l)} and

(24) ‖T jh‖p ≤ C2(β−δσ−δσl/r)j‖h‖p,
where 1 < p <∞ (p 6= 2), σ = 1/2− |1/p− 1/2|. Here C is independent of
the coefficients of P (x, y).

Therefore, by dilation invariance we obtain

‖T̃ jh‖p ≤ C2−jθ‖h‖p,
where θ = δ+ δl/r−β > 0 for p = 2, and θ = δ(1/2−|1/p−1/2|) + δ(1/2−
|1/p− 1/2|)l/r − β > 0 for 1 < p <∞ (p 6= 2). This proves (22).

Now we estimate ‖T̃ ja,kf‖p. For each fixed integer m, 0 ≤ m ≤ k, noticing

that supp(T̃ j(ãk−mf)) ⊂ 20nQ and ‖ã‖∞ ≤ C‖a‖Λ̇β , by (22) we get

‖ãmT̃ j(ãk−mf)‖p ≤ ‖ãm‖∞‖T̃ j(ãk−mf)‖p ≤ C‖a‖mΛ̇β2−jθ‖ãk−mf‖p
≤ C‖a‖m

Λ̇β
2−jθ‖ãk−m‖∞‖f‖p ≤ C‖a‖kΛ̇β2−jθ‖f‖p.

From (21), summing the above inequality over m, we obtain (20). This
completes the proof of Theorem 2 in the case

∑
|ξ|=r, |η|=l |cξη| = 1.

Case 2.
∑
|ξ|=r, |η|=l |cξη| 6= 1. Letting A be as in Theorem 2, we can

write P (x, y) as follows,

P (x, y) =
∑

|ξ|=r, |η|=l

cξη
Ar+l

(Ax)ξ(Ay)η +R0

(
Ax

A
,
Ay

A

)
=: Q(Ax,Ay).
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Then

Ta,kf(x) =
�

Rn
eiQ(Ax,Ay)(a(x)− a(y))k

Ω(x− y)
|x− y|n f(y) dy

=
�

Rn
eiQ(Ax,y)

(
a

(
Ax

A

)
− a
(
y

A

))k Ω(Ax− y)
|Ax− y|n f

(
y

A

)
dy.

Consequently,

Ta,kf

(
x

A

)
=

�

Rn
eiQ(x,y)(a(A−1x)− a(A−1y))k

Ω(x− y)
|x− y|n f

(
y

A

)
dy.

Since ‖a(A−1·)‖Λ̇β = A−β‖a‖Λ̇β , by the result proved in Case 1, we obtain

‖Ta,kf‖p ≤ CA−kβ‖a‖kΛ̇β‖f‖p = C(n, k,A,degP )‖a‖k
Λ̇β
‖f‖p.

Theorem 2 is proved.
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