STUDIA MATHEMATICA 167 (1) (2005)

Some new inhomogeneous Triebel-Lizorkin spaces on
metric measure spaces and their various characterizations

by

DACHUN YANG (Beijing)

Abstract. Let (X, 0,1)q,0 be a space of homogeneous type, i.e. X is a set, ¢ is a
quasi-metric on X with the property that there are constants 6 € (0, 1] and Cy > 0 such
that for all z,2’,y € X,

lo(z,y) — o(z’,y)| < Coolz,z")?[o(z,y) + o(z’,y)] %,

and p is a nonnegative Borel regular measure on X such that for some d > 0 and all
reX,
p({y € X : o(w,y) <r}) ~r.

Let € € (0,0], |s| < € and max{d/(d+¢€),d/(d+ s +¢)} < g < co. The author introduces
new inhomogeneous Triebel-Lizorkin spaces F34(X) and establishes their frame charac-
terizations by first establishing a Plancherel-Pdlya-type inequality related to the norm
|-l Fz (X) which completes the theory of function spaces on spaces of homogeneous
type. Moreover, the author establishes the connection between the space F3.q(X) and
the homogeneous Triebel-Lizorkin space Fgfoq (X). In particular, he proves that bmo(X)
coincides with F25(X).

1. Introduction. Analysis on metric spaces has recently aroused an
increasing interest; see [25, 20, 9, 22]. Especially, the theory of function
spaces on metric measure spaces, or more generally, spaces of homogeneous
type in the sense of Coifman and Weiss [2, 3] has been well developed;
see [23, 24, 13-18, 31, 34]. The homogeneous Besov and Triebel-Lizorkin
spaces on spaces of homogeneous type have been studied in [16, 11]. In [13],
the inhomogeneous Besov and Triebel-Lizorkin spaces on spaces of homo-
geneous type were introduced by use of the generalized Littlewood—Paley
g-functions when p,q > 1. In [14], the inhomogeneous Triebel-Lizorkin
spaces were generalized to the cases where 0 < pp < p <1 < ¢ < 00 via
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the generalized Littlewood—Paley S-functions. Using the discrete Calderén
reproducing formulae of [15], Han and the present author [18] further devel-
oped the theory of the inhomogeneous Besov and Triebel-Lizorkin spaces
when p <1 or ¢ < 1. Some applications are given in [17, 18, 31, 33].

The main purpose of this paper is to generalize inhomogeneous Triebel—
Lizorkin spaces on spaces of homogeneous type to the case p = oo. The
theory of the corresponding homogeneous spaces has been established in [34].
However, due to the inhomogeneity, some new ideas and techniques are
necessary.

We begin by recalling some necessary definitions and notation for spaces
of homogeneous type.

A quasi-metric o on a set X is a function g : X x X — [0, 00) satisfying:

(i) o(z,y) = 0 if and only if = = y;

(i) o(z,y) = o(y, ) for all z,y € X;
(iii) there exists a constant A € [1,00) such that for all z,y,z € X,

o(z,y) < Alo(z, 2) + o(z,y)].
Any quasi-metric defines a topology for which the balls
B(x,r)={y € X : o(y,z) <7}
for all z € X and all » > 0 form a basis.

We set diam X = sup{o(z,y) : ,y € X} and Z; = N U {0}. We also
make the following conventions. We write f ~ g when there is a constant
C > 0 independent of the main parameters such that C~'g < f < Cy.
Throughout the paper, we denote by C a positive constant which is inde-
pendent of the main parameters, but it may vary from line to line. Constants
with subscripts, such as C1, do not change in different occurrences. For any

q € [1, 0], we denote by ¢’ its conjugate index, namely, 1/¢+1/¢' = 1. If A
is a set then x4 denotes the characteristic function of A.

DEFINITION 1. Let d > 0 and 6 € (0,1]. A space of homogeneous type,
(X,0,1t)d0, is a set X together with a quasi-metric ¢ and a nonnegative
Borel regular measure p on X, such that there exists a constant Cy > 0
such that for all 0 < r < diam X and all z,2',y € X,

(1.1) u(B(a,r)) ~ 1,
(12)  oz,y) = o(a',y)| < Cool, a")o(x,y) + o', y)]' .

The above notion was introduced in [17]; it is a variant of the space of
homogeneous type introduced by Coifman and Weiss [2]. In [23], Macias and
Segovia have proved that one can replace the quasi-metric ¢ of the space
of homogeneous type in the sense of Coifman and Weiss by another quasi-

metric ¢ which yields the same topology and (X, g, i) is as in Definition 1
with d = 1.
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In the most part of this paper, u(X) can be infinite or finite. This means
that the spaces of homogeneous type considered by us include various frac-
tals. It is well known that spaces of homogeneous type in the sense of Defini-
tion 1 include metric measure spaces, the Euclidean space, the C'°°-compact
Riemannian manifolds, the boundaries of Lipschitz domains and, in particu-
lar, the Lipschitz manifolds introduced recently by Triebel [30], as well as the
isotropic and anisotropic d-sets in R™. It has been proved by Triebel [28, 29]
that the isotropic and anisotropic d-sets in R" include various kinds of self-
affine fractals, for example, the Cantor set, the generalized Sierpinski carpet
and so forth. We particularly point out that the spaces of homogeneous type
in the sense of Definition 1 also include the postcritically finite self-similar
fractals studied by Kigami [21] and by Strichartz [26], and the metric spaces
with heat kernel studied by Grigor’yan, Hu and Lau [8]. More examples of
spaces of homogeneous type can be found in [2, 3, 25].

Let us now recall the definition of the space of test functions.

DEFINITION 2 ([10]). Fix v > 0 and 8 > 0. A function f defined on X
is said to be a test function of type (xo,7,3,7) with g € X and r > 0 if f
satisfies the following conditions:

rY
0) 17 < € (o amyy

(i) /() — F(y)| < c( oY) "

8
r+o(z, xo)) (r + o2, 0)) "+

1
for o(z,y) < 24 [r + o(z, z0)].

If f is a test function of type (zo,r, 3,7), we write f € G(xo,r,[3,7), and
the norm of f in G(zg,r, 3,7) is defined by

I fllg(zor8) = inf{C : (i) and (ii) hold}.
Now fix g € X and let G(3,7) = G(xo, 1, 3,7). It is easy to see that
g(l‘lyrvﬁf}/) = g(ﬁ,’}/)

with equivalent norms for all 1 € X and r > 0. Furthermore, it is easy to
check that G(3,7) is a Banach space with respect to the norm in G(3,7).
Also, let the dual space (G(3,7))" be all linear functionals £ from G(3,7)
to C with the property that there exists C' > 0 such that for all f € G(j3,7),

IL(H] < Cllfllgsq)-

We denote by (h, f) the natural pairing between h € (G(3,7))" and f €
G(B,7). Clearly, for all h € (G(5,7)), (h,f) is well defined for all f €
G(xo,r, B,7) with g € X and r > 0.
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It is well known that even when X = R"™, G(31,) is not dense in G(S2, )
if 81 > (2, which will bring us some inconvenience. To overcome this defect,
in what follows, for a given £ € (0, 6], we let G (8,7) be the completion of
the space G(g,¢) in G(3,7) when 0 < (3,7 < €.

DEFINITION 3 ([11]). A sequence {S}}rez, of linear operators is said to
be an approzimation to the identity of order € € (0, 0] if there exists C; > 0
such that for all k € Z; and all 2,2, y,y’ € X, Sk(x,y), the kernel of S, is
a function from X x X into C satisfying
2—k5
(27F + o(z, y))*te’

(ii) |Sk(z,y) = S(a,y)l < C1 (2—’53?’;2&)) (

(i) [Sk(z, )| < C1

Q—ka
27k 4 o(z, y))ite

for o(z, x)<i(2 "+ o(,y));

coe / ’ : ) 2_ka
(it} [Sk(x,y) — Sk(x. /)] < C1 (z—kgf ial@) @+ ola,y)

for o(y,/) < iA (27 + (e, ));
(iv) [1Si(2,) — Si(a,y)] - [Sy(a',) - sk<:c )

olw,a’) \° 2 ke
=i 5= k k dte
27k + o(x,y) 2- +wa (27F 4+ o(z,y))
<

for o(r, ') < 517 (27 + o(, ) and oy, iA@ b ol )

24
) | Sk(x,y) duly) = 1;
X
(vi) § Syl ) du(e) = 1.
X

REMARK 1. By Coifman’s construction [4], one can construct an approx-
imation to the identity of order § such that S (z,y) has a compact support
when one variable is fixed, namely, there is a constant Cy > 0 such that for
all k € Zy, Sk(z,y) = 0if o(x,y) > Ca27F.

We also need the following construction given by Christ [1], which pro-
vides an analogue of the grid of Euclidean dyadic cubes on spaces of homo-
geneous type, and the discrete Calderén reproducing formulae in [15].

LEMMA 1. Let X be a space of homogeneous type. Then there exists a
collection

(QF c X keZ acl)
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of open subsets, where Ij, is some index set, and constants § € (0,1) and
C3,Cy4 > 0 such that

(1) p(X\U,QF) =0 for each fived k and Q% OQE: if o # [,

(ii) for any «, B, k,l with 1 > k, either Qﬁ c QF or QﬁﬂQk = ()

(iii) for each (k,) and each | < k there is a unique 3 such that Q¥ C Qﬁ,
v)

(i dlam(Qk) < C30%;

(v) each QF contains some ball B(zE,Cy6%), where ¥ € X.

In fact, we can think of Q¥ as being a dyadic cube with diameter roughly
6% and centered at z%. In what follows, we always suppose § = 1/2. See [16]
for how to remove this restriction. Also, in the following, for k € Z and
7 € Iy, we will denote by Qlﬁ"j, v =1,...,N(k,7), the set of all cubes
Q’;/ﬂ C QF, where j is a fixed large positive integer. Denote by y].f’” a point
in QT For any dyadic cube Q and any f € L{ (X), we set

1
mq(f) = ——=5 | f(@) du(x).
¢ n(Q) ch

The plan of this paper is as follows. In the next section, we first in-

troduce the norm || - || Fs,(x)- By using the Calderén reproducing formulae

loc

of [15], we then establish an inequality of Plancherel-Pélya type related to
this norm; see Theorem 1 below. Applying this inequality, we show that
| - lF,(x) is independent of the choice of approximations to the identity
(Propos1t1on 1) and the choice of the spaces of distributions (Theorem 2).
We then introduce the inhomogeneous Triebel-Lizorkin spaces Fi3,,(X) in
Definition 5 and prove in Theorem 3 that if 1 < ¢ < oo, these spaces can be
characterized quite similarly to the Euclidean case in [6].

In Section 3, we first give the frame characterization of the spaces
F3%,(X) (Theorems 4 and 5). We then establish the connection between
F3,,(X) and the homogeneous Triebel-Lizorkin space E 0q(X) in Theorem 6,
which is new even when X = R". The relation between F,, (X) and E soq(X)
is also stated in Theorem 7. Finally, we verify that bmo(X) = F2,(X) in
Proposition 4.

Applications of our results to duality, interpolation and boundedness of
Calderén—Zygmund operators will be discussed in another paper; cf. [6, 32].

2. Triebel-Lizorkin space I3, (X). In this section, we first introduce
the norm ||| gz (x) in spaces of distributions by using approximations to the
identity. Via an inequality of Plancherel-Pdlya type related to this norm, we
then prove that ||| Fs ,(x) is independent of the choice of the approximations
to the identity. Under some restrictions, we also verify that the definition of
Il Fs,(x) is independent of the choice of spaces of distributions. Finally,
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we introduce the inhomogeneous Triebel-Lizorkin space F3,,(X) and give
some of their basic properties.

DEFINITION 4. Let € € (0,6], |s| < € and {Sk}rez, be an approximation
to the identity of order € as in Definition 3, Dy = Sy and Dy = Sy — Sk_1
for k € N. If

max{d/(d+¢),d/(d+s+¢e)} <qg<

and 0 < 8,7 < ¢, for any f € (go(ﬁ,'y))’, we define the norm ||f||F;‘oq(X) by

Il ) = max { swp (Do),

v=1,...,N(0,7)
1 0 ) 1/q
supsup | s | S0 duto)| .
e Lo 12
where Q?’” with 7 € Ipand v = 1,..., N(0, 7) are as in the preceding section

and {QL :1 €N, a €I} is as in Lemma 1.

To verify that Definition 4 is independent of the choice of approxima-
tions to the identity, we only need to establish the following inequality of
Plancherel-Pélya type by using Lemma 1.

THEOREM 1. Let € € (0,0], |s| <€, {Sk}rez, and {Gr}rez, be two ap-
proximations to the identity of order & as in Definition 3, Do = Sy, Eg = G,
Dy = Sk — Sk—1 and Ey = Gy — Gg—1 for k € N. Let max{d/(d + ¢),
d/(d+s+e)} <qg<oo,and 0 <,y <e. Then there is a constant C > 0
such that for all f € (go(ﬂ,’y))’,

max{ sup g ([Bo(f)),

T€lp
v=1,...,.N(0,7)
1 o0 N(k,T) 1/q
ksq kv q
sup sup | ——— 27u(Q7")  sup  |Ex(f)(z)] ] }
IEN a€l; [M(Q@) ;Tezlk ; ’ zeQbv QL
< cmax{ sup  migoa(IDo(f).
Tely T
v=1,...,N(0,7)
1 o0 N(k,T) 1/q
ksq kv : q
supsup |—L— FQh) it IDn@P|
IEN a€l] [M(Qla) kX::lr%I:k ; T reQbrcaql

where Q¥ and {QL} are as above.

To prove Theorem 1, we first recall the following discrete Calderén re-
producing formula of [15].
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LEMMA 2. Let Sy an Dy be as in Theorem 1. Then there exists a family
of functions §9V($) form € Iy and v = 1,---,N(0,7) such that for any
fized yr Moe Q8 with k e N, 7 € Iy and v € {1,...,N(k,7)} and all
fe(g (51,71))’ with 0 < B1 < e and 0 <y <k,

N(0,7)
(2.1) = > > w(@)DYY(£)S ()
Telyp v=1
N(k,T)

+ZZ 3" W@ Du(f) (5 ) Dyl ),

k=171el, v=1

where the series converges in (é(ﬁg,%))' Jor B1 < B] <eand y1 < <e.
The function SB’V(I‘) fort€lyandv=1,...,N(0,7) satisfies

(i) §x S2Y(2) dp(x) = 1;

(ii) there is a constant C > 0 such that
1

Q0,v x
|S7- ( )’ < C(1+Q($,y))d+6

forall x € X and y € Q?’V,
(iii) for any given &' € (0,¢),

- . , 1
SOV(z) — SO (2)| < Co(z, 2)*

forall x,z € X and all y € QQ’” satisfying

1
< — 1 .
o(z,2) < 57 (L +o(z,y))
Furthermore, for 7 € Iy andv =1,...,N(0,7),

DYY(f) = § D21 () f (y) duly),
X

1
— 0 S Do(z,y) du(z).
/.l( T )QO,V
Moreover, lN?k(:U,y) for k € N satisfies conditions (i) and (ii) of Definition 3
with € replaced by € € (0,¢), and
\ Di(x,y) du(y) = | Di(x,y) du(z) =0, keN.
X X
REMARK 2. Property (iii) of S2”(z) for 7 € [y and v = 1,..., N(0,7) in
Lemma 2 is not exactly the same as in [15]. However, by a careful check on

the proof there, one can find that §2”(m) forrelpandv=1,...,N(0,7)
does satisfy (iii) of Lemma 2.

where
DY (y) =
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Proof of Theorem 1. With the notation of Theorem 1 and Lemma 2, we
first recall that for all y € Q?}V with 7/ € Iy and v/ = 1,...,N(0,7) and all
r € X,

(2:2) Bo(8% ) ()] < € ——

(14 o(z,y))*re’
and for all ¥’ € N, all z,y € X and any ¢’ € (0, ¢),
1

(1+ o(z, )7+

(2.3) | Eo(Dyr)(,y)| < 0277

see [10, 13, 17] for the proof.
From (2.1), it follows that for 7 € Iy and v =1,..., N(0, 1),

meor (IEo(f))) < sup |Eo(f)(2)|
x€Q7"

<Y Y @ g (Do) sup B3 ()

r'ely v'=1 zeQL”
N(k}/ l)
k k,, / ~ k?/, /
+Z > Z VD ()| sup |Eo(Dy)(a, v
k=17l v'= zeQP”

= Gy + Gs.
For Gy, the estimate (2.2) and the fact that
inf {1+o(z,y)}~ sup {1+ 042", 2)}
xTre 7. ZGQO/V
for all y € QS;V/ yield

G <C sup Qv (|Do(f Z Z

T'ely

v'=1,..,N(0,7) el V=L
] 1
X 1n§ ) 00 \vdie
yeQT;” (1 + Q(yT ,y))
1
<C s m_es(IDo(H)) dly)
el QT/ §( (]- + Q(yg')’y) y))d+€

v'=1,...,N(0,7)

<C sup on,lu/(|D0(f)|)a

T'ely
v'=1,...,N(0,7)

which is the desired estimate.
To estimate Gg, we first recall the well known inequality

(2.4) (S tasl)" < layie

J
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for all a; € C and ¢ € (0,1]. From the estimate (2.3), and the inequality
(2.4) if ¢ <1 or the Holder inequality if ¢ > 1, it follows that

k,/ /
gt k-’ ’ k;’ !
G2<CZ2 Y Z )| Dw (£) (7"
k=1 rely V=1
" 1
(1+ oy, g ))tre
0 N ) ’or 1/q
022—k’(a’+s+d{ Z Z 39 Dy (f) (4 k V),q} o g<1,
k=1 T'el, v'=1
k/ / 1/q
_Kle! k’ ’
<{ey |y 5% W@ w16} ol
k=1 rel, v=1
|:S 1 1/q
X 0,v / d#(?/)] ) q> ]"
( i (L+o(yr", y))dte
>° 1(ot NG) 'yl 1/q
O 2 Ef SN ks (sl g <,
S k=1 T Elk/ v l; /
e B (e d ) & K 1/q
022— (e'+s+ /q)|: Z Z 9 SQ’Dk/ (y‘r’ )| ] , g>1
\ k’:l ’T/EIk/ l/—l
N(k,T) 1/q
< C'sup sup [ 2ks4(Q5V)  inf ’Dk(f)(m)‘q} )
leN acl, [ (QL) ;;ﬁ ; zeQEV QL

where we chose €’ € (0,¢) such that €' + s > 0 and we used the arbitrariness
of y]:,”’ and the trivial estimate

k/ /) 1
. . /4
25 [¥ z 24| Dy () ()]
Telk/ v/'=1
N(k,r) 1/q
gcsupsup[ P (QE)  inf | Dy(f) (@)
leN acq, [1(QL) kz:l% ; zeQtr cql,

Thus, we have obtained the desired estimate for Gs.

To finish the proof of Theorem 1, we need the following estimates: for
allkeN, z € X and & € (0,¢),

1
(14 o(z, y%""))d+e’

(2.6) [EW(SE) ()] < 27+
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and for all k, k' € N, z,y € X and ¢’ € (0,¢),

2—(k/\k')€'
(2—(kAk’)8’ + Q(l’, y))d-‘ra”
here and in what follows, k A k' = min{k, £'}.

The proof of (2.7) can be found in [10, 13, 17]. For the reader’s conve-
nience, we now give some details for the proof of (2.6). By the vanishing

(2.7) |E, Dy (2, )| < C271F=F1I€'

moment of E} and the regularity of D/, we obtain

EW(E2 ) @)l = | | Bl )8 (v) duty)|
X

- } { Bz, )[8%" (y) — 8% (2)] du(y)‘
X

IN

| Bz, )| 1% (y) — 5% ()] duy)

o(@y) < 55 (Lo(z,y" )

+ | | By (2, )|[1S% ()] + |82 ()] dualy)
o(x,)> 55 (1+e(zy%"))

2-ke o(x,y)

X , (2_k + Q($7 y))d+€ 1 + z, O;I// dte
o(z.y)< 55 (1+e(zy) ( o(z,y."))

IN

du(y)

27k€
(27F + o(, y))i+e

+ )
o(@,y)> 5 (1+e(z, "))
« [ 1 n 1
(1+ o(y, ) e (L ola,yp )i+
1
(1+ ooy )yt
which is just (2.6).
For any [ € N and « € I, from (2.1), it follows that

1/q
ZZ Z 20,(Q5)  sup |Ek<f><x>|q]

[ Q%) k=l rel, v=1 reQfr cql,

ks ku
C’{ ZZ Z 2854, (Q% X{(lmu QkDCQl}(k T,V)
k‘ | Tel, v=1

} du(y)

S 02—166/

<[ Z 2 ymegn (IDo(D]) sup rm@?f’xm}"}w

k,
T'ely v'=1 meQTV
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N(k,T)

R AP I B B0 NP (s

k=l r€l, v=1

73

N(K',7 l [ ~ k! q /g
(XSS W@ D) sup 1B D )] }
K=1r'el, v'=1 zeQ”
= H; + Ho.

The estimate (2.6) and Lemma 1 lead us to

H, <C sup QO’/(|DO { Z (s—¢’ qz Z ka/

T/GIO

k I 1
v'=1,...,N(0,7) TE€E V=

1 1/q
X X{(k,r,u);Q’;wCQza}(k, T, V) LS{ 1+ o v )i du(y)] }

<C s mge(IDo(f {Zz’f“}

T'ely
v'=1,..,.N(0,7)
<C sup on,u'(|D0(f)‘)v
el T/
v'=1,...,N(0,7")

where we chose ¢’ € (0,¢) such that &’ > s.
To estimate Ha, by (2.7) we further decompose Hj into

2 { égl ZZ Z 2" me{(kw .Qtveqry (kT v)

Cv k=l Tl v=1
kl /)

[Z S W@ Dy o

K'=17'€l, v'=1

9— (kA )e 1/q
X
(2~ (kAR 4 o(yr” o, ))‘“5'} }

{@zzzwwmmdwﬁm

k=l rel, v=1
kl /)

[Z > Z D () 2+

K=17'€l, v'=1

9—k'e’ ] }1/q
X
’ k, ’
(27K + o(yr”, yl"))d+e
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e’} N(k,T)
1 ks kv
+C{M(Ql)z > QX ry- gty (B )
&) k=l rel, v=1
00 N(K' ")
DD S ST PN e

k'=l+171'€l, v'=1

9—(kAK') } }I/q
X
(2= (kAR (i g ) ydre!
=J1+ Jo.

For Jy, by (2.5), (2.4) if ¢ < 1 or the Holder inequality if ¢ > 1, we then
have

1 ks ku
{ Q) Z Z 2P - @b @iy (B T V)

k=l 7€l v=1
N(k/ /)

[i 3 D e

< ks %
= { Z Z 2P X (70 @5 @iy (B T Y)
) 1= 7€l v=1
l k/ /
k’ / 1/q
Z 2Dy Z D (£ (517
—1 rely V=1
S o—k'e’ 1/q'\ ay 1/q
T )| ) b 0> 1
\ 227K+ o(yh y))te
N(k,T) 1/q
ngupsup[ 2Fsa(Q5V)  inf |Dk(f)(35)|q}
IeN a€l, kz:l T%I:k ; zeQYCQ),

00 F(s—e") 1/q K (/—s) 1/q

{;2 - {;2 : q} , q<1,
S ok(s—c)g |/ K (e —s)

{;2 q} { D2 } ¢>1,

k'=1
k k, Ha
SCsupsup[ @A) 2 ZZ Z 2%9(Q%Y)  inf | Dp(f)(2)?|

leN a€l; Tel, v=1 Qﬁ’VCQg

where we chose €’ € (0,¢) such that &’ > s.
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To estimate Jp, let 2, be the center of Q!,, as in Lemma 1. Choose
my € N such that B(z!, A2C52™~1) 5 @!, and for all y € @), and = ¢
B(Z,, A2C32™ 1), o(x,y) > 27!, where m is independent of P. By Lemma 1
again, there is m € N independent of Q! such that B(z, A2C52™~!) C
Uit QHI where 70 € I,q for i = 1,...,m. With this choice, we now

T )

further decompose Js into

el

N(k,T)

ZZ Z 2k5q QkVX{kTV QkuCQl}(kTV)

k‘ I el v=1
k/ /)

[ Z 2 Z QXN Dy (F)(E |27 kK1

K=l+17'ely v'=1

/ / /
XXy cum, oty B T V)

9—(kAK') 1/q
X
(2N 4 oy, yT ))d“'} }

ks kl/
{ ZZ Z Q)X oy @i qry (B V)
a k=l el v=1
kl /)

[ Z Z Z k/ / )| De: (f )(yl:,/”’/)|2—|k—k’\e'

K=l+17'el, v'=1

A
x X{(k'ﬂ",u’) : Qf;’ylﬁUﬁl Qf;l:@}(k TV )

(kAK) 1/q
X 1N kv k. d+’:|}
(27 (RAR) - o(yr", ") )it
=J; +J3.

For J3, the inequality (2.4) if ¢ < 1 or the Holder inequality if ¢ > 1
yields

m N(k,T)
Ty SCZ{ ZZ D 2MQ X (k5 e gty (7o)
i=1 k=l T€l, v=1
N )

X{ Yo > w@E)D(f) a2

L, 9— (kA )e 1/q
X X{(kl77—’7y/);ij,u’CQfgl}(k 77— 7V ) (2(k/\k/)_‘_g(yq]ﬁ_},lj’yk/’,y’))d+€/:| }
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1/
< Compsup [ L35 S daghny i puner]

k
IEN a€l] el vl v—1 €Q7C QY

where we used the arbitrariness of yf,l’l/ and we chose ¢’ € (0,¢) such that
g’ > |s| and ¢ > max{d/(d+¢€'),d/(d+ s+ &)}

Finally, to finish the proof of Theorem 1, we estimate J3 by first consid-
ering the case ¢ < 1. In this case, the inequality (2.4) and Lemma 1 tell us
that

i< ofs ZZ S g, obveqy (kD)

k l el v=1
kl /

[ Z 2 Z QYY)D (f) ()| 1271k F '
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/757'
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< 1
< C{ § ) j(d+e)q E X{a’ : Q(Z(lx-‘/—lvzé)““2j7l}(a/)w
=0 e

CMIEII+1
a'#rl L Tm

N(k/ l

> 3 2 QLD () )1

k'=l+11" el =
/ / /
XXpr @i c iy (B T V)
[e¢) 1/q
% [Z 2(k—k’)sq—\k—kz’|E’q+k’d(1—q)—(kAk’)a’q+l[(d+£’)q—d]} }
k=l
o
<cf 2j[d%d+e’>q}}1/ !
j=0

[e¢) 1/q
X sup sup [ 1l Z Z Z kaq Qk v inf ’Dk(f)(m)‘q}
Qo) =

lEN a€l; er’ﬁ’“c QL

1 o0 N(sz) 1/(]
< Csupsup [ 20, (QEY)  inf er<f><x>|q] ,
leN ael, L1(Qh) ;‘relk I; zeQP’CQl,

where we used the arbitrariness of y]:,/’l/ and we chose ¢’ € (0,¢) such that
e/ > s and ¢ > max{d/(d+¢'),d/(d+s+¢€")}.

We now finish the estimate for J2 by considering the case ¢ > 1. In this
case, the Holder inequality and Lemma 1 yield

J; < { QL) ZZ Z QkVX{kw Qiveqryk T v)

k=l tel, v=1

Nk )
[Z YooY 2@ ) Dw (f) (e |2t KRR
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= / o 9—(kAK")e’ a/a'y 1/q
« Z 2(k—k )s—|k—K'|e S / — dﬂ(y):| }
L/z+1 x (270D 4 oy y))dte

<l

ZZ Z QkVX{(kTV) Qf”CQl}(kTV)

k lrel, v=1
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where we used the arbitrariness of y]:,/’l/ and we chose ¢’ € (0,¢) such that
g’ > |s].
This finishes the proof of Theorem 1.

REMARK 3. From the proof of Theorem 1, it is easy to see that the
key role played by {E)}rez is in the estimates (2.2), (2.3), (2.6) and (2.7).
However, to establish these estimates, we only need to use the regularity (iii)
as in Definition 3 of E} for k € Z,; see also [10, 13, 17]. This means that
if we replace the operators Ej, by some other operators D for k € Z,
whose kernels have the same properties as the kernels of E}, except for the
regularity (ii) of Definition 3, then the conclusion Theorem 1 still holds.
This observation is useful in some applications.

From Theorem 1, Lemma 1 and the construction of the cubes {Qlﬁ’y :
keZiyt € I,v=1,...,N(k,7)}, it is easy to deduce the following
proposition.

PROPOSITION 1. With the notation of Theorem 1, for all f € (go(ﬂ,’y))',

max{ sup  mpou(|Do(f)]),

Tely
cupsup L IS 25| Dy() >|Qdu<x>]1/q}

v=1,...,.N(0,7)
leN a€l}

Ql k=l
Nmax{ sup  meon (| Eo(f)]),
rely
v=1,...,N(0,7) 1/q
cupsup [ | St}
leN a€l; ( Ql k=l

Proof. By Theorem 1, Lemma 1 and the construction of the cubes {Qlﬁ"/ :
keZy,rely,v=1,...,N(k,7)}, we have

max{ sup  mgoe(IDo(f))).

rely
v=1,...,.N(0,7)

spsup [ L § S p @) )

leEN a€l;

Ql k=l
< max{ sup ng,vﬂDO(f)Da
TEI()
v=1 (07’)
k k, Va
psup [ =30 3 @) D]
leN a€ly k lrel, v=1 wGQ'ﬁ’”CQZa
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< Cmax{ sup ng,u(|E0(f)D7

Te€ly
v=1,...,N(0,7)
k k, a
s [ Q) wt (ENE@F] ]
1N a€l; ;; ; 2EQPC QL
< Cmax{ sup on,v(|E0(f)D7
T€ly T
v=1,...,N(0,7)
S 20 ) i >]1/q}
sup sup | ———~ 27N E x x .
legaeg [N(Ql) S Z ‘ .

QL k=l
By symmetry the proof of Proposition 1 is complete.

From Proposition 1, we deduce that the definition of the norm [|-[[ g5 (x)
with |s| < ¢ and max{d/(d +¢),d/(d+ s+ ¢)} < ¢ < oo is independent of
the choice of approximations to the identity. We now verify that under some
restrictions on § and =, it is also independent of the choice of spaces of
distributions.

THEOREM 2. Let € € (0,0], |s| < e and max{d/(d+¢),d/(d+s+¢e)} <
q < o0o. If fe (G(B1,m)) with max{0,d(1 —1/q)4 —s —d} < B1 < e,
0<m <eand |[fllrg, (x) <00, then f € (G O(ﬂg,’yg))’ with max{0,d(1—1/q)+
—s—d} < [y <e, 0<’}/2<€.

Proof. Let h € G(e,e). With the notation of Lemma 2, we first claim
that for 7 € Iy and v =1,...,N(0, 1),

(2.8) ’<§B’V7h>‘ < CHhHQ(ﬁzﬁz) 1+ Q(yO,V xo))d+fyz’

and for all k € Nand all z,y € X,
1

. Dy (- < C27kP :
(2 9) ‘<Dk(7 ) >| C ||h||g(ﬁ2,’yg <1+Q(y,$0))d+v2’

see [10, 13, 17, 18] for the proofs.
By (2.8), (2.9) and Lemma 2, we obtain

(7, Vo
1
< C|h P mgoe (1D
Ihllgss ’72){ 7%;0 ; @y (2ol (1+ Q(yg’y7 x)) 2

+22 o 3 Z (Q5) D) ()] .

Tel, v=1 (1+Q<y7' 7$0))d+W2
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If ¢ <1, by (2.4), (2.5) and Proposition 1, we have
(2.10)  I[(f, M| < Clibllggsmm 1 f L rs, 4 x)

o 1 o k(Ba-ta-+d)
{ S oty sy )+ 22 j

k=1
< Clihllg(ssmm1f | F5, x)

where we used the fact that §o > —s — d. If ¢ > 1, the Holder inequality,
(2.5) and Proposition 1 then tell us that

1

(2.11)  [{f,h)] < CHhHg(B%'YZ){HfHFésoq(X) S (1+ oy xo))d+72 dp(y)
N(k,T) 1/q
22 2303 w@) D)1
Tel, v=1

g LS( 1+ @(y;lﬂm))d*”2 du(y)} " }

< Cllhllg(8212) HfHFgoQ(X>{1 +) 2—’f(52+s+d/q)}

k=1
< CllAllg(8a0) 1f 1 7, )
where we used the fact that 2 > —s — d/q in this case.

Suppose now h € 90(62,72). We choose h,, € G(e,¢) for any n € N such
that

[1on = llg(82,72) — O
as n — oo. The estimates of (2.10) and (2.11) show that for all n,m € N,

|<f7 Iy — hm>| < CHfHFqu(X)th - hmHQ(ﬂQ,W)’

which shows that lim, .~ (f, hy) exists and is independent of the choice of
hy,. Therefore, we define

(f.h) = T (f, ).
By (2.10) and (2.11), for all h € G(B32,72),
[(fs ] < Cllf gy x) 17l g(82,02)-
Thus, f € (é (B2,72))". This finishes the proof of Theorem 2.
We now introduce the space F(foq(X ).

DEFINITION 5. Let € € (0,6], {Sk}rez, be an approximation to the
identity of order € as in Definition 3, Dy = Sy and Dy = S — Si_1 for



Inhomogeneous Triebel-Lizorkin spaces 83

k € N. Let |s| < e,
max{d/(d+¢),d/(d+s+¢)} < q < o0,

max{s;,d(1 —1/q)y —s—d} < f<eand 0 <y < e. We define the inho-

mogeneous Triebel-Lizorkin space F3,,(X) to be the set of all f € (Qo(ﬁ, 7))
such that

Hqugoq<X>:max{ sup (D)),

v=1,...,N(0,7)
1 ©° 1/q
ksq q
supsup [~ § S D@ ()] | <,
IeN o€l |:M(Qla) Sl kz_:,
Qa -
where Q" with € [yandv =1, ... , N (0, 7) are as in the preceding section

and {Q!, : 1 €N, a € [} is as in Lemma 1.

Proposition 1 and Theorem 2 tell us that the definition of F3, (X) is
independent of the choice of approximations to the identity and spaces of
distributions.

REMARK 4. To guarantee that the definition of F3, (X) is independent
of the choice of the distribution space (g° (3,7))’, we only need the restriction

max{0,d(1 —1/q)y —s—d} < f<e

and 0 < v < ¢g; see Theorem 3. However, if s; < 8 < e and 0 < v < ¢,
we prove below that the space of test functions, G(f3,7), is contained in
F3,,(X). Thus, F3,,(X) is non-empty for 3 and v as in Definition 5.
PROPOSITION 2. Let € € (0,0] and |s| < e.
(i) If max{d/(d+¢),d/(d+s+¢e)} <p,q < oo, then
B, (p,q)(X) C Fp(X) C B, (p,q)(X)’

p,min p,max

(ii) If f € G(B,v) with max{0,s} < f < e and 0 < v < ¢, then f €
F3 (X) with max{d/(d+¢),d/(d+ s +¢e)} < q < oo.

Proof. The proof of (i) is trivial; see [27, Proposition 2.3.2/2, p.47] and
[29, Proposition 2.3].
Let f € G(B,7) and {Dj}rez, be as in Definition 5. To verify (ii), we
first claim that for all k € Z; and all z € X,
1

(2.12) 1Dk (f)(@)] < C27%| fllgs,y) (1 + o(z, 20))&

see (2.8) and (2.9) and also [10, 13, 17, 18] for the proof.
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From (2.12) and Definition 5, it follows that

1 lrs,,x) < Ol llgqa max {1, 37 2474 < Ol flga .
k=1

which finishes the proof of Proposition 2.

The following theorem gives a new characterization of the spaces F3,,(X)
when |s| < e and 1 < ¢ < 0.
THEOREM 3. Let € € (0,0], |s| < e and 1 < q < 0o. Let {Dy}rez, be

as in Definition 5. Then f € F5 ,(X) if and only if f € (go(ﬁ,v))’ with
max{s;,—s—d/q} < <eand 0 <~vy<e, and

1/q
sup sup | b {3 250D ) () (e )| <

l€Z4 a€ll Ql k=]

where we used the notation of Lemma 1. Moreover, in this case,

1 e 1/q
Fll s ~ sup sup [— 28591 Dy (f) ()| dp( } .
1l s, x) Sup SUp | or QSZ kz:; | Di(f) ()| dp()

Proof. By the Holder inequality and Lemma 1, it is easy to see that
there is a constant C' > 0 such that for all f € F3,,(X),

s 1 N ksq q ]Uq
213)  flles, <Ci‘£i‘é§jh<@@) Qggz Du(H) @) du()| -

Lemma 1 again tells us that to establish the reverse inequality, it suffices
to verify that there is a constant C' > 0 such that for all f € F5  (X) and
T E IQ,

1/q
(2.14) | 106N @] < Ul

rey)

By the construction of {QQ’V :7 € lp,v=1,...,N(0,7)}, we can further
control the left-hand side of (2.14) by

[—1 [ 1D0(F)(x)7d <ar>} .

w(Q2) Q0 0 s
{ 1 NE(QZT) @) sw DN
W@ = T e

< sup  sup [Do(f)(x)l].
=1,..,N(0,7) ze@Q%"
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Using Lemma 2 and repeating the estimates for G; and G2 as in the proof
of Theorem 1, we can verify that for all 7 € Iy and v = 1,..., N(0,7),

sup |Do(f) ()] < Cllfllrs,(x)s
zeQ”

where C' > 0 is independent of 7, v and f. This shows (2.4) and completes
the proof of Theorem 3.

3. Some characterizations. We first establish the frame character-
ization of the spaces I3 (X). The frame characterizations of the spaces
B, (X) and Fj (X) with p # oo can be found in [32, 17]. To this end, we
first introduce a space of sequences, f5,(X). Let

(3.1) A={\Vikezy, rel,v=1,...,N(k,71)}

be a sequence of complex numbers. The space fgoq(X ) with s € R and
0 < ¢ < oo is the set of all A as in (3.1) such that

A s (x Zmax{ sup  |A[, sup sup
F3q(X) rely T VleN aer L1(QL)
v=1,....N(0,7)
N(k,T)

1/q
XZZ Z 2ksq Qky)‘)\kl/|qx{(k7—l’ Qk"CQl}(k T, l/):| }<OO.

k=l rel;, v=1

THEOREM 4. Let € € (0,0] and |s| < e. Let X be a sequence as in (3.1).
With the notation of Lemma 2, if max{d/(d+¢),d/(d+ s+ ¢)} < ¢ < >
and [|All g5 (x) < o0, then the series

N(0,7) N(k,7)
(3'2) Z Z )\OI/ QOI/ SOZ/ +Z Z Z )\ku Qku Dk(z,yf”’)
T€lp v=1 k=171€l, v=1

converges in (Qo(ﬁ,w))’ with

(3.3) max{0,d(1—1/¢)+ —s—d}<fB<e, 0<~vy<e.
Moreover,
(3.4) 1fllFs, 0 < CliM s, (x

Proof. The proof is similar to that of Proposition 4.1 in [17] and The-
orem 2.1 in [32]. We only give an outline. First, we need to verify that if
[All g5, (x) < oo, then the series in (3.2) converges in (go(ﬂ,'y))’ with 3 and
v as in (3.3). Without loss of generality, we may assume that I, = N for all
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k € Z,. For L € N, we define

N(k,T)

L N(O,7 L L
S0 S CTCEERERS ») wb wR AL AN

k=11=1 v=1
We note that by construction, N(k,7) is always finite for all k¥ € Z, and
T € I.
Let ¢ € G(B,v) with 8, v as in (3.3). For any L, Ly € N with L; < Lo,

we write

[(Fra = fra 0} < |( Z ZAOV Q)52 (), v)|

T=L1+1 v=1
Lo Ly N(k,T)

’< Z Z Z NV 1 (QF¥) Dy (-, ), ¢>‘

kLl—l—l‘rlul

Ki Z Z N 1 (QFY) Dy (-, ), ¢>‘

k=17=L1+1 v=1
= My + My + M;.

The estimate (2.8) and the fact that 1+ g(y?’", zo) ~ 1+ o(y, xo) for all
y € Q2" tell us that

Ly N(0,7) _
M S S @IE (), 6]
=L1+1 v=1
Ly N(0,7) 1
< Clllg, A2 |1(Q2) 7
o T=Lzl+1 ; (]-—f—Q(yg7 7x0))d+'y

1

< Cllvlg@m M g, | du(y)

U UN(O ,T) QO,V (1 + Q(y’xo))d+’y
r=Lq+1 ™

— 0 as Li, Ly — o0,
since

1
§(14-@anoﬁd+”duan

(3.5) < 0.

Using (2.9), (2.4) if ¢ < 1 and the Holder inequality if ¢ > 1, and the
fact that

(3.6) 1+ o(y2", m9) ~ 1+ o(y, o)
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for all y € Q%" we obtain

Lo Ly N
1
k: Li+17m=1 v=1 ( + o(yr", x))
r Ly N
3 a5y zksqm
k= L1+1 =1 v= 1
Ly N
SCHQZ)HQ(BW) Z 2™ k(B+s—d/q) [Z Z 2ksq’)\k1j| :|
k=L1+1 =1 v=1
1/q
d , > 1,
\ L& 1+Qy$0 ))dt 'u(y)} 4

Z 2—k(ﬁ+8+d)’ q g 1’
k=L1+1
< CllYllgsm Al 15, x) Ly
Z 9~k(B+s=d/a) o5
k=L1+1
— 0 as Li, Ly — o0,
where we used (3.3) and the trivial estimate

ooNk’T

(3.7) >3 2] < e o

=1 v=1

From (2.9), (3.6), (2.4) if ¢ < 1 and the Hélder inequality if ¢ > 1 again,
it follows that

Ly Ly  N(k,T)

1
M; < Cll¢liges) N Q)27 —
;T:;—H Vzl (1+ oy, o))+
< ClYllgsq)
L1 Lo N(k;T
D S S L
k=1 7=L1+1 v=1
Ll L2 N(k,T) 1/q
A Szl 353 g
k=1 T=L1+1 v=1
1 1/q
x| auw)] ", 0> 1,
SN(k o ey, zo)
UT L1+1U QT’

\

—0 as Li,Ly— o0,
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where we used (3.3), the fact that if ¢ < oo, then

L2 N(va) l/q
>y 2’“Q|A£v”yq} 0 as L, Ly — o

7=L1+1 v=1
by (3.7), and the fact that if ¢ = 0o, then
1
S du(y) =0 as Ly, Ly — o0

U UN(k ,T) Qk,u (1 + Q(y’mo))d+’y
T=Ly+1 T

by (3.5).

(Thu)s, for any given ¢ € G(6,7), {{(fr,¥)}ren is a Cauchy sequence,
which means that the series in (3.2) converges to some f € (G(3,7))’ with
B, v as in (3.3) if A € f5,(X). Moreover, by repeating the argument of
Theorem 1, we can verify (3.4). This completes the proof of Theorem 4.

Combining Theorems 4 and 1, we obtain the frame characterization of
the space F3, (X).

THEOREM 5. Let € € (0,0], |s| < e and max{d/(d+¢),d/(d+s+¢)} <
q < oo. With the notation of Lemma 2, let N = Dy (f)(y=") for k € N,
T€lyand v =1,... N(kr7), and \2" = DYV(f) for 7 € Iy and v =

L,...,N(0,7). Then f € F5 (X) if and only if f € (go(ﬁ,’y))’ with B, v as
in Definition 5, (2.1) holds in (,C’j(ﬁ’,fy’))’ with B < ' < e and v < <e,
and X € f3,,(X). Moreover, in this case,
1 1lpg ) ~ MM g, )
Now we come to establish a connection between the inhomogeneous
Triebel-Lizorkin space F3,,(X) and the homogeneous Triebel-Lizorkin

space F(foq(X ) when u(X) = oo. To this end, we first recall the defini-
tion of homogeneous approximations to the identity with compact support
(see [16]).

DEFINITION 6. A sequence {Sj}32 _ . of linear operators is said to be
an approximation to the identity of order £ € (0, 6] if there exist C5,Cs > 0
such that for all k € Z and all z,2’,y,y’ € X, Sk(x,y), the kernel of Sy, is a
function from X x X into C satisfying

(i) Sk(z,y) = 0if p(z,y) = C527F and || Skl pec(xxx) < C627;

(ii) |Sk(2,y) — Sk (2, y)| < C5284) p(x, /)

(iii) Sk (2, y) — Sk(z,y)| < Cs25 4 o(y, y')7;

(iv) |[Sk(@,y) — Sk(z,y")] — [Sk(2’,y) — Sk(a’,y)]]

< C2M ) oz, 2 ) 0y, o)
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The following homogeneous Triebel-Lizorkin space Fgoq(X ) was intro-
duced in [34]. For 0 < (3, v < ¢, we define

Go(B,7) = {1 € 9(8.7) + | f(@) du(x) = 0}.
X

DEFINITION 7. Let € € (0,6] and {Sk}rez be an approximation to the
identity of order e as in Definition 6 and Dy = Sy — Sp_1 for k € Z. Let
|s| <e,

max{d/(d+¢),d/(d+s+¢e)} < q < o0,

max{s;,d(1 —1/q)y+ —s—d} < <e, and max{—s —d,s;} <y <e. We
define the Triebel-Lizorkin space F(foq(X) to be the set of all f € (Go(5,7))
such that

1 © 1/q
Il s :supsup{— 2k4| Dy () (z qd,ua:} < 00,
151, 0x) = Supsup M(Qa);g D) (@) du(x)

where the notation is as in Lemma 1.

We remark that in [34], it was proved that the space defined in Defini-
tion 7 is independent of the choices of approximations to the identity and
spaces of distributions with 3, = as in Definition 7.

On the relation between Fgoq(X ) and F3, (X), we have the following
conclusion.

THEOREM 6. Let ¢ € (0,0], |s| < e and max{d/(d+¢),d/(d+s+¢e)} <
q < 00. For any ko € Z, let Sk, be as in Definition 6. If f € F3,,(X), then
[ = Si() € F2y(X) and

15 = Sk (Dl 00 < ClF ey, -
where C > 0 is independent of f.

REMARK 5. If S, in Theorem 6 does not have compact support, as in
Definition 3, then the conclusion of Theorem 6 still holds. However, this
needs a more complicated computation. In fact, it is easy to see that if
P(z,-) € G(z,re,e) and P(-,y) € G(y,r,¢e,¢) for all x,y € X and some
r > 0, and

S ¢($7y) d#(x) =1,

X
then the statement of Theorem 6 is also true with Sy, replaced by . We
leave the details to the reader.

To verify Theorem 6, we need the following discrete Calderén reproduc-
ing formula (see [12]).

LEMMA 3. Let ¢ € (0,0], |s| < e, and {Dy}2_ . be as in Defini-
tion 7. Then there is a family of functions {ﬁk(x,y)}zoz such that for

—0o0
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all Y& € QF and all § € (G(B,7)) with 0 < B,y <e,
N(k,T)

(3.8) => 3 Z (QE") D,y ) Di () (),

keZ rel, v=1

where the series converges in (_C’j(ﬁ’,'y’))’ with 8 < 3 <eand v < <e
and

Dy(f)(z) = | Di(x,y) f(y) du(y).

X

Moreover, lNDk(:E, y) for all k € Z satisfies conditions (i) and (iii) of Defini-
tion 3 with € replaced by ' € (0,¢) and

\ Di(z,y) du(z) = 0 = | Dy(x,y) du(y).
X X

Proof of Theorem 6. In what follows, we let I be the identity operator.
For simplicity, we assume that ko = 0. By (3.8), we can write

(3.9)  So(I = So)(f)(x)

k/ /

-y % Z Qi )S0(I = S0) D,y ) Dur (£) (™).

k'ezt'el, v=1
Let us first verify that for all z,y € X,
9—(0NK")e

_ , —|K'|e
(3.10) 1So(I — So) Dy (,y)| < C2 (2-(O0AK) 4 p(z, y))dte’

To this end, we consider two cases.
CASE 1: ¥ > 0. In this case,
[So(I = So) Dy (,y)|
- \ 50 (2, 2) = So(,u)]So(u, 2) Dis (2, y) dpu(u) dps(2)

< {’ S S [80(337 Z) - SO(I', U)HS()(U, Z) - SD(U, y)]Dk’(Z’ y) d,u,(u) d,u(z)
X X
+ ‘ {[So(, 2) = So(, )] Dw (2, 9) du(z)‘}X{(aﬁ,y):g(z,y)gC} (z,y)
X

= C2_k,€X{(w7y) o(ey) <} (2, Y)
1

(1+ oz, y))++e’

which is the desired estimate.

S CQ—k/E
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CASE 2: K < 0. In this case,
[So(I — So)Dk/(fU y)l
= ’ So (x,2) — So(z,u)]So(u, 2) D (2, y) du(u) du(z)

X X{(a): olay)<c2-+} (T, Y)
= [§ J0te-2) = St ot D )~ Do) ) )

% X{(%y):@(m,y)gcrk/}(%y)
9—ke'

27" + oz, y)) =’

< C2kl(d+€)X{(x,y) : Q(I,y)§C2_k/}(m’ y) < CQk’a

which completes the proof of (3.10).

From (3.9), (3.10), the fact that 2~ ") 4 p(z, yEry o 270N 4 p(g, )
for all y € Q’:;’”/, (2.4) when ¢ < 1 and the Holder inequality when ¢ > 1, it
follows that for all z € Q>

1So(I — So0)(f)(x)]
Nk

<oy Z Dy (F) ()27 e

kezr'el v=1
27(0/\’?3/)5

X ’ kv
(2O 4 oz, ") )dte

( C Z 2—\k’|a—k’(s+d)+(0/\k’)d
k'eZ
k‘/ /) . 1/
| X Z 24| Dy (1) 7] <1,
el V=1
S / / k/ / 1/q
022—“@ |a—ks|: Z Z 2ksq’Dk, ( )‘ :|
k'€l ’TEIk/ v'=1
9—(0AK)e 1/q
d ) > 1,
| | S e s ) ’

Z o~ Wle=K (std)+OAK)D o <
<C f . k'€l ) )
Wiy ) 52 grtwews, 0> 1
k'eZ
< Ol o

)
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since |s| < €, where we used the estimate

kl l)

, /
s (X Z 29 By (£ )] < Ol vy

T EIk/ =

which in fact was proved in the proof of Theorem 2.2 in [34]; see Remark 2.3
there.

Thus, for all 7 € Iy and v = 1,..., N(0,7), we have
(3.12) mgue (10T = S0)(F)) < Cl e )
Now for k € N, by (3.8), we write

(3.13)  Dy(I — So)(f)(x)
N(K',7")

=3 X X uQE DI S0kl DR

kK'eZ T el =
We claim that for all k € N, k¥’ € Z and all 2,y € X,
27(1’»‘/\]@‘/)5

3.14 Dy(I = So) Dy (w,y)| < C271K=He '
(3.14) |Dy.(I — So) Dy (,y)| < (2= (AR 4 o(z, ) )d+e

To verify (3.14), we consider three cases.
CASE 1: k > k' > 0. In this case,
|Di(1 — So) Dy (z, y)|

= ‘ § §[Dw(x, 2) = Di(w,w)]So(u, 2) Dy (2, y) dpa(u) dp(2)
X X

IN

S | Di(, 2)| [ D (2,y) — Di (2, y)| dp(2) X{(m,y):g(x,y)gcrk’}@v y)
X

+ X{(z) : o(wy) <} (T5Y)

x § § [Di(@, )l |So(u, 2) = So(w, 2)| [ Dy (2,9)| du(u) dpa(2)
XX

< CQk/(d“)_kax{(I,y) - owy)<ca—#1 (T, Y) + C27" X ((e) 0wy <0} (T, Y)
2—k/6
(27% + o(z, y))d+e’

which is the desired estimate.

S C2(k,—k)€

CASE 2: k > 0 > k. In this case, we estimate the left-hand side of (3.14)
in the following way:
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|Dy(I = So) Dy (,y)|

= ‘ Dk z,2) — Dy (z,w)]So(u, 2) Dy (2, y) dp(u) dp(z)
< X{(Ly);g(x7y)§02—k/}($7y){ S |Dk(.§C, Z)‘ |Dk’(zay) - Dk’(xa y)| d,LL(Z)
X

+ | §IDw(z, w)l [So(u, 2) = So(x, 2)| Dy (2. y) = D ()| dpa(ur) dﬂ(Z)}
XX

2—k’8
(27% + o(x,y))dt+e

< C2k (d+6)_k€X{(ag,y) : ,Q(a:,y)SC2—k’}(l‘a y) < C2(k —k)e

CASE 3: k' > k > 0. In this case, we have

[ Di(I = So) D (2, y)|

= ’ } §[Du(x, 2) = Di(w, w)]So(u, 2) Dy (2, ) dpa(u) du(2)
XX

< S ‘Dk(xa z) — Dk(.’IJ,y)’ ’Dk/<27 y)‘ dﬂ(z) X{(J},y):g(a:,y)§02*k}(x7y)
X

+ X{(29) : o)<} (T, Y)

x| { [Di(z, w)|1So(u, 2) — So(u, )| |Dis (2, )| dpa(w) dps(2)
X X
< CQk(d—’—E)_k/gX{(x,y) : g(x,y)SCQ*k}(l‘a y) + Q_klaX{(ac,y) co(z,y)<C} (l‘, y)
27]68
27k + o(z,y))d+e’

which completes the estimate of (3.14).
For [ € N and « € I, from (3.13) and (3.14), it follows that

S C2(l€—k‘/)€

1

;@ESSE:ﬁwumu—SwuxmwmA@

Q) k=l
N(K' ")

oo {32 T S W@ P B ()0

H QL k=l Kezrel, v=1

9—(kAK')e

q
X ! !
(2—(kAk’) + g(m, y’:,’l' ))d+s]

du(z).
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Then, by repeating the procedure for the estimate of Hs in the proof of The-
orem 1 and using Theorem 2.2 of [34] (see also Remark 2.3 of [34] and (3.11)),
we can further verify that

1 0o \ 1/q
(3.15) hﬁgé;?wwm>%w%wwm> < Cllfll g, -

Combining (3.12) and (3.15) with Definition 5 tells us that
15 = So(F) L, < Ol g, cx
which completes the proof of Theorem 6.

The following homogeneous Triebel-Lizorkin space szq(X ) and the in-
homogeneous Triebel-Lizorkin spaces Fj, (X) were studied in [16, 11] and
[15, 13, 18], respectively.

DEFINITION 8. Let ¢ € (0,0], |s| < €, and {Dj}32_ be as in Defini-
tion 7. Let max{d/(d + ¢),d/(d + s+ ¢)} < p < oo and max{d/(d + ¢),
d/(d+s+¢)} < q < oo. The homogeneous Triebel-Lizorkin space F,, (X) is

defined to be the set of all f € (goo(ﬁ, 7)) with max{s;, —s+d(1/p—1)+} <
B < e and max{s — d/p,d(1/p — 1)4+,—s +d(1/p — 1)} < v < € such
that

< 0.
Lp(X)

wmmm=Ht§?ﬁmem%”ﬂ

The inhomogeneous Triebel-Lizorkin space Fj (X) is the set of all f €

(6(8,7))" with
max{sy,—s+d(l/p—1);}<fB<e

and d(1/p — 1) <y < € such that

g0 = {15001+ S 2 purie} |

k=1

LP(X)

It was proved in [16, 11, 15, 13, 18] that the spaces I, (X) and F;q(X) in
Definition 8 are independent of the choices of approximations to the identity
and spaces of distributions with 3, ~ as in Definition 8.

Using Lemma 2 and by a similar procedure to the proof of Theorem 6,
we can verify the following theorem; we omit the details.

THEOREM 7. Let € € (0,0], |s| <&, max{d/(d+e),d/(d+s+e)} <p <
and max{d/(d+¢),d/(d+s+¢)} < q < oo. For any ko € Z, let Sk, be as
in Definition 6. If f € F;,(X), then f — Sy, (f) € Fj,(X) and
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1 = Skl (x) < CUT gy 00
where C > 0 1is independent of f.

Ifs=0,X=R" n/(n+1) <p<1and g =2, then Theorem 7 was
obtained by Goldberg [7] by noting that in this case, the spaces F]EQ(X )
and F;?2(X ) are the classical Hardy spaces HP(R™) and hP(R"™), respec-
tively.

Next, we turn to the spaces FSQ(X) with d/(d+¢) < p < 1; we denote
them by hP(X). If p € (1,00), it was proved in [15] that F,(X) = LP(X)
with equivalent norms. In [11], it was proved that h”(X) can be character-
ized by the generalized Littlewood—Paley S-function, and in [14], its atomic
characterization was obtained.

LEMMA 4. Let € € (0,6], |s| <e and d/(d+¢) <p <1.

(i) Let {Dy}rez, be as in Definition 5. Then f € hP(X) if and only if
£ € (G(B,7)) with d(1/p — 1) < 8,7 < & and for some a € (0, 00),
1Sa(f)llLr(x) < 00, where

[e.9]

316 SO@={> |  2DPwPdw} "

k=0 {y: o(x,y)<a2~F}

Moreover, in this case, ||f|lpe(x) ~ [1Sa(f)llzr(x). Furthermore, the

operators Dy, in (3.16) can be replaced by any other operators Dy, for
k € Zy whose kernels have the same properties as the kernels of Dy
except for the regularity (ii) of Definition 3.

(i) f € hP(X) if and only if f € (G(B,7)) with d(1/p—1) < B,~ <&,
there exist a sequence {\,}3, of numbers and a collection {a}72
of (p,2)-atoms or (p,2)-blocks with diam(supp ay,) ~ 27 with | € Z,

such that
F=> " Aeay
k=1

in (G(e,€))s Dopey | AP < 005 ak is a (p, 2)-atom if diam(supp ay) ~

27! with 1 € N, which means that

(a) suppay C By = Bi(yw.7) = {y € X : o(y,yx) < 4} for some
yp € X and ri, ~ 271 with some | € N,

(b) llar ]l L2(x) < u(By)/271/P,

(e) §x ar(@)dp(z) = 0;

ay is a (p,2)-block if diam(suppay) ~ 1, which means ay, satisfies
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only (a) and (b) for some yi € X and some ri ~ 1. Moreover,

Il ~ int { (30 ) ),
k=1

where the infimum is taken over all the above decompositions.

DEFINITION 9. Let ¢ € (0,0] and d/(d+¢) < p < 1. We define the space
A, (X) to be the set of all f € L} (X) such that

I£11 4, () 1/2
ST T § 1700~ e (Pl

:EGX,TNQ_Z,IGN H(B(:'B?’r))z/p_l B((E ’f‘)

1/2
+  sup { | If(y)lgdu(y)} < o0,
zeX,r~1 B(z,r)

If p =1, we denote the space A;(X) by bmo(X).

By the standard procedure, we can verify that the dual of h?(X) is
just A,(X); see the proof of Theorem 5 in [7]. We omit the details.

PROPOSITION 3. Let ¢ € (0,0] and d/(d+¢) < p < 1. The dual of
hP(X) is the space A,(X), in the sense of Lemma 1.8 in [17].

Using Lemma 4 and Proposition 3 and by a similar argument to that
in [19], we can verify the following proposition; we also leave the details to
the reader.

PROPOSITION 4. The spaces bmo(X) and Fg@,z(X) are equal with equiv-
alent norms.
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