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Mappings on some reflexive algebras characterized
by action on zero products or Jordan zero products

by

YUNHE CHEN and JIANKUI L1 (Shanghai)

Abstract. Let £ be a subspace lattice on a Banach space X and let § : Alg L — B(X)
be a linear mapping. If \/{L € £L: L_ 2 L} = X or A{L_ : L€ L, L_ 2 L} = (0),
we show that the following three conditions are equivalent: (1) 6(AB) = §(A)B + Ad(B)
whenever AB = 0; (2) §(AB + BA) = §(A)B + Ad(B) + 6(B)A + B§(A) whenever
AB+BA = 0; (3) 4 is a generalized derivation and 6(1) € (Alg L) . If\/{L e L:L_ P L}
=Xor N{L-:Le L, L_2 L} = (0) and § satisfies 6(AB + BA) = §(A)B + A§(B) +
0(B)A+ B§(A) whenever AB = 0, we show that ¢ is a generalized derivation and §(I)A €
(Alg L)' for every A € Alg L. We also prove that if \/{L € £ : L. 2 L} = X and
ML-:Le L, L_2 L} =(0), then ¢ is a local generalized derivation if and only if § is
a generalized derivation.

1. Introduction. Throughout this paper, X denotes a Banach space
over the real or complex field F and X* is the topological dual of X. When
X is a Hilbert space, we relabel it as H. We denote by B(X) the set of all
bounded linear operators on X. For A € B(X), we denote by A* the adjoint
of A. A subspace of X means a norm closed linear manifold. For a subset
L C X, denote by L* the annihilator of L, that is, L~ = {f € X*: f(z) =0
for all x € L}. By a subspace lattice on X, we mean a collection £ of sub-
spaces of X with (0) and X in £ such that for every family {M, } of elements
of £, both AM, and \/ M, belong to £, where AM, denotes the intersec-
tion of {M,}, and \/ M, denotes the closed linear span of {M,}. We use
Alg £ to denote the algebra of operators in B(X) that leave members of £
invariant.

Let x € X and f € X* be non-zero. The rank-one operator z ® f is
defined by y — f(y)z for y € X. If £ is a subspace lattice on X and E € L,
we define

E.=\{FeL:FBE}), E,=MNFeL:F¢E}
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and
Je={LeLlL:L#(0)and L_# X}, Pg={LeLl:L_2 L}

It is obvious that P, C Jr. It is well known [I4] that a rank one operator
x® f is in Alg L if and only if there exists a K € J, such that x € K
and f € KX. A subspace lattice £ is called a completely distributive lattice
if L =\{FE € L:E_ 2 L} for every L € L (see [14]); L is called a
J -subspace lattice if L N L_ = (0) for every L € Jp, X =\/{L: L € Jr}
and A{L_: L€ Jz} = (0) (see [15]). A totally ordered subspace lattice N
is called a nest. Recall that a nest AV is called discrete if N_ # N for every
non-trivial subspace N in N.

We say that £ is a P-subspace lattice on X if \/{L : L € Pg} = X
or A{L_ : L € Pz} = (0). It is obvious that this class of subspace lattices
contains J-subspace lattices, discrete nests and subspace lattices with X_ £
X or (0)4+ # (0). The following example is also a P-subspace lattice. As
usual, in a Hilbert space, we disregard the distinction between a subspace
and the orthogonal projection onto it.

EXAMPLE 1.1. Let {e, : n € Z"} be an orthonormal basis of a complex
Hilbert space H, P, = span{e; : ¢ = 1,...,n}, & = >.>°,(1/n)e, and
Py = C¢. 1t follows from [20, Theorem 2.11] and [7, Lemma 3.2] that £ =
{0,1,P,,P¢,P:V P, :n=1,2,...} is a reflexive P-subspace lattice.

A subspace lattice on a Hilbert space H is called a commutative subspace
lattice (or CSL for short) if it consists of mutually commuting projections.
In this paper, we assume that H is a complex separable Hilbert space.

Let ¢ be a linear mapping from a unital algebra A into an A-bimodule M.
Recall that ¢ is a derivation (respectively, generalized derivation) if 6(AB) =
d(A)B+AS(B) (respectively, §(AB) = §(A)B+Ad(B)—Ad(I)B) for all A, B
in A. We say that ¢ is derivable at Z € Aif §(AB) = §(A)B+ Ad(B) for any
A,B € A with AB = Z; § is Jordan derivable at Z € A if 6(AB + BA) =
0(A)B + Ad(B) + 6(B)A + Bi(A) for any A, B € A with AB+ BA = Z.
If 5(AB + BA) = 6(A)B+ Ad(B) + 0(B)A+ Bo(A) for any A, B € A with
AB = 0, we say that ¢ has the W.JD (weak Jordan derivation) property.

In recent years, there have been a number of papers on the study of con-
ditions under which derivations and Jordan derivations of operator algebras
can be completely determined by the action on some subsets of operator
algebras (for example, see [, B, 8, @, 21]). For instance, Zhao and Zhu [21]
show that every linear mapping § from a triangular algebra 7 into itself
with the WJD property is a derivation. In [8], Jiao and Hou prove that
every additive mapping § derivable or Jordan derivable at zero on some nest
algebras has the form 0(A) = 7(A) + cA for some additive derivation 7 and
some scalar ¢ € F.



Mappings on some reflexive algebras 123

The purpose of this paper is to consider some mappings which behave
like derivations on P-subspace lattice algebras and completely distributive
commutative subspace lattice (CDCSL) algebras.

In Section 2, we show that every linear (respectively, bounded linear)
mapping § on a P-subspace lattice (respectively, CDCSL) algebra which is
Jordan derivable at zero point is a generalized derivation and 6(I) € (Alg L)'

In Section 3, for a P-subspace lattice algebra Alg £, we prove that § has
the WJD property if and only if ¢ is a generalized derivation and §(1)A €
(Alg L) for every A € Alg L.

In Section 4, we investigate mappings derivable at zero and some linear
mappings which behave like left (respectively, right) multipliers, isomor-
phisms or local generalized derivations on P-subspace lattice algebras. One
of the main results of the section is that if \/{L € £: L_ 2 L} = X and
MNML-:Le L, L_ 2 L}=(0), then d is a local generalized derivation from
Alg £ into B(X) if and only if § is a generalized derivation.

The following proposition will be used in our proofs.

ProprosITION 1.2 ([19 Proposition 1.1]). Let E and F' be non-zero sub-
spaces of X and X*, respectively. Let & : E x F — B(X) be a bilinear
mapping such that @ (x, f)ker(f) C Fx for all x € E and f € F. Then
there exist two linear mappings T : E — X and S : F — X* such that
O, /) =TeR f+xSf forallx € E and f € F.

2. Mappings Jordan derivable at zero. The following lemma is
included in the proof of [8, Theorem 3.1]. We leave the proof to the reader.

LEMMA 2.1. If 6 is Jordan derivable at zero from a unital algebra A into
a unital A bimodule, then for any idempotents P and Q in A,

(i) 8(1)P = P3(I);
(ii) 6(P) = 6(P)P + P&(P) — P5(I);
(iii) 0(PQ+QP) =4d6(P)Q+Pi(Q)+0(Q)P+QI(P)—46(I)(PQ+QP).

For a subspace lattice £ and a subspace E € P,, we denote by 7 the
ideal span{z ® f:x € E, f € E+} of Alg L.

LEMMA 2.2. If L is a subspace lattice on X and E is in P, then for
every x in E and every f in EX, x®f is a linear combination of idempotents

Proof. Suppose f(z) # 0; then 2 ® f = f(x)(ﬁx@f), where ﬁx@f
is an idempotent in 7g.

Suppose f(z) = 0. Since E € P, there exist z € E and g € E* such
that g(z) = 1.
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CasE 1. If g(x) = u # 0, thenx@f:a:@(ig—#—f) —a:®%g, where
z® (%g + f) and z ® %g are idempotents in 7.
CASE 2. If f(z) = A #0, then 2 ® f = (az+%z)®f—%z®f, where
(x + %z) ® f and %z ® f are idempotents in 7g.
Case 3. If f(2) = g(z) =0, thenz® f = (2 +2)® (9+ f) + (2 —
2)@(g—f)—(z+2)@(g—f)—(z2—2)®(g9+[)), where (z+2) ® (g + f),
) ®

z—2)®((@g—f), (z+2)®(g—f) and (z —z) ® (g + f) are idempotents
in 7. The proof is complete. m

LEMMA 2.3. Let L be a subspace lattice on X, E be in Pz and § be a
linear mapping from Alg L into B(X). If 6 is Jordan derivable at zero, then
for every idempotent P in Tg and every A in Alg L,

(i) 6(AP+PA)=6(A)P+ Ad6(P)+0(P)A+ Pi(A)—6(I) (AP + PA);
(ii) 6(PAP) = §(P)AP + P6(A)P + PAS(P) —20(I)PAP.
Proof. (i) For every idempotent P € Tp and every A € Alg L, since
P+APLP + PP-APL =0, by assumption we have
§(PTAPY)P 4 PLAPLS(P) + 6(P)PTAP* 4 PS(PLAPt) = 0.
Since A — P*AP+ = PA+ PLAP € Tg, it follows from Lemmas and
2.2] that
S(AP + PA) = 6((A — PLAPY)P 4+ P(A — P-APY))
=§(A— PYAPY)P + (A - PLAPH)5(P)
+3(P)(A — P-APY) + PS(A — PHAPY)
—d(I)(AP + PA)
=0(A)P + A6(P) + §(P)A+ P6(A) — 6(I)(AP + PA)
— 0(PLAPYH)P — PLAPLS(P) — §(P)PLAP
— P§(PAPY)
=0(A)P + A6(P) + 6(P)A+ P6(A) —6(I)(AP + PA).
(ii) The substitution of AP + PA for A in (i) gives (ii). =
One of the main results of this section is the following theorem.

THEOREM 2.4. Let L be a subspace lattice on X such that \/{L : L € P}
= X and § be a linear mapping from Alg L into B(X). Then § is Jordan
derivable at zero if and only if § is a generalized derivation and 6(I) €
(Alg L)', where (Alg L)' is the commutant of Alg L in B(X). In particular,
if (I) = 0, then ¢ is Jordan derivable at zero if and only if ¢ is a derivation.

Proof. The sufficiency is obvious, so we only need to prove the necessity.
Let £ € Pz, z € E and g € E+ with g(z) = 1. We divide the proof into
several claims.
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Cram 1. §(1) € (AlgL)".

For every € E, f € EX and T € AlgL, by Lemmas and ﬂ we
have 6(I)Tz® f =Tx® fo(I) =T6(I)r ® f. That is, §(I)Tx = T'6(I )z for
every x € E. Since \/{E : E € Pc} = X, it follows that 6(I) € (AlgL)".

Now define 7(A) = 6(A) — §(1)A for A € Alg L. Tt is easy to see that 7

is Jordan derivable at zero and 7(I) = 0.
Cram 2. 7(z ® f) ker(f) C Fz for every x € E and f € E*.
CAse 1. If f(x) = u # 0, then by Lemma we have

1 1 1 1 1
7'<a:®f> = T(:E@f) (x@f) + (a:®f>7‘<a:®f>.
0 I I 1 I
Thus 7(z ® f)ker(f) C Fz.
CaAsE 2. If f(z) =0 and f(z) # 0, then by Case 1, for every y € ker(f),
T((z+2)® fly = Mz + 2),
T((z =) @ fly = Aa(z — 2),
T(Z ® f)y = >\3Z7
for some A1, A2, A3 € F. By the above equations, it follows that
2A3z = ()\1 + )\2)2’ + ()\1 — )\2)1‘,
and the independence of z and z implies A{ = Ao = A3. Hence
@@ fly=1((z+2)® fly —7(2® fy = M.
This means 7(x ® f) ker(f) C Fa.

CASE 3. Suppose that f(x) = 0 and f(z) = 0. Since z ® (¢ + f) and
z® (g — f) are idempotents in 7, it follows from Lemma that

T((z@(g+ H)r@9) (2@ (9+ f)))
=7+ ))zegze@+))+Ee@+)rz®g) (20 (9+f))
+ =g+ H)Eegr(z®(g+f)),
T((z@ (g — ) z@9)(2® (9 f)))
=7(z@(@—-MNzeg)(ze(@—f)+Ee(@—))rzog)(:®(9—f))
+ e g-HEegr(ze (- f)),

and

T((z@g)(z®9)(2®9) =T(2@9)(z®g)(:®g) + (2 ® g)T(z @ g)(2 ® g)
+(zR9)(x®9)T(2® g).
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From the above three equations, we have

0=7((z® f)z®g)(z® [))
=7®f)z@9)z@f)+ (0 f)T(z®g)(z® [)
+ (=R )z f)
=7(z@f)lz®f)+ (=@ f)T(z@9)(z® f).
Thus
(2.1) T(z® fla = —f(1(z ® g)z)z.
Hence by , and Lemmas 2.2 and 2.3, it follows that
Ta®f)=7((z@ fz@g)+(2z29)(z® [))
=—f(rz®g)z)z®@g+ (2@ f)T(z ® g)
+7(z@9) (2@ f)+ (z®9)T(2® f).

Let y be in ker(f). Applying the above equations to y gives
(22) 7@ fly=—9W)f(r(z@g)2)z+ f(r(z @ g)y)z + 9(7(z ® f)y)z.

Notice that (2.2)) is valid for every z € FE satisfying g(z) = 1 and f(z) = 0.

If g(x) = p # 0, replacing z by (1/p)z in (2.2), we have 7(z @ f)y € Fz.
If g(x) = 0, by the proof of [I8, Lemma 2.3|, we have g(y)f(7(z ® g)z) —

f(r(x ®g)y) =0, whence 7(x @ fly = g(7(2 ® f)y)x € Fu.
CLAIM 3. T is a derivation.

By Claim 2 and Proposition 1.2, there exist linear mappings 7' : £ — X
and S : B+ — X* such that

(2.3) Tz f) =Tz f+2®Sf

for every € F and f € E+. It follows from Lemmas and that for
every A € Alg L,

(24) T(Az@g+2RgA)=T(A)zRg+ AT(z®g)+T1(r®g)A
+ 2z ® gr(A).
By and , we have
TAz@ g+ Az @ Sg+Tx® A*g+2® SA%g
=7(A)rR9g+ATr®g+ Az ® Sg+Tr @ A'g+ 2@ A*Sg+ @ 7(A)*g.
That is,
(T(A)+ AT —TA)z®@g=2® (SA* —17(A)" — A*S)g.
Thus there exists a linear mapping A : Alg £ — F such that
(2.5) T(A)zr = (TA— AT)x + \(A)x
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for all A € AlgL and = € E. Hence by (2.5)), for all A,B in Alg L and x
in F,
(2.6) T(AB)x = (7(A)B+ A7(B))x + A(AB)x — A\(A)Bx — A\(B) Ax.

In the following, we show A\(A) = 0 for every A € Alg L. Putting A =
B =z®gand z = z in (2.6) gives A\(2®g) = g(7(2®g)z), and Lemma[2.1(ii)
implies g(7(z ® g)z) = 0. Hence
(2.7) AMz®g)=0.
Notice that 1’ is valid for all z in £ and g in E* satisfying g(z) = 1.
Now fix 2 € E and g € E+ such that g(z) = 1. Thus for all f € EZ,
if f(z) = p # 0, then Mz ® f)= pA(z ® (1/p)f) = 0; if f(z) = 0, then
Az@ f) =AMz (g+ f)) —AMz®g) = 0. Hence A\(z ® f) = 0 for every
f € E*+. Similarly, we have A\(z ® g) = 0 for every x € E. Now for every

A € Alg L, by (2.6]), we have

(2.8) T(Az®@g)z=17(A)z+ AT(2 ® 9)z — A\(4)z,
(2.9) T(z®@gA)z=1(2® g)Az+ g(T(A)z)z — A(A)=z.
By Lemma [2.3(i), we have
(2.10) T(Az@ g+ 20 gA)z =71(A)z+ AT(2 ® g)2
+7(2® g)Az + g(1(A)2)=.
Combining f gives \(A) = 0 for every A € Alg L. Then by ,
we obtain

T(AB)x = (1(A)B+ AT(B))x

for all A,B € AlgL and = € E. Since \/{L : L € Pz} = X, it follows that
7 is a derivation. From 6(A) = 7(A) + 0(I)A, it is easy to show that J is a
generalized derivation. m

Applying the ideas in the proof of Theorem [2.4] we can obtain the fol-
lowing result.

THEOREM 2.5. Let L be a subspace lattice on X such that N{L_ :
L € Pc} = (0) and 0 be a linear mapping from Alg L into B(X). Then
0 is Jordan derivable at zero if and only if § is a generalized derivation and
d(I) € (Alg £)'. In particular, if 5(I) = 0, then § is Jordan derivable at zero
if and only if § is a derivation.

Proof. We only prove the necessity. Let z — & be the canonical mapping
from X into X**. Then (z® f)* = f® 2z for all x € X and f € X*. The
hypothesis A{L_ : L € Pz} = (0) implies that \/{Lt : L € P} = X*.
With a proof similar to that of Theorem [2.4] we have 6(I) € (AlgL)'. Let
T(A) = 6(A) —6(I)A for A € Alg L. Then 7 is Jordan derivable at zero and
7(I) = 0. In the following, we show 7 is a derivation. Let E € P,. We choose
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z € E and g € E* such that g(z) = 1. One can easily verify that for all
v € FEand f € BEX, 7(x ® f)*ker(2) C Ff. Let &(f,2) = 7(z ® f)* for all
2 € E and f € ELX. Then & is a bilinear mapping from E+ x E into B(X™),
where E = {#:2 € E}. Hence there exist linear mappings 7 : B+ — X*
and S : E — X** such that

Tz ) =0(f,2)=Tfe2+ fo S
for all z € F and f € EL. Hence for A € Alg £ and f € EL, we have

(r(A) + AT —TA)f @ 2 = f @ (SAz — 6(A)z — A™S3).

It follows that 7(A)*f = (TA* — A*T)f + M(A)f, where A : AlgL — Fisa
linear mapping. Hence for all A, B € Alg L and f € E*,

T(AB)* f = (B*1(A)* + 7(B)*A*")f = MA)B*f — A(B)A"f + \(AB)f.
With a proof similar to that of Theorem we can show that \(A) = 0

for every A € AlgL. Since \/{L* : L € P.} = X*, it follows that 7 is a
derivation. Hence § is a generalized derivation. m

Next we investigate the bounded linear mappings which are Jordan deriv-
able at zero on CDCSL algebras. Recall that a CSL algebra Alg L is irre-
ducible if and only if (Alg L)’ = CI, which is equivalent to the condition
that £N L+ = {0,1}, where £+ = {E+: E € L}.

LEMMA 2.6 ([5]). Let Alg L be a CDCSL algebra on H. Then there ex-
ists a countable set {P, : n € A} of mutually orthogonal projections in
LN LY such that \/,, P, = I and each (Alg L)P, is an irreducible CDCSL
algebra on P, H; moreover, Alg L can be written as a direct sum AlgL =

LeMMA 2.7 ([16]). Let Alg L be a non-trivially irreducible CDCSL al-
gebra on H. Then there exists a non-trivial projection P in L such that
P(Alg L)P+ is faithful, that is, for T,S € Alg L, TP(Alg L)P+ = {0} im-
plies TP =0, and P(Alg £)P+S = {0} implies P+S = 0.

LEMMA 2.8. Let Alg L be an irreducible CDCSL algebra on H and let
0:Alg L — Alg L be a bounded linear mapping with 6(I) = 0. If 6 is Jordan
derivable at zero, then § is a derivation.

Proof. Suppose that £ is trivial. Then Alg £ = B(H) is a von Neumann
algebra. It follows from [I, Theorem 3.2] that ¢ is a Jordan derivation. Since
every von Neumann algebra is a semiprime ring, by [2, Theorem 1], ¢ is a
derivation.

Suppose that £ is non-trivial. Let P be the non-trivial projection in £
provided by Lemma Since P(Alg £) P+ is faithful, by [T, Theorem 2.1],
0 is a Jordan derivation. Since every Jordan derivation on a CSL algebra is
a derivation [I7, Theorem 3.2], it follows that § is a derivation. m
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THEOREM 2.9. Let Alg L be a CDCSL algebra on H and § be a bounded
linear mapping from Alg L into itself. Then & is Jordan derivable at zero if
and only if § is a generalized derivation and §(I) € (Alg L)'. In particular, if
d(I) =0, then § is Jordan derivable at zero if and only if § is a derivation.

Proof. We only prove the necessity. Since every rank one operator in
Alg £ is a linear combination of idempotents in Alg £ [6l Lemma 2.3] and
the rank one subalgebra of Alg L is dense in Alg £ in the weak topology
[10, Theorem 3], by Lemma [2.1[i), we have §(I) € (AlgL)'. Let 7(A) =
d(A)—0(I)A for A € Alg L. Then 7 is Jordan derivable at zero and 7(I) = 0.

Let Alg £ =5 @(Alg £)P, be the irreducible decomposition of Alg £
as in Lemma Let A be in Alg £ and fix an index n. Since PnAPnP,ﬂ; +
PnLPnAPn =0, we have

0=7(P,AP,P + P;P,AP,)
= 7(P,AP,) P+ + P,AP,7(PY) + 7(P1)P,AP, + Pr(P,AP,),

which yields P 7(P,AP,)P; = 0. Since P, € LN L, we have 7(AP,) =
7(AP,)P,. In the same way, we obtain 7(AP;-) = 7(AP;-)P;-. Since

0=7(I)=7(P, + P}) = 7(P,)P, + (PP,

it follows that 7(FP,) = 0. Now define a linear mapping 7, : (AlgL)P, —
(Alg L)P,, by
™(AP,) = 1(AP,)P,

for every A € AlgL. It is easy to show that 7, is bounded and Jordan
derivable at zero. Since (AlgL)P, is irreducible and 7,(P,) = 7(P,)P,
= 0, by Lemma Tn, is a derivation. Hence from 7(A)P, = 7(APR,)P, +

(APl) = Tn(AP ), we see that 7 is a derivation. Thus 0 is a generalized
derivation. m

3. Mappings with the WJD property. Our first result in this sec-
tion says that the set of all mappings Jordan derivable at zero from a P-
subspace lattice algebra into B(X) is bigger than the set of all mappings
with the WJD property. The following lemma is included in the proof of [4]
Lemma 2.6].

LEmMMA 3.1. If § is a linear mapping with the WJD property from a
unital algebra A into a unital A-bimodule, then for every idempotent P € A
and every A € A,

(i) 8(1)P = PS(I) and §(P) = §(P)P + PS(P) — 5(I)P;
(il) S(PA+AP) = §(P)A+PS(A)+5(A)P+A5(P)—6(I)PA—PAS(I);
(iii) 6(PA+AP) = 6(P)A+P3(A) +5(A) P+ AS(P)~5(I) AP~ AP§(I);
(iv) 5(PAP) = §(P)AP + PS(A)P + PAS(P) — 5(I)AP — L(PA +

AP)S(I).
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THEOREM 3.2. Let L be a subspace lattice on X such that \/[{L :
L € Pr} = X and 6 be a linear mapping from Alg L into B(X). Then
0 has the WJD property if and only if § is a generalized derivation and
0(I)A € (Alg L) for every A € Alg L. In particular, if §(I) =0, then & has
the WJD property if and only if 6 is a derivation.

Proof. Since the sufficiency is evident, we will show the necessity. Sup-
pose 0 has the WJD property. We claim that 6(I)A € (Alg L)’ for every A €
Alg £. By Lemma (1) and the proof of Claim 1 in Theorem [2.4] we have
§(I) € (AlgL)'. Hence by Lemma [3.1f(ii) & (iii), we deduce that §(1)AP =
PAS(I) for every idempotent P € Alg £ and every A € Alg L. Hence for all
v € E, feEtand T € AlgL, we have §(1)ATz ® f = Tz ® fAS(I) =
To6(I)Az® f. Since \/{L : L € P} = X, it follows that §(I)A € (Alg L) for
every A € Alg L. Let 7(A) = §(A) —0(I)A for A € Alg L. 1t is easy to show
that 7 has the WJD property and 7(/) = 0. Similar to the proof of Theo-
rem we may show 7 is a derivation and so ¢ is a generalized derivation. =

Similarly, we have the following theorem.

THEOREM 3.3. Let L be a subspace lattice on X such that A\{L_ :
L € Pr} = (0) and ¢ be a linear mapping from Alg L into B(X). Then
0 has the WJD property if and only if § is a generalized derivation and
0(I)A € (Alg L) for every A € Alg L. In particular, if §(I) =0, then & has
the WJD property if and only if 0 is a derivation.

COROLLARY 3.4. Let L be as in Ezample 1.1. Then ¢ : AlgL — B(H)
has the WJD property if and only if § is a derivation.

Proof. By Theorem we only need to show that if § has the WJD
property, then §(1) = 0. Let n > 2. By [7, Lemma 3.2], we have (P,)_ % P,.
Hence there exist z, € P, and g, € (P,)* such that g, (z,) = 1. Also, there
exists y, € P, such that ¥, and z, are linearly independent. Since § has the
WJID property, we have §(I)A € A’ for every A € A, which implies that
there exists some scalar A\, such that §(I)x = A,z for every x € P, and
5(1)(271 ®gn)(yn®gn) = 5(I)(yn ®gn)(zk®gn)' That is, )\ngn(yn)zn = \¥n-
The independence of y,, and z, gives A\, = 0 and 6(I)x = 0 for every z € P,.
Since V{P, € L:n =2,3,...} = H, it follows that 6(I) = 0. The proof is
complete. m

COROLLARY 3.5. Let L be a subspace lattice on H with dim H > 2 such
that \/{L : L € P} = H or N{L- : L € Pz} = (0). If L has a non-trivial
comparable element, then § : Alg L — B(H) has the WJD property if and
only if § is a derivation.

Proof. According to Theorem we only need to show that if ¢ has
the WJD property, then §(I) = 0. By [II, Proposition 2.9], we have
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(Alg £)" = CI. Hence by Theorem (3.2, we have 6(I) = A\I and 6(1)A = pal
for every A € Alg L (where A\, u4 € C). We claim that A = 0. Suppose that
A # 0; then every operator in Alg £ is a scalar multiple of the identity I.
That is, for every A € Alg L, the range of A is H or 0. However, since Alg £
contains a rank one operator, this is impossible. Hence (1) = 0. m

Using Corollary we can easily show the following result.

COROLLARY 3.6. Let L be a subspace lattice on H with dim H > 2 such
that H_ # H or (0)+ # (0). Then ¢ : Alg L — B(H) has the W.JD property

if and only if 0 is a derivation.

REMARK. It follows from Theorems[2.4] 2.5 B-2]and B.3] that every linear
mapping with the WJD property from a P-subspace lattice algebra into
B(X) is Jordan derivable at zero. But the converse is not true. For example,

let 75(C) be the algebra of all 2 x 2 upper triangular matrices over the
complex field C. Define a linear mapping § : 73(C) — 73(C) by

5 T11 T12 _ T11 T11 — T2 + Ti2
0 x99 0 x22

for every z;; € C (1 < i < j < 2). It is easy to show that ¢ is a general-
ized derivation and 0(I) = I € (72(C))’, that is, § is Jordan derivable at
zero. However, it follows from Corollary that 0 does not have the WJD
property since 0(I) # 0.

4. Mappings derivable at zero and local generalized derivations.
Let A be a unital algebra, M be an A-bimodule and 7 be an ideal of A.
We say that 7 is a left (respectively, right) separating set of M if for every
m in M, m7T = {0} implies m = 0 (respectively, 7m = {0} implies m = 0).
T is called a separating set of M if T is a left separating set and a right
separating set of M. The following result is obvious.

LEMMA 4.1. Suppose that L is a subspace lattice on X such that \/{L :
L € Pr} = X (respectively, N{L—- : L € Pr} = (0)). Then the ideal
T =span{z @ f:2 € FE, fec ELY, Ec P, of AlgL is a left (respectively,
right) separating set of B(X).

By Lemmas and we have the following result.

THEOREM 4.2. Let L be a subspace lattice on X such that \/{L :
LePrt =X or N{L-: L € P} =(0) and § be a linear mapping from
Alg L into B(X). Then ¢ is derivable at zero if and only if ¢ is a generalized
derivation and 6(I) € (Alg L)'. In particular, if §(I) = 0, then ¢ is derivable
at zero if and only if § is a derivation.
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Proof. We will show that if \/{L : L € Pz} = X and ¢ is derivable
at zero, then ¢ is a generalized derivation and §(I) € (AlgL)'. The proof
for A{L- : L € Pc} = (0) is similar. By the proof of [9, Lemma 3|, we
can show that §(AP) = §(A)P + A6(P) — AS(I)P and 6(I)P = P§(I) for
every A € Alg L and every idempotent P € Alg £. With a proof similar to
the proof of Claim 1 in Theorem [2.4] we have (1) € (Alg L)". Now for all
A BeAlgLand T €T,

O(ABT) =6(AB)T + ABS(T) — ABS(I)T
and
0(ABT) = 6(A)BT + A)(BT) — A6(I)BT
=0(A)BT + Ad(B)T + ABS(T) — ABS(I)T — AS(I)BT.
It follows that 6(AB)T = 6(A)BT + A6(B)T — Ad(I)BT. Since 7T is a left

separating set of B(X), we obtain §(AB) = §(A)B + A§(B)T — Ad(I)B for
all A, B € Alg L. That is, ¢ is a generalized derivation. =

Recall that a linear mapping § from A into M is a left (respectively,
right) multiplier if 5(AB) = §(A)B (respectively, 6(AB) = A§(B)) for all
A,B € A; § is a local generalized derivation if for every A € A there is a
generalized derivation §4 : A — M (depending on A) such that §(A4) =
04(A). In the following we give some applications of Lemmas and
The proofs are similar to the proof of Theorem and we leave them to
the reader.

THEOREM 4.3. Suppose that L is a subspace lattice on X such that \/{L :
L € Pr} = X (respectively, N{L— : L € Pg} = (0)) and 0 is a linear
mapping from Alg L into B(X). Then & has the following properties:

(i) if 6(AB) = 6(A)B (respectively, 6(AB) = Ad(B)) for any A,B €
Alg £ with AB =0, then ¢ is a left (respectively, right) multiplier;
(ii) if 6(AB) = 0(A)B+0(B)A (respectively, 6(AB) = Ad(B)+ Bd(A))
for any A, B € Alg L with AB =0 and 6(I) =0, then 6 = 0;
(iii) if 5(A%) = 26(A)A (respectively, 5(A?) = 2A5(A)) for all A € Alg L,
then 6 = 0.

Combining Theorem [4.3|i) and [I2, Proposition 1.1], we have

COROLLARY 4.4. Suppose that L is a subspace lattice on X such that
VIL:LePr} =X and N{L-: L € P} =(0) and § is a linear mapping
from Alg L into B(X). Then the following are equivalent:

(i) 0 is a generalized derivation;
(ii) 9 is a local generalized derivation;
(iii) Ad(B)C = 0 whenever A, B,C € Alg L and AB = BC = 0.

Combining Lemmas and [13, Theorem 2.8], we also have
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THEOREM 4.5. Let L be a subspace lattice on X such that \/{L

L e Prt =X and N{L- : L € Pg} = (0). If h is a bijective linear
mapping from Alg L onto a unital algebra satisfying h(A)h(B)h(C) = 0
for all A,B,C € Alg L with AB = BC = 0 and h(I) = I, then h is an

isomorphism.
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