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Non-compact Littlewood–Paley theory for

non-doubling measures

by

Michael Wilson (Burlington, VT)

Abstract. We prove weighted Littlewood–Paley inequalities for linear sums of func-
tions satisfying mild decay, smoothness, and cancelation conditions. We prove these for
general “regular” measure spaces, in which the underlying measure is not assumed to sat-
isfy any doubling condition. Our result generalizes an earlier result of the author, proved
on R

d with Lebesgue measure. Our proof makes essential use of the technique of random
dyadic grids, due to Nazarov, Treil, and Volberg.

0. Introduction. In this note we generalize a slightly non-standard
stopping time argument from the usual Euclidean setting on R

d, with Le-
besgue measure, to one in which the underlying measure is not assumed to
satisfy any doubling condition.

The original motivation for this work came from certain weighted in-
equalities proved by the author and Richard Wheeden in [WhWi]. They
looked for conditions on weights v and non-negative measures µ which en-
sured that

(0.1)
( \

R
d+1
+

|∇u|q dµ
)1/q

≤
(\

Rd

|f |p v dx
)1/p

would hold for all f in some reasonable test class. Here we are assuming that
p and q lie strictly between 1 and ∞, and that u is the harmonic (Poisson)
extension of f into R

d+1
+ = R

d × (0,∞). The approach they used was to
consider a dual form of (0.1):

(0.2)
(\

Rd

|T (g)|p
′

σ dx
)1/p′

≤
( \

R
d+1
+

|g(t, y)|q
′

dµ
)1/q′

.
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Here p′ and q′ are the dual indices to p and q, σ = v1−p
′

, and g is an arbitrary
bounded, measurable, compactly supported function mapping R

d+1
+ → R.

The operator T is a certain “balayage”-like object, whose precise definition
need not concern us here.

The inequality (0.2) turned out, after some juggling, to follow from in-
equalities like this:

(\
Rd

∣

∣

∣

∑

Q

λQφ(Q)

∣

∣

∣

p′

σ dx
)1/p′

≤ C
(

∑

Q

|λQ|
q′wQ

)1/q′

.

The summation is over the dyadic cubes Q ⊂ R
d; the λQ’s are arbitrary real

numbers, of which all but finitely many are assumed to be 0, and the wQ’s
are certain positive numbers whose precise definition need not concern us.

The functions φ(Q) are, if you will pardon the misnomer, non-compactly
supported wavelets. This means: each φ(Q) is a bump function centered
around Q, with size and smoothness decaying at a nice rate as |x| → ∞,
and that has some cancelation. To state these conditions precisely, we need
to introduce some standard notation.

A cube Q ⊂ R
d is a Cartesian product of intervals in R

1, all having
the same length. We use ℓ(Q) to denote this common length (called Q’s
sidelength) and |Q| = ℓ(Q)d to denote Q’s Lebesgue measure; we will also
use | · | to denote Lebesgue measure of more general sets. By xQ we mean the
geometric center of Q. The families of functions {φ(Q)}Q arising in [WhWi]
satisfied (after a suitable normalization) the following three conditions:

(1) For all x ∈ R
d,

|φ(Q)(x)| ≤ |Q|
−1/2(1 + |x− xQ|/ℓ(Q))

−M .

Here M is a positive number depending only on the family; in prac-
tice, M is always larger than d.

(2) For all x and y in R
d,

|φ(Q)(x)− φ(Q)(y)| ≤ (|x− y|/ℓ(Q))|Q|
−1/2

×((1 + |x− xQ|/ℓ(Q))
−M + (1 + |y − xQ|/ℓ(Q))

−M).

(3) For all finite linear sums
∑

Q γQφ(Q),\∣
∣

∣

∑

Q

γQφ(Q)

∣

∣

∣

2

dx ≤
∑

Q

|γQ|
2.

This last condition is what we mean by “cancelation.”

Remark. The functions occurring in [WhWi] were not assumed to sat-
isfy (1)–(3), but happened to satisfy conditions that implied them. These
stronger conditions were used to prove the results in [WhWi].
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In [W2] the author proved that (1)–(3) were enough to imply fairly strong
Littlewood–Paley estimates for arbitrary finite linear sums

∑

Q λQφ(Q).
These estimates were given in terms of the Muckenhoupt A∞ weights. Re-
call that a non-negative v ∈ L1loc(R

d) is said to belong to A∞ if, for every
ε > 0, there is a δ > 0 so that, for all cubes Q ⊂ R

d and measurable subsets
E ⊂ Q, |E|/|Q| < δ implies v(E) ≤ εv(Q); here, as usual, we are using v(E)
to denote

T
E
v dx.

The main result from [W2] is:

Theorem 0.1. Let {φ(Q)} satisfy (1)–(3) for some M > d/2, and let
̺>d. If v∈A∞ and 0<p<∞ then there is a constant C=C(p, d, ̺,M, v)
such that , for all finite linear sums f =

∑

Q λQφ(Q),\
Rd

|f |p v dx ≤ C
\

Rd

(

∑

Q

|λQ|
2

|Q|
(1 + |x− xQ|/ℓ(Q))

−2M+̺

)p/2

v dx.

What does this result mean? Let us rewrite the right-hand integral as\
G(f)p v dx,

where

G(f) =

(

∑

Q

|λQ|
2

|Q|
(1 + |x− xQ|/ℓ(Q))

−2M+̺

)1/2

.

The function G(f) is simply a discretized version of the familiar g∗λ-function
from classical harmonic analysis. The inequality in Theorem 0.1 controls the
size of f (defined by a sum with cancelation in it) with something built from
a sum of positive terms. What is interesting is that the long-term decay of
G(f) (of order |x|−M+̺/2) is not much worse than the best possible long-
term decay of f (of order |x|−M ), even against arbitrary A∞ weights.
The proof of Theorem 0.1 employed a stopping time argument specially

adapted to sums of “non-compactly supported wavelets.” (Sums of true,
compactly supported wavelets can be handled essentially in the same manner
as Haar function decompositions; see [W1]). Unfortunately, the argument
also relied on the “doubling” property of the underlying Lebesgue measure.
We remind the reader that a measure ν is doubling if, for every cube Q, the
ν-measure of Q’s concentric double—called 2Q—is bounded by a constant
times ν(Q). The doubling property has the following important consequence
(and is, in fact, equivalent to this): in any cube Q, the set {x ∈ Q : d(x,Q) <
εℓ(Q)} has uniformly small relative measure in Q as ε→ 0. This was needed
in the proof of Theorem 0.1 because the stopping time argument worked by
analyzing sums

∑

Q λQφ(Q) on certain dyadic cubes Q
′, where one loses all

control over what happens when x is near ∂Q′ (“edge effects”). The doubling
property of Lebesgue measure allowed us to discard this set as negligible.
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Unfortunately, one cannot do this if the underlying measure does not have
the doubling property. These include the “regular” measures, which have
recently been receiving a great deal of attention ([MMV], [NTV], [T1]–[T3]).
A Borel measure µ on R

d is called regular if there exist a positive constant
C and a constant 0 < β ≤ d such that, for all cubes Q, µ(Q) ≤ Cℓ(Q)β; we
call such a µ normalized if C = 1. It is easy to see that regular measures
need not have the doubling property. For example, if L is the x-axis in R

2,
we could define µ(E) to be the Lebesgue measure of E ∩L in R. If a square
Q is close to the axis but does not touch it, then µ(Q) = 0 but µ(2Q) > 0.

For a long time it was believed that, in order to generalize results in
classical harmonic analysis (e.g., those involving singular integrals) from the
setting of (Rd, dx) to that of (Rd, µ), it was essential that the underlying
measure µ have the doubling property. In many situations, mere regularity
turns out to be an adequate substitute for the doubling property.

In this paper we prove a generalization of Theorem 0.1 to the setting of
regular measures. How we handle (or avoid) the dreaded edge effects calls
for a little bit of explanation.

We use the ingenious trick of “random dyadic grids,” created by Nazarov,
Treil, and Volberg [NTV]. How these grids work will be described in greater
detail below, but we will try to give the basic idea here. We work on R

2.
Let us suppose we have tiled the plane with dyadic squares of sidelength
2−n0 , where n0 is huge. We will call these our base squares. We want to
build a grid of squares of sidelength 21−n0 such that each base square arises
from bisecting the sides of a square from this second grid. There are exactly
FOUR ways to do this. Pick one of the squares with sidelength 2−n0 . It can
be an upper right, upper left, lower right, or lower left quarter of one of the
squares from the coarser grid. Obviously, having made such a choice for one
base square determines the choices for all the others. Thus, the grid of base
squares gives rise to four possible grids that are (so to speak) one degree
coarser. We assign a probability of 1/4 to each choice of grids. We now
repeat this procedure on each of the four coarser grids. We obtain sixteen
possible grids, each made of squares of sidelength 22−n0 , and each having a
probability of 1/16. We continue this process forever, making grids of larger
and larger squares. In this way we build a probability space (Ω, dP ), where
Ω is the set of all of the grids built “upward” from the base squares.

Edge effects arise when we have to consider a sum containing many φ(Q)’s
on a square R, where the ℓ(Q)’s are much, much smaller than ℓ(R) and the
Q’s are very close to ∂R. Such Q’s are called “bad” relative to R. If we look
at a fixed Q arising from the grid-building process described above, it turns
out that the (relative) probability of the set of grids for which Q is bad
vis-à-vis any R is quite small. An averaging technique then allowed [NTV]
to, in effect, ignore those grids on which any given square Q was bad, and
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thus they could do their analysis on the assumption that every square Q
was “good.” What all of this means is made precise (and, we hope, clear)
below. If the reader is already familiar with the random-grid method from
[NTV], we should warn him that our situation has required a small (but
easy) modification of their approach.
Following [NTV], we shall also work on R

2. We suppose we have a fixed
positive measure µ satisfying µ(Q) ≤ ℓ(Q)β for all squares Q, where 0 <
β ≤ 2 is also fixed. All squares are assumed to be Cartesian products of
half-open intervals, like Q = [a, b)× [c, d).
A dyadic grid Γ with scale ℵ (1 ≤ ℵ ≤ 3/2) is a collection of squares Q,

with sides parallel to the coordinate axes, satisfying:

1. every Q has sidelength ℓ(Q) equal to 2kℵ for some integer k;
2. for each k, the squares with ℓ(Q) = 2kℵ tile R

2;
3. the squares Q with ℓ(Q) = 2kℵ are obtained by partitioning each of
the squares Q′ with ℓ(Q′) = 2k+1ℵ into four equal subsquares.

Given a dyadic grid Γ , we say that Q ∈ Γ is bad if there is an R ∈ Γ
such that ℓ(Q) ≤ 2−nℓ(R) and d(Q, ∂R) ≤ ℓ(Q)αℓ(R)1−α, where n is a
positive integer and 0 < α < 1. If Q is not bad, it is called good . Obviously,
goodness and badness depend on n and α. We will prove some lemmas, valid
for certain sums indexed over arbitrary collections of good squares, and at
the end we will choose n (large enough) and α (small enough) to serve our
purpose.
Let Γ be a dyadic grid and let µ be a normalized regular measure. We

say that {φ(I)}I∈Γ is a standard family of functions (relative to Γ ) if, for all
I ∈ Γ , and all x and y in R

2,

|φ(I)(x)| ≤
χI(x)
√

µ(I)
+ ℓ(I)−β

√

µ(I)(1 + |x− xI |/ℓ(I))
−β−ε,

|φ(I)(x)− φ(I)(y)| ≤

(

|x− y|

ℓ(I)

)δ(
χI(x) + χI(y)
√

µ(I)
+ ℓ(I)−β

√

µ(I)

× ((1 + |x− xI |/ℓ(I))
−β−ε + (1 + |y − xI |/ℓ(I))

−β−ε)

)

,

and, for all finite linear sums
∑

γIφ(I),\∣
∣

∣

∑

γIφ(I)

∣

∣

∣

2

dµ ≤
∑

|γI |
2.

We should explain where these inequalities come from. The size and
smoothness estimates (for x and y far from I) are what one gets when
one applies a suitable Calderón–Zygmund kernel K(x1, x2) to a µ-adapted
“Haar function” supported on I (see [NTV]). The estimates for x and y
close to I are, we confess, something of a stopgap: they are analogues of
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what one would get by applying a classical Calderón–Zygmund kernel to
a two-dimensional wavelet supported on I. The third inequality is simply
almost-orthogonality.
We say that a standard family {φ(I)}I∈Γ is good if φ(I) ≡ 0 whenever

I ∈ Γ is bad.
We will be considering finite linear sums f =

∑

I∈Γ λIφ(I) where the
φ(I)’s belong to some good standard family (relative to Γ ). For such a sum,
let us define

g∗(f)(x) ≡

(

∑

I∈Γ

|λI |
2

(

χI
µ(I)
+ℓ(I)−β(1+|x−xI |/ℓ(I))

(−β−2ε+̺)(1−α)

))1/2

,

where ̺ and α are assumed to be small and positive. This is a natural
translation of G(f) to our new situation. Note that g∗(f) depends on the
positive parameters α, β, ε, and ̺, and that this dependence will normally
be suppressed.
Our main theorem is:

Theorem 1.13. Let µ be a normalized regular measure on R
2 and let

0 < p < ∞. There is a constant C = C(p, ̺, n, α, β, ε) such that , if Γ is
any dyadic grid , and f =

∑

I∈Γ λIφ(I), where the φ(I)’s belong to some good
standard family (relative to Γ ), then\

|f |p dµ ≤ C
\
(g∗(f))p dµ.

Before going further, we should say a few words about the roles played
by ̺, n, α, β, and ε. The relevance of α and n is, we hope, obvious: they
are part of the definition of good squares. (Why α shows up in precisely
the way it does is another matter, but that will become clear in the proof.)
The parameters β and ε come in because of our bounds on the φ(I)’s. But
the parameter ̺ is mysterious. It is a “bump” which guarantees that certain
integrals and sums have good bounds. In proving Theorem 1.13, we will
need to control integrals of the form

R−β
\

R2

(1 + |x− xQ|/R)
−β−̺ dµ(x),

where R is positive but arbitrary. The reader can easily verify that if µ is a
normalized regular measure and ̺ > 0, the preceding integral has a bound
independent of R; while, if ̺ ≤ 0 and µ = Lebesgue measure, the integral
is infinite. We will repeat this observation below (see Observation 1.5 in the
next section; see also the proof of Lemma 1.8). We will also have to control
sums of the form

∑

I∈Γ
I⊂Q

(ℓ(I)/ℓ(Q))̺µ(I)
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for arbitrary squares Q ∈ Γ . This sum is bounded by C(̺)µ(Q) if ̺ > 0 but
can be infinite otherwise.
We say that a Borel measure ν is A∞ relative to µ if for every positive

number τ there is a σ > 0 such that, for all squares Q and Borel sets E ⊂ Q,
if µ(E) ≤ σµ(Q), then ν(E) ≤ τν(Q).
We shall see that Theorem 1.13 (with a suitable adjustment in the con-

stant C) also holds with respect to measures ν that are A∞ relative to µ.
Precisely, the definitions of the φ(I)’s and g

∗(f) remain unchanged (in par-
ticular, they are still expressed in terms of µ), but the integral inequality
becomes \

|f |p dν ≤ C
\
(g∗(f))p dν.

By means of the averaging trick alluded to above, we obtain the promised
generalization of Theorem 0.1, one making no assumption of “goodness” on
squares. The statement of this corollary requires two new definitions, one of
which is standard. The standard one is this: If I is a square and λ > 0, then
λI denotes the square concentric with I and of sidelength equal to λℓ(I).
The next definition is not quite so standard.
Let Γ be a dyadic grid on R

2, and let µ be a normalized regular measure
on R

2 (with “parameter” β). Let τ be a small positive number. We say that
a family of functions {φ(I)}I∈Γ , indexed over Γ , is τ -adapted to Γ if, for all
I ∈ Γ and x and y in R

2,

|φ(I)(x)| ≤
χI(x)

√

µ((1 + τ)I)
+ ℓ(I)−β

√

µ(I)(1 + |x− xI |/ℓ(I))
−β−ε,

|φ(I)(x)− φ(I)(y)| ≤

(

|x− y|

ℓ(I)

)δ(
χI(x) + χI(y)
√

µ((1 + τ)I)
+ ℓ(I)−β

√

µ(I)

× ((1 + |x− xI |/ℓ(I))
−β−ε + (1 + |y − xI |/ℓ(I))

−β−ε)

)

,

and, for all finite linear sums
∑

γIφ(I),\∣
∣

∣

∑

γIφ(I)

∣

∣

∣

2

dµ ≤
∑

|γI |
2.

Essentially, a family is τ -adapted if it is a standard family plus a little
more. However, we must warn the reader that this “little more” might not
be so little. For example, it entails replacing the estimate

|φ(I)(x)| ≤
χI(x)
√

µ(I)
+ ℓ(I)−β

√

µ(I)(1 + |x− xI |/ℓ(I))
−β−ε

with

|φ(I)(x)| ≤
χI(x)

√

µ((1 + τ)I)
+ ℓ(I)−β

√

µ(I)(1 + |x− xI |/ℓ(I))
−β−ε,
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and µ((1 + τ)I) might be infinitely larger than µ(I). This is unfortunate,
but the τ is what (literally) gives us the “wiggle room” to carry out our
averaging argument.
We define a corresponding, “τ -adjusted” g∗-function:

g̃∗(f)(x)

≡

(

∑

I

|λI |
2

(

χ(1+τ)I
µ(I)

+ ℓ(I)−β(1 + |x− xI |/ℓ(I))
(−β−2ε+̺)(1−α)

))1/2

,

where, as before, ̺ and α are assumed to be small positive numbers. Note
that g̃∗(f) is “a little” larger than g∗(f), but that this “little” might be
enormous.
The generalization of Theorem 0.1 is:

Theorem 2.1. Let {φ(I)}I∈Γ be τ -adapted to a dyadic grid Γ . Let 0 <
p <∞. There is a constant C = C(p, β, τ, ̺, α) such that , for all finite linear
sums f =

∑

I γIφ(I), \
R2

|f |p dµ ≤ C
\

R2

(g̃∗(f))p dµ.

Moreover , if ν is any measure which is A∞ relative to µ, we also have\
R2

|f |p dν ≤ C
\

R2

(g̃∗(f))p dν

for all such p and f , where the constant C now also depends on ν.

We prove Theorem 1.13 in Section 1 and we prove Theorem 2.1 in Sec-
tion 2.

We wish to express our profound debt to [NTV], and in particular to
Fedor Nazarov. Our original version of Theorem 2.1 applied only to 1 ≤ p
<∞. He patiently explained the trick that allowed us to extend it to p < 1.
We also wish to express our gratitude to the referee for the very careful

reading given to this paper, and for thoughtful suggestions which have made
it much easier to read. These included the correction of a non-obvious (but
treacherous) typographical error in a crucial inequality.
The final revision of this paper was made in Spain, while I was on sab-

batical at the Universidad de Sevilla. I do not know how to adequately thank
the Universidad de Sevilla, and especially Carlos Perez, my friend and col-
league, for their generous hospitality. While at the Universidad de Sevilla, I
was supported by a fellowship from the Ministerio de Educación, Cultura,
y Deporte (number SAB2003-0003), for which I am deeply grateful.

1. When every square is good. The stopping time argument calls
for some basic definitions. Until we say otherwise, all squares are assumed
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to belong to a fixed dyadic grid Γ ; and, until we say otherwise, we shall be
working with a fixed finite linear sum f =

∑

I∈Γ λIφ(I), where the φ(I)’s
belong to a good standard family.

Definition 1.1. If Q ∈ Γ , then S(Q) = {I ∈ Γ : I 6⊂ Q}.

We think of S(Q) as consisting of the squares that “surround” Q.

Definition 1.2. If Q ∈ Γ , then N(Q) = {I ∈ Γ : I ⊂ Q, ℓ(I) =
(1/2)ℓ(Q)}.

We think of N(Q) as the “next generation” begotten by Q.

Definition 1.3. For Q ∈ Γ , define

F (Q) =
1

µ(Q)

\
Q

(

∑

I∈S(Q)

λIφ(I)(x)
)

dµ(x),

and set F (Q) to be zero if µ(Q) = 0. We define a corresponding maximal
operator

F ∗(x) = sup
Q : x∈Q

|F (Q)|.

We also define, for x ∈ Q,

F (Q, x) =
∑

I∈S(Q)

λIφ(I)(x),

and note that

F (Q) =
1

µ(Q)

\
Q

F (Q, x) dµ(x).

Definition 1.4. For Q ∈ Γ , we define a partial Littlewood–Paley oper-
ator :

G(Q) =
(

1

µ(Q)

\
Q

(

∑

I∈S(Q)

|λI |
2

(

χI
µ(I)
+ℓ(I)−β(1+|x−xI |/ℓ(I))

−β−2ε+̺

))

dµ(x)

)1/2

if µ(Q) > 0 and zero otherwise. We define a corresponding maximal Little-
wood–Paley operator :

G∗(x) = sup
Q : x∈Q

G(Q).

As the reader can probably guess, we will prove Theorem 1.13 via a
good-λ inequality. If he has read [W2], it is only natural for him to think
that this inequality will have the form

µ({x : F ∗(x) > 2λ, G∗(x) ≤ γλ}) ≤ γ̃µ({x : F ∗(x) > λ}).

But it will not. The actual inequality we will prove has the form

µ({x : F ∗(x) > 2λ, g∗(f)(x) ≤ γλ}) ≤ γ̃µ({x : F ∗(x) > λ}).
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However, we will use G∗(x) in an essential way in our stopping time argu-
ments.
As in [W2], the stopping time argument will follow from a series of

lemmas, which we have laid out below, so as to correspond fairly closely to
the order in [W2]. However, before beginning these, we wish to repeat an
observation we made in the introduction, and which we invited the reader
to prove for himself.

Observation 1.5. Let µ be a normalized regular measure on R
2, with

parameter β > 0, and let γ > β. There is an absolute constant C = C(γ, β)
such that , for all R > 0 and all x0 ∈ R

2,

R−β
\
(1 + |x− x0|/R)

−γ dµ(x) ≤ C.

Now we prove the lemmas.

Lemma 1.6. For µ-a.e. x, |f(x)| ≤ F ∗(x).

Proof. Trivial.

Lemma 1.7. For every x, G∗(x) ≤ cg∗(f)(x), where c depends only on
the “natural” parameters.

Proof. We take x and y to be arbitrary points in Q, and consider I ∈
S(Q), with I a good square. We wish to compare

(1.1)
χI
µ(I)
+ ℓ(I)−β(1 + |x− xI |/ℓ(I))

−β−2ε+̺

and

(1.2)
χI
µ(I)
+ ℓ(I)−β(1 + |y − xI |/ℓ(I))

(−β−2ε+̺)(1−α),

and show that (1.1) ≤ c(1.2), with a constant independent of x and y.
If Q ⊂ I, there is nothing to prove. The inequality is also easy to prove

if ℓ(Q) ≤ ℓ(I) or if d(Q, I) > ℓ(Q). Therefore we only need to consider the
case where ℓ(I) < ℓ(Q), I is close to Q, but I is disjoint from Q.
Since I is good, we know that either ℓ(I) > 2−nℓ(Q) or d(I, ∂Q) >

ℓ(I)αℓ(Q)1−α. In the former case our inequality is easy to prove, with a
constant that depends on n. The reason is that then |x − xI | and |y − xI |
are comparable, with comparability constants depending on n. By itself this
fact would yield

(1 + |x− xI |/ℓ(I))
−β−2ε+̺ ≤ C(1 + |y − xI |/ℓ(I))

−β−2ε+̺,

and the extra 1− α in the exponent just makes the right-hand side bigger.
So now we suppose that I 6⊂ Q, ℓ(I) is small, and d(I, ∂Q) >

ℓ(I)αℓ(Q)1−α.
On the one hand, we have

|x− xI | > ℓ(I)
αℓ(Q)1−α,
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implying

|x− xI |

ℓ(I)
>

(

ℓ(Q)

ℓ(I)

)1−α

,

and therefore

1 +
|x− xI |

ℓ(I)
>

(

ℓ(Q)

ℓ(I)

)1−α

.

On the other hand,

1 +
|y − xI |

ℓ(I)
≤ C
ℓ(Q)

ℓ(I)
.

Combining the inequalities, and inverting, we get
(

1 +
|x− xI |

ℓ(I)

)−1

≤

(

ℓ(I)

ℓ(Q)

)1−α

≤ C

(

1 +
|y − xI |

ℓ(I)

)−(1−α)

,

from which the inequality (1.1) ≤ c(1.2) follows, by raising both sides to the
positive power β + 2ε− ̺.
The inequality we have just proved shows that, for all y in Q,

1

µ(Q)

\
Q

(

∑

I∈S(Q)

|λI |
2

(

χI
µ(I)
+ ℓ(I)−β(1 + |x− xI |/ℓ(I))

−β−2ε+̺

))

dµ(x)

≤ Cg∗(f)(y),

which gives the lemma.

We will encounter the style of the preceding proof repeatedly. (As John
Garnett likes to say, “Five hundred theorems—one proof.”)

Lemma 1.8. Let Q ∈ Γ , and let x, y, and z be points in Q. Then
∣

∣

∣

(

∑

I∈S(Q)

λIφ(I)(x)
)

−
(

∑

I∈S(Q)

λIφ(I)(y)
)∣

∣

∣
≤ cg∗(f)(z).

Proof. Define h =
∑

I∈S(Q) λIφ(I), and set

h1 =
∑

I∈S(Q)
ℓ(I)≥ℓ(Q)

λIφ(I), h2 =
∑

I∈S(Q)
ℓ(I)<ℓ(Q)

λIφ(I).

We will show that (i) |h1(x)−h1(y)| ≤ cg
∗(f)(z) and (ii) |h2(x)| ≤ cg

∗(f)(z).
(i) By the smoothness bound on the φ(I)’s,

|h1(x)− h1(y)| ≤
∑

I∈S(Q)
ℓ(I)≥ℓ(Q)

|λI |(
|x− y|

ℓ(I)
)δ
(

χI(x) + χI(y)
√

µ(I)
+ ℓ(I)−β

√

µ(I)

× ((1 + |x− xI |/ℓ(I))
−β−ε + (1 + |y − xI |/ℓ(I))

−β−ε)

)

,
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which we split into two pieces:

(1.3)
∑

I :Q⊂I,Q 6=I

|λI |(
|x− y|

ℓ(I)
)δ
1

√

µ(I)

and

(1.4)
∑

I∈S(Q) :Q∩I=∅
ℓ(I)≥ℓ(Q)

|λI |

(

|x− y|

ℓ(I)

)δ

× (ℓ(I)−β
√

µ(I)((1 + |x− xI |/ℓ(I))
−β−ε + (1 + |y − xI |/ℓ(I))

−β−ε)).

Now, |x − y| ≤ cℓ(Q) and, for each positive k, there is a unique I con-
taining Q such that ℓ(I) = 2kℓ(Q). Therefore, by the Cauchy–Schwarz in-
equality, the first piece (1.3) is less than or equal to

c

(

∑

I :Q⊂I

|λI |
2

µ(I)

)1/2

≤ cg∗(z)

for any z ∈ Q.
The second piece (1.4) is less than or equal to a constant times

∑

I∈S(Q) :Q∩I=∅
ℓ(I)≥ℓ(Q)

|λI |

(

ℓ(Q)

ℓ(I)

)δ

ℓ(I)−β
√

µ(I)(1 + |z − xI |/ℓ(I))
−β−ε,

because 1 + |x− xI |/ℓ(I) and 1 + |y − xI |ℓ(I) are both comparable to 1 +
|z − xI |/ℓ(I). Using Cauchy–Schwarz again, the second piece is less than or
equal to a constant times
(

∑

I∈S(Q) :Q∩I=∅
ℓ(I)≥ℓ(Q)

|λI |
2ℓ(I)−β(1 + |z − xI |/ℓ(I))

−β−2ε+̺
)1/2

×

(

∑

I∈S(Q) :Q∩I=∅
ℓ(I)≥ℓ(Q)

(

ℓ(Q)

ℓ(I)

)2δ

µ(I)ℓ(I)−β(1 + |z − xI |/ℓ(I))
−β−̺

)1/2

.

The first factor is less than or equal to g∗(f)(z) (again, the 1 − α in the
definition of g∗(f) only helps things).

We claim that the second factor is less than or equal to a constant. Our
argument will be in the spirit of that on page 36 of [W2].

We split the sum up according to the sizes of the ℓ(I)’s:

∞
∑

k=0

2−2kδ
∑

I∈S(Q) : ℓ(I)=2kℓ(Q)

µ(I)ℓ(I)−β(1 + |z − xI |/ℓ(I))
−β−̺;
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and it is clearly enough to show that
∑

I∈S(Q) : ℓ(I)=2kℓ(Q)

µ(I)ℓ(I)−β(1 + |z − xI |/ℓ(I))
−β−̺

is less than or equal to a constant independent of k. However, a moment’s
thought shows that this last sum is bounded by a constant times

R−β
\

R2

(1 + |x− xQ|/R)
−β−̺ dµ(x),

where R = 2kℓ(Q), which, by our observation, is ≤ C(β, ̺). That takes care
of (i).

(ii) This argument will closely follow that on pages 36–38 of [W2], with
a couple of twists.

Write R
2 = Q ∪

⋃

j Qj , where the Qj ’s are congruent, disjoint copies
of Q. Every I occurring in our sum lies inside a unique Qj . Thus,

|h2(x)| ≤
∑

j

∑

I : I⊂Qj

|λIφ(I)(x)|

=
∑

j : d(Q,Qj)=0

∑

I : I⊂Qj

|λIφ(I)(x)|+
∑

j : d(Q,Qj)>0

∑

I : I⊂Qj

|λIφ(I)(x)|

≡ (I) + (II).

We will handle (II) first. The Qj ’s in this sum satisfy d(Q,Qj) ≥ ℓ(Q),
making the terms especially easy to handle. By the size bound on the φ(I)’s
and the Cauchy–Schwarz inequality,

(II) ≤
(

∑

j : d(Q,Qj)≥ℓ(Q)

∑

I : I⊂Qj

|λI |
2ℓ(I)−β(1 + |x− xI |/ℓ(I))

−β−2ε+̺
)1/2

×
(

∑

j : d(Q,Qj)≥ℓ(Q)

∑

I : I⊂Qj

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺
)1/2

.

The first factor is easily to seen to be ≤ cg∗(f)(z), for any z ∈ Q, with c
independent of z. We claim that the second factor is less than or equal to a
constant.

Consider, for fixed j,
∑

I : I⊂Qj

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺.

Take I ⊂ Qj . For some positive c, an absolute constant, we have

|x− xI | > c|xQ − xQj |,



210 M. Wilson

implying (using the fact that |xQ − xQj |/ℓ(Q) ≥ 1)

1 + |x− xI |/ℓ(I)) > c
′(1 + |xQ − xQj |/ℓ(Q))(ℓ(Q)/ℓ(I));

and thus

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺

≤ c̃ℓ(I)−βµ(I)(1 + |xQ − xQj |/ℓ(Q))
−β−̺(ℓ(Q)/ℓ(I))−β−̺

≤ c̃ℓ(Q)−β(1 + |xQ − xQj |/ℓ(Q))
−β−̺

∑

I⊂Qj

(ℓ(I)/ℓ(Q))̺µ(I).

We estimate the last expression by writing the sum as

∞
∑

k=0

∑

I : I⊂Qj
ℓ(I)=2−kℓ(Qj)

2−k̺µ(I) = C̺µ(Qj),

where we recall that ℓ(Qj) = ℓ(Q).

Thus, the second factor bounding (II) is dominated by a constant times
the square root of

ℓ(Q)−β
∑

j

µ(Qj)(1 + |xQ − xQj |/ℓ(Q))
−β−̺,

which, following the reasoning above, is bounded by a constant times

R−β
\

R2

(1 + |x− xQ|/R)
−β−̺ dµ(x),

for R = ℓ(Q)—and is therefore less than a constant.

Now we deal with (I). The cubes I in this sum all satisfy d(I,Q) ≤ cℓ(Q)
and (from our “good square” hypothesis) either ℓ(I) > 2−nℓ(Q) or d(I,Q) >
ℓ(I)αℓ(Q)1−α. The upshot is that, for any x ∈ Q,

c1ℓ(I)
αℓ(Q)1−α < |x− xI | ≤ c2ℓ(Q).

Let x and z be arbitrary points in Q. The preceding inequalities imply

1 + |x− xI |/ℓ(I) > c(ℓ(Q)/ℓ(I))
1−α

and

1 + |z − xI |/ℓ(I) < cℓ(Q)/ℓ(I),

where the second inequality uses the fact that 1 ≤ ℓ(Q)/ℓ(I). Combining
these, we get

(1 + |x− xI |/ℓ(I))
−β−2ε+̺ ≤ c(1 + |z − xI |/ℓ(I))

(−β−2ε+̺)(1−α)

with c an absolute constant.
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By the Cauchy–Schwarz inequality and the preceding inequality,

(I) ≤
(

∑

j : d(Q,Qj)=0

∑

I : I⊂Qj

|λI |
2ℓ(I)−β(1 + |x− xI |/ℓ(I))

−β−2ε+̺
)1/2

×
(

∑

j : d(Q,Qj)=0

∑

I : I⊂Qj

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺
)1/2

≤ c
(

∑

j : d(Q,Qj)=0

∑

I : I⊂Qj

|λI |
2ℓ(I)−β(1 + |z − xI |/ℓ(I))

(−β−2ε+̺)(1−α)
)1/2

×
(

∑

j : d(Q,Qj)=0

∑

I : I⊂Qj

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺
)1/2

≤ cg∗(f)(z)
(

∑

j : d(Q,Qj)=0

∑

I : I⊂Qj

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺
)1/2

.

We will finish the proof by showing that the second factor in the last ex-
pression is bounded by a constant.
This is where it becomes essential to make α very small.
By the inequality proved in the last paragraph but one,

(1 + |x− xI |/ℓ(I))
−β−̺ ≤ c(ℓ(I)/ℓ(Q))(β+̺)(1−α),

which implies

ℓ(I)−β(1 + |x− xI |/ℓ(I))
−β−̺ ≤ ℓ(Q)−β(ℓ(I)/ℓ(Q))(β+̺)(1−α)−β.

We now choose α so small that η ≡ (β+̺)(1−α)−β > 0. Then the second
factor in the last expression is bounded by a constant times the square root
of

∑

j : d(Q,Qj)=0

ℓ(Qj)
−β
∑

I : I⊂Qj

µ(I)(ℓ(I)/ℓ(Qj))
η,

which is easily seen (consult the earlier arguments) to be less than a constant.
Lemma 1.8 is proved.

Remark. The proof of our bound on h2 has the following consequence,
which will be useful later. Suppose that our finite linear sum f=

∑

I∈Γ λIφ(I)
is such that λI = 0 unless I is a subset of some fixed Q0 ∈ Γ . Then, for all
z /∈ Q0, F

∗(z) ≤ cg∗(f)(z), where c is an absolute constant. To see this, let
z /∈ Q0 and let Q ∈ Γ be such that z ∈ Q. Either Q0 ⊂ Q or Q∩Q0 = ∅. In
the former case, F (Q) = 0. In the latter case, |F (Q)| is less than or equal
to the supremum over Q of

∑

I∈Γ |λI | |φ(I)|, which is less than or equal to
cg∗(f)(z).

Lemma 1.9. If Q′ ∈ N(Q), µ(Q′) > 0, and z ∈ Q′ then |F (Q)−F (Q′)| ≤
cg∗(f)(z).
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Proof.

|F (Q)− F (Q′)|

=

∣

∣

∣

∣

1

µ(Q)

\
Q

(

∑

I∈S(Q)

λIφ(I)(x)
)

dµ(x)−
1

µ(Q′)

\
Q′

(

∑

I∈S(Q′)

λIφ(I)(x
′)
)

dµ(x′)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

µ(Q)

\
Q

(

∑

I∈S(Q)

λIφ(I)(x)
)

dµ(x)−
1

µ(Q′)

\
Q′

(

∑

I∈S(Q)

λIφ(I)(x
′)
)

dµ(x′)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

µ(Q′)

\
Q′

(

∑

I∈S(Q′)\S(Q)

λIφ(I)(x
′)
)

dµ(x′)

∣

∣

∣

∣

= (I) + (II).

Because the φ(I)’s are continuous, term (I) is no bigger than
∣

∣

∣

(

∑

I∈S(Q)

λIφ(I)(x)
)

−
(

∑

I∈S(Q)

λIφ(I)(y)
)
∣

∣

∣

for some points x and y in Q. By Lemma 1.8, this is

≤ c inf
z∈Q
g∗(f)(z) ≤ c inf

z∈Q′
g∗(f)(z),

so (I) is all right.

We may bound the integrand in (II) the same way we bounded h2 in
the proof of Lemma 1.8 (strictly speaking, the way we bounded (I) in that
proof); details are left to the reader. Lemma 1.9 is proved.

Lemma 1.10. Let Q′ ∈ N(Q). There is a c > 0 such that , for all z ∈ Q,
G(Q′) ≤ cg∗(f)(z).

Remark. The purpose of this lemma is to give a lower bound on g∗(f).

Proof. We may assume that µ(Q′) > 0 and take z ∈ Q \ Q′. Take I ∈
S(Q′) and x ∈ Q′. Then it is enough to show

χI(x)

µ(I)
+ ℓ(I)−β(1 + |x− xI |/ℓ(I))

−β−2ε+̺

≤ c

[

χI(z)

µ(I)
+ ℓ(I)−β(1 + |z − xI |/ℓ(I))

(−β−2ε+̺)(1−α)

]

.

If Q′ ⊂ I then (since I 6= Q′) χI ≡ 1 across Q and the inequality is trivial.
If z ∈ I and ℓ(I) ≤ ℓ(Q′), then |z − xI | ≤ c|x − xI |, and the inequality is
once again trivial. If ℓ(I) ≥ ℓ(Q′) and I ∩ Q′ = I ∩ Q = ∅ then |z − xI |
and |x − xI | are comparable, and the inequality is trivial. If ℓ(I) ≤ ℓ(Q

′)
and d(I,Q′) > ℓ(Q′) then |z−xI | and |x−xI | are still comparable, and the
inequality is still trivial.
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The nub of the matter is: ℓ(I) ≤ ℓ(Q′), z /∈ I, I∩Q′ = ∅, d(I,Q′) ≤ ℓ(Q′).
Now we use the fact that I is good, which implies that either ℓ(I) > 2−nℓ(Q′)
or d(I,Q′) > ℓ(I)αℓ(Q′)1−α. These imply that, for all x ∈ Q′,

|x− xI | > cℓ(I)
αℓ(Q′)1−α,

where c depends on n. Thus

1 + |x− xI |/ℓ(I) > c(ℓ(Q
′)/ℓ(I))1−α.

On the other hand,

|z − xI | ≤ cℓ(Q
′),

implying

1 + |z − xI |/ℓ(I) ≤ cℓ(Q
′)/ℓ(I),

where we use the fact that ℓ(Q′)/ℓ(I) ≥ 1. Raising the last two inequalities
to the appropriate negative powers, we get

(1 + |x− xI |/ℓ(I))
−β−2ε+̺ ≤ c(1 + |z − xI |/ℓ(I))

(−β−2ε+̺)(1−α),

which proves our result.

Lemma 1.11. Let Q0 ∈ Γ and f =
∑

I∈Γ λIφ(I) where the φ(I)’s belong
to some good standard family relative to Γ . Assume that λI = 0 for I ∈
S(Q0) (i.e., the only I’s that count are properly contained in Q0). For every
γ̃ > 0 there is a γ > 0 such that

µ({x ∈ Q0 : F
∗(x) > 1, g∗(f)(x) ≤ γ}) ≤ γ̃µ(Q0).

Proof. Let J be the family of maximal Q ⊂ Q0 with the property that
there exists a Q′ ∈ N(Q) such that G(Q′) > Aγ, where A is a large positive
constant to be chosen presently—in fact, right now. By Lemma 1.10, we
have g∗(f) > cAγ on all of any Q ∈ J . Pick A = c−1.
Before proceeding, let us observe that, for every Q ∈ J , G(Q) ≤ Aγ,

and also that, if x /∈
⋃

J Q, then G
∗(x) ≤ Aγ.

Let K be the family of maximal I ⊂ Q0 that are not properly contained
in any Q ∈ J and which satisfy |F (I)| > 1.
Take the union J ∪ K and consider its family of maximal cubes L. We

claim

(1.5) {x ∈ Q0 : F
∗(x) > 1, g∗(f)(x) ≤ γ}

⊂
⋃

Q :Q∈L
|F (Q)|>1

{x ∈ Q : g∗(f)(x) ≤ γ}.

The proof is easy. Suppose F ∗(x) > 1. Then |F (I)| > 1 for some maximal
I containing x. But if I is properly contained in any Q ∈ J , then g∗(f)(x)
> γ. So x must belong to the right-hand union of (1.5).
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Because the Q ∈ L are disjoint, our problem reduces to bounding
∑

Q∈L
|F (Q)|>1

µ({x ∈ Q : g∗(f)(x) ≤ γ}).

Define F1 ≡ {I ⊂ Q0 : ∀J ∈ L (I 6⊂ J)} and F2 ≡ {I ⊂ Q0 : I ⊂ J
for some J ∈ L}, and set

fl =
∑

I∈Fl

λIφ(I)

for l = 1, 2. Similarly, define analogous partial sum and maximal operators
Fl(Q) and F

∗
l (x); and Littlewood–Paley operators Gl(Q), G

∗
l (x), and g

∗(fl).
Let us note in passing that both of the Gl(Q)’s are ≤ Aγ for all Q ∈ L and
that G∗1(x) ≤ Aγ if x /∈

⋃

LQ.

Then our problem has reduced (again!) to bounding
∑

Q∈L
|Fl(Q)|>1/2

µ({x ∈ Q : g∗(f)(x) ≤ γ}).

for l = 1, 2.

We take l = 1 first. We observe that, for x ∈ Q ∈ L,

f1(x) =
∑

I∈F1

λIφ(I)(x) =
∑

I∈F1
I 6⊂Q

λIφ(I)(x)r = F1(Q, x).

(Think about it.)

Because of the φ(I)s’ almost-orthogonality,\
|f1(x)|

2 dµ(x) ≤
∑

I∈F1

|λI |
2 =

\(
∑

I∈F1

|λI |
2

µ(I)
χI

)

dµ.

If x ∈ Q ∈ L, then the last integrand is ≤ (G1(Q))
2 ≤ (Aγ)2. If x /∈

⋃

LQ,
then it is ≤ (G∗1(x))

2 ≤ (Aγ)2. Therefore,\
|f1(x)|

2 dµ(x) ≤ (Aγ)2µ(Q0).

Now the weak-type (2, 2) bound for the µ-weighted dyadic maximal function
implies

∑

Q∈L
|F1(Q)|>1/2

µ(Q) ≤ 4(Aγ)2µ(Q0),

yielding our estimate for F1.

Now take l = 2. Enumerate the members of L as {Qk}, and tem-
porarily fix x ∈ Qj ∈ L. Without loss of generality, we can assume that
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infQj g
∗(f)(z) ≤ γ. Our first task is to estimate F2(Qj , x), which is

∑

k : k 6=j

∑

I⊂Qk

λIφ(I)(x)

where x ∈ Qj and—important fact!—the I’s are all good.
By the Cauchy–Schwarz inequality,

|F2(Qj , x)|
2 ≤
(

∑

k : k 6=j

∑

I⊂Qk

|λI |
2ℓ(I)−β(1 + |x− xI |/ℓ(I))

−β−2ε+̺
)

(1.6)

×
(

∑

k : k 6=j

∑

I⊂Qk

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺
)

.

By an argument which is by now familiar, the first factor on the right-hand
side of (1.6) is bounded by a constant times

inf
Qj
g∗(f)(z) ≤ γ2.

We claim the second is bounded by a constant times
∑

k : k 6=j

ℓ(Qk)
−β
∑

I⊂Qk

(ℓ(I)/ℓ(Qk))
ηµ(I)(1 + |x− xQk |/ℓ(Qk))

−β−̺,

where η = (β + ̺)(1− α)− β > 0.
To see this, fix k and consider x /∈ Qk and I ⊂ Qk, with I good.
If d(x,Qk) ≤ ℓ(Qk), then

|x− xI | ≥ cℓ(I)
αℓ(Qk)

1−α,

implying

1 + |x− xI |/ℓ(I) > c(ℓ(Qk)/ℓ(I))
1−α(1 + |x− xQk |/ℓ(Qk)),

and thus

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺

≤ cℓ(Qk)
−β(1 + |x− xQk |/ℓ(Qk))

−β−̺(ℓ(I)/ℓ(Qk))
ηµ(I).

On the other hand, if d(x,Qk) > ℓ(Qk), then

|x− xI |/ℓ(I) > c(|x− xQk |/ℓ(Qk))(ℓ(Qk)/ℓ(I)),

which implies

1 + |x− xI |/ℓ(I) > c(1 + |x− xQk |/ℓ(Qk))(ℓ(Qk)/ℓ(I)),

yielding

ℓ(I)−βµ(I)(1 + |x− xI |/ℓ(I))
−β−̺

≤ cℓ(Qk)
−β(1 + |x− xQk |/ℓ(Qk))

−β−̺(ℓ(I)/ℓ(Qk))
̺µ(I)

≤ cℓ(Qk)
−β(1 + |x− xQk |/ℓ(Qk))

−β−̺(ℓ(I)/ℓ(Qk))
ηµ(I),

since η < ̺. This proves the claim.
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Now, for each fixed k 6= j,
∑

I⊂Qk

(ℓ(I)/ℓ(Qk))
ηµ(I) ≤ Cµ(Qk),

and so the second factor is dominated by
∑

k : k 6=j

ℓ(Qk)
−βµ(Qk)(1 + |x− xQk |/ℓ(Qk))

−β−̺.

Therefore,

|F2(Qj , x)|
2 ≤ Cγ2

(

∑

k : k 6=j

ℓ(Qk)
−βµ(Qk)(1 + |x− xQk |/ℓ(Qk))

−β−̺
)

≤ Cγ2
(

∑

k

ℓ(Qk)
−βµ(Qk)(1 + |x− xQk |/ℓ(Qk))

−β−̺
)

.

Therefore
∑

j

\
Qj

|F2(Qj , x)|
2 dµ(x)

≤ Cγ2
∑

k

(ℓ(Qk)
−βµ(Qk)

\
(1 + |x− xQk |/ℓ(Qk))

−β−̺ dµ(x))

≤ Cγ2
∑

k

µ(Qk) ≤ Cγ
2µ(Q0),

and now our bound follows from a weak (2, 2) estimate as before. This proves
Lemma 1.11.

Theorem 1.12. Let f =
∑

I∈Γ λIφ(I) where the φ(I)’s belong to some
good standard family relative to Γ . Furthermore, suppose that all of the I’s
occurring in f ’s sum are subsets of some Q′ ∈ Γ . For every γ̃ > 0 there is
a γ > 0 such that , for all λ > 0,

µ({x : F ∗(x) > 2λ, g∗(f)(x) ≤ γλ}) ≤ γ̃µ({x : F ∗(x) > λ}).

Proof. Because of the remark following the proof of Lemma 1.8, we have
F ∗ ≤ cg∗(f) outside Q′. Therefore, for sufficiently small γ,

µ({x /∈ Q′ : F ∗(x) > 2λ, g∗(f)(x) ≤ γλ}) = 0.

The remark also points out that F (Q) will be 0 for all Q’s that contain Q′.
Therefore we only need to consider x’s inside Q′ and F (Q)’s for Q ⊂ Q′.
For λ > 0, let {Qj} be the maximal Qj ⊂ Q

′ such that |F (Qj)| > λ. Such
maximal Qj ’s exist because F (Q

′) = 0. Note also that each Qj is strictly
contained in Q′. Our problem now reduces to showing, for each Qj ,

(1.7) µ({x ∈ Qj : F
∗(x) > 2λ, g∗(f)(x) ≤ γλ}) ≤ γ̃µ(Qj).

It will turn out that γ̃ can be taken to be cγ2 where c is an absolute constant.
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Let Qj ∈ N(Q
∗). Then |F (Q∗)| ≤ λ. By Lemma 1.9, |F (Qj)−F (Q

∗)| ≤
c infQj g

∗(f). If |F (Qj)| > 1.1λ, then, by taking γ small enough, the left-
hand side of (1.7) is 0. We do take γ to be “small enough,” which allows
us to assume |F (Qj)| ≤ 1.1λ. Now Lemma 1.8 implies that, for all x ∈ Qj ,
|F (Qj , x)| ≤ 1.1λ+cγλ, which will be ≤ 1.2λ if we take γ small enough (and
we do). Therefore we can ignore the F (Qj , x) portion of f and concentrate
on

f̃ ≡
∑

I⊂Qj

λIφ(I).

Define an analogous partial sum and Littlewood–Paley objects F̃ (Q), G̃(Q),
g̃∗(f̃), etc., for this “truncated”sum. Then our problem has (at last!) reduced
to showing

µ({x ∈ Qj : F̃
∗(x) > .8λ, g̃∗(f̃)(x) ≤ γλ}) ≤ γ̃µ(Qj).

But, after dividing f̃ by .8λ, this becomes the statement of Lemma 1.11,
with γ̃ ≈ γ2. Theorem 1.12 is proved.

Proof of Theorem 1.13. There exist congruent squares Q′1, Q
′
2, Q

′
3, and

Q′4, all in Γ , such that all of the I’s in f ’s sum are contained in
⋃

Q′i. Define

fi =
∑

I∈Γ
I⊂Q′i

λIφ(I),

with corresponding partial sum and Littlewood–Paley objects Fi, F
∗
i , Gi,

g∗(fi), etc. Notice that, since we are dealing with finite linear sums, all
of these objects are bounded. It is now important to recall a basic fact
about the method of good-λ inequalities. Suppose that h1 and h2 are two
non-negative functions defined on some measure space (X,m), and that for
every ε > 0 there is a δ > 0 such that, for all λ > 0,

m({x ∈ X : h1(x) > 2λ, h2(x) ≤ δλ}) ≤ εm({x ∈ X : h1(x) > λ}).

Then, given 0 < p <∞, there is a constant C such that\
X

(h1(x))
p dm ≤ C

\
X

(h2(x))
p dm

provided that the left-hand integral is finite. By Theorem 1.12, a good-λ
inequality holds between h1 = F

∗
i and h2 = g

∗(fi). Therefore our desired
inequality, \

|f |p dµ ≤ C
\
(g∗(f))p dµ,

will follow if we can show that\
(F ∗i )

p dµ <∞
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for each i, under the assumption that\
(g∗(fi))

p dµ <∞.

Now, we have just observed that F ∗i is bounded. Therefore the integral\
Q′i

(F ∗i )
p dµ

presents no problem. On the other hand, as we noted in the proof of Theorem
1.12, we have F ∗i ≤ cg

∗(fi) outside Q
′
i. That was all we needed to finish the

proof of Theorem 1.13. If instead we consider integrals with respect to a
measure ν which is A∞ relative to µ, then the µ-based good-λ inequality
immediately implies the corresponding ν-based good-λ inequality. At the
risk of being redundant (but to avoid a possible confusion), recall that, in
this case, our maximal functions F ∗i , etc., and Littlewood–Paley objects
G∗i , g

∗, etc., are still the ones based on µ. The boundedness of F ∗i and the
pointwise inequality F ∗i ≤ cg

∗(fi) outside Q
′
i now let us conclude that\

|f |p dν ≤ C
\
(g∗(f))p dν

holds as well, the only difference being that now the constant C carries an
additional dependence on ν’s A∞ specifications.

2. When some squares are bad: the averaging trick. Now we
come to an averaging trick that will allow us to extend the Main Theorem,
with a little modification, to arbitrary (not necessarily good) finite sums
f =
∑

I : I∈Γ λIφ(I). Here we will depend heavily on the method of random
dyadic grids due to Nazarov, Treil, and Volberg.
Let us assume that, for every I ∈ Γ , there is an integer k such that

ℓ(I) = 2k. Fix a positive number 0 < τ < 1/2. We will now construct
a family of random dyadic grids Γ ′(ω), where ω belongs to a probability
space Ω with probability measure P (to be specified shortly). The squares
in these grids will have sidelengths (1 + τ/2)2k; i.e., for each Q ∈ Γ ′(ω),
there will exist an integer k such that ℓ(Q) = (1 + τ/2)2k.
We construct our random dyadic grids Γ ′(ω) this way. Let n0 be so

large that 2−n0 is much, much smaller than τℓ(I) for any I occurring in the
sum that defines f , and fix n0. Build a “base grid” of squares of the form
[j(1+τ/2)2−n0 , (j+1)(1+τ/2)2−n0)×[j′(1+τ/2)2−n0 , (j′+1)(1+τ/2)2−n0),
where j and j′ are arbitrary integers. Following [NTV], we subdivide these
squares into fourths, sixteenths, etc., in the usual fashion, to obtain the
smaller squares of the grid Γ ′(ω). We follow [NTV] also in working “up-
ward”, letting the square [0, (1+τ/2)2−n0)× [0, (1+τ/2)2−n0) have a prob-
ability 1/4 of being the northeast, northwest, southwest, or southeast cor-
ner of a square of sidelength (1 + τ/2)2−n0+1, drawing the other squares of
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sidelength (1 + τ/2)2−n0+1 consistent with this, and repeating this random
choice forever on successively larger squares.

Let us say that I ∈ Γ is enveloped (relative to Γ ′(ω)) if there exists a
Q ∈ Γ ′(ω) such that I ⊂ Q ⊂ (1 + τ)I. By drawing pictures the reader
can quickly convince himself that the probability that any I in f ’s sum is
enveloped is bounded below by cτ2, where c is an absolute constant. Note
that any I is enveloped by at most one Q ∈ Γ ′(ω).
Now, given that I is enveloped, the conditional probability that the en-

veloping Q is bad relative to Γ ′(ω) is less than or equal to a constant times

2−nα

1− 2−α
,

which we can make < 1/2 by taking n large (see [NTV]). Let us assume that
n is so fixed.

Define, for I in f ’s sum,

χ(I, ω) =

{

1 if I is enveloped by a good Q ∈ Γ ′(ω),

0 otherwise.

We have observed that, for such I,

cI ≡
\
Ω

χ(I, ω) dP (ω) > cτ2,

for an absolute constant c.

We write

f =
∑

I∈Γ

λIφ(I) =
\
Ω

(

∑

I∈Γ

c−1I λIφ(I)χ(I, ω)
)

dP (ω)

≡
\
Ω

(

∑

I∈Γ

γ(I, ω)φ(I)

)

dP (ω).

We have written f as an average of sums
∑

I∈Γ γ(I, ω)φ(I), where each
|γ(I, ω)| ≤ Cτ−2|λI | and is zero if I is not enveloped by a good Q ∈ Γ

′(ω).
For such Q and I, the following inequalities are trivial:

χI(x)
√

µ((1 + τ)I)
≤
χQ(x)

µ(Q)
≤
χ(1+τ)I(x)
√

µ(I)
;

also

ℓ(I)−β
√

µ(I)(1 + |x− xI |/ℓ(I))
−r

≤ C1(β, r)ℓ(Q)
−β
√

µ(Q)(1 + |x− xQ|/ℓ(Q))
−r

≤ C2(β, r)ℓ(I)
−β
√

µ((1 + τ)I)(1 + |x− xI |/ℓ(I))
−r,

independent of x, where the constants only depend on β and the positive
number r.
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Whenever γ(I, ω) 6= 0, let us denote I’s enveloping, good Q ∈ Γ (ω) by
Q(I, ω).

Let us recall that a family {φ(I)}I , indexed over I ∈ Γ , is τ -adapted to
Γ if, for all I ∈ Γ and all x and y in R

2,

|φ(I)(x)| ≤
χI(x)

√

µ((1 + τ)I)
+ ℓ(I)−β

√

µ(I)(1 + |x− xI |/ℓ(I))
−β−ε,

|φ(I)(x)− φ(I)(y)| ≤

(

|x− y|

ℓ(I)

)δ(
χI(x) + χI(y)
√

µ((1 + τ)I)
+ ℓ(I)−β

√

µ(I)

× ((1 + |x− xI |/ℓ(I))
−β−ε + (1 + |y − xI |/ℓ(I))

−β−ε)

)

,

and, for all finite linear sums
∑

γIφ(I),\∣
∣

∣

∑

γIφ(I)

∣

∣

∣

2

dµ ≤
∑

|γI |
2.

If {φ(I)}I is τ -adapted to Γ , then, for every ω ∈ Ω, {φ(Q(I,ω))}I is,
modulo an absolute positive constant, a good standard family relative to
Γ (ω), where we are setting φ̃(Q(I,ω)) ≡ φ(I) when γ(I, ω) 6= 0, and setting it
equal to 0 otherwise. By Theorem 1.13, for every ω ∈ Ω,\
R2

∣

∣

∣

∑

I

γ(I, ω)φ̃(Q(I,ω))

∣

∣

∣

p

dµ

≤ C
\

R2

(

∑

I

|γ(I, ω)|2

×

(

χQ(I,ω)

µ(Q(I, ω))
+ ℓ(I)−β(1 + |x− xI |/ℓ(I))

(−β−2ε+̺)(1−α)

))p/2

dµ,

which is less than or equal to

C
\

R2

(

∑

I

|λI |
2

(

χ(1+τ)I
µ(I)

+ ℓ(I)−β(1 + |x− xI |/ℓ(I))
(−β−2ε+̺)(1−α)

))p/2

dµ

for every ω ∈ Ω. Define

g̃∗(f)(x)

≡

(

∑

I

|λI |
2

(

χ(1+τ)I
µ(I)

+ ℓ(I)−β(1 + |x− xI |/ℓ(I))
(−β−2ε+̺)(1−α)

))1/2

.

By taking averages in ω ∈ Ω, we obtain, for 1 ≤ p <∞,

(2.1)
\

R2

|f |p dµ ≤ C
\

R2

(g̃∗(f))p dµ,
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for all finite linear sums from a τ -adapted family. We also immediately obtain
the inequality

(2.2)
\

R2

|f |p dσ ≤ C
\

R2

(g̃∗(f))p dσ,

valid for measures σ that are A∞ relative to µ. This gives Theorem 2.1 for
1 ≤ p <∞.
An ingenious trick, which the author learned from F. Nazarov, allows us

to extend (2.1) and (2.2) to p’s below 1. Let us suppose we have a fixed grid
Γ and a finite, τ -adapted family {φ(I)}I . We consider the family of linear
combinations f =

∑

I∈Γ λIφ(I) that satisfy\
(g∗(f))p dµ ≤ 1,

and we let R be the maximum value of\
|f |p dµ

for all such f . It is obvious that R is finite and that the maximum is attained
by some f . What we need to show is that R is bounded by some absolute
constant, independent of the family {φ(I)}I .
For every ω ∈ Ω, we write

f = fg(ω) + fb(ω) =
∑

I

λIχ(I, ω)φ(I) +
∑

I

λI(1− χ(I, ω))φ(I).

So, for each ω ∈ Ω, fg is the “good” part of f (it is indexed only over squares
I that are enveloped by squares that are good relative to Γ ′(ω)) and fb is
the “bad” part. It is trivial that

(g∗(f))2 = (g∗(fg(ω)))
2 + (g∗(fb(ω)))

2

for each ω ∈ Ω. Also, there is a δ > 0 such that, for every I in f ’s sum,\
Ω

χ(I, ω) dP (ω) ≥ δ,

and therefore \
Ω

(g∗(fb)(ω))
2 dP (ω) ≤ (1− δ)(g∗(f))2.

Note, by the way, that the preceding is a pointwise inequality (we have
suppressed its dependence on x).
Let us assume that

T
(g∗(f))p dµ(x) ≤ 1, and let us choose an optimal f ,

i.e., one for which
T
|f |p dµ(x) = R; such an f exists by compactness. Since

0 < p ≤ 1, we have, for each ω ∈ Ω,

R =
\
|f |p dµ(x) ≤

\
|fg(ω)|

p dµ(x) +
\
|fb(ω)|

p dµ(x)

≤ C +R
\
(g∗(fb(ω)))

p dµ(x).
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The “C” (an absolute constant) in the second inequality follows from the
fact that fg’s decomposition only involves “good” squares. We claim that,
for some ω0 ∈ Ω,

T
(g∗(fb(ω0)))

p dµ is less than or equal to 1− δ′, for some
δ′ that is independent of f . That will prove the result, because it will yield

R ≤ C + (1− δ′)R,

implying R ≤ C/δ′.
We write\
Ω

\
(g∗(fb(ω)))

p dµ(x) dP (ω) =
\\
Ω

(g∗(fb(ω)))
2)p/2 dP (ω) dµ(x)

≤
\(\
Ω

(g∗(fb(ω)))
2 dP (ω)

)p/2

dµ(x)

≤ (1− δ)p/2
\
(g∗(f))p dµ(x)

≤ (1− δ)p/2 ≡ 1− δ′.

This implies that
T
(g∗(fb(ω)))

p dµ(x) must be less than or equal to 1 − δ′

for at least one ω0 ∈ Ω, and that is what we wanted. Theorem 2.1 is proved.

A final remark . These arguments work equally well, with obvious modifi-
cations, in R

d when d > 2. A normalized regular measure µ is now defined to
be one such that µ(Q) ≤ ℓ(Q)β for all cubes Q and for some fixed 0 < β ≤ d.
The definitions of good and bad squares, good standard family, and the max-
imal functions and Littlewood–Paley objects are unchanged, except that now
β can be as big as d. The proofs of Lemmas 1.1–1.11 and Theorems 1.12 and
1.13 are unchanged, except that now some of the multiplicative constants
depend on d. The definitions of “enveloped” and τ -adapted do not change,
but the lower bound on cI , which was cτ

2, becomes cτd. This introduces an
additional dependence in the constant C in the R

d generalization of Theo-
rem 2.1. And, of course, if ν is a d-dimensional measure that is A∞ relative
to µ, the corresponding extension of Theorem 2.1 holds for it as well.
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