
STUDIA MATHEMATICA 183 (3) (2007)

Extension of vector-valued holomorphic

and harmonic functions

by

José Bonet (Valencia), Leonhard Frerick (Trier) and
Enrique Jordá (Alcoy)

Abstract. We present a unified approach to the study of extensions of vector-valued
holomorphic or harmonic functions based on the existence of weak or weak∗-holomorphic
or harmonic extensions. Several recent results due to Arendt, Nikolski, Bierstedt, Holt-
manns and Grosse-Erdmann are extended. An open problem by Grosse-Erdmann is solved
in the negative. Using the extension results we prove existence of Wolff type representa-
tions for the duals of certain function spaces.

1. Introduction. The purpose of this paper is to present a unified treat-
ment of the extension of holomorphic or harmonic vector-valued functions,
including the several variables case. Vector-valued holomorphic functions
are useful in the theory of topological algebras [19] and of one-parameter
semigroups [4, 18], in infinite-dimensional holomorphy [15, Chapter 3], and
in operator theory [1, 20]. Composition operators on spaces of this type have
been investigated recently [10, 11, 32, 31]. The topic we consider is closely
related to the investigation of conditions ensuring that a weakly holomor-
phic function with values in a locally convex space is holomorphic. In fact, it
is much easier to show that a function is weakly holomorphic and conclude
that the original function is holomorphic as a consequence of an abstract
theorem. The classical theorem of Dunford and Grothendieck shows that a
function f defined on an open set Ω ⊆ C in the complex plane with values
in a complete locally convex space E is holomorphic if u ◦ f is holomorphic
for every u ∈ E′ in the topological dual of E. Several authors presented
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extensions of this result and related it to the extension of holomorphic func-
tions; see Bogdanowicz [8], Colombeau [13] and Gramsch [21, 22]. Weak
conditions for holomorphy of a vector-valued function have found renewed
interest recently. Grosse-Erdmann [23] showed that it is enough to test weak
holomorphy of a locally bounded function with values in a locally complete
locally convex space on the elements of a separating subset of the dual of the
range space, solving a problem posed by Wrobel [42]. Arendt and Nikolski
[2] gave a short proof of this result if the range space is Fréchet; and Grosse-
Erdmann [24] shortened his original proof with a more functional-analytic
approach. He also treated holomorphic extension, and stated several open
problems which we address in our article.

The basic problem we consider can be stated as follows: Let Ω be an
open subset of RN (or a smooth manifold), let F be a sheaf of smooth func-
tions on Ω, and let f : M → E be a function from a subset M of Ω into a
locally convex space E such that u◦f has a unique extension fu ∈ F (Ω) for

each u in a separating subset of E′. Does f have an extension f̂ belonging
to the space F (Ω, E) of vector-valued F (Ω)-functions? We present theo-
rems which simultaneously extend results due to Gramsch [22], Arendt and
Nikolski [2] and Grosse-Erdmann [24]. Our approach using sheaves of smooth
functions permits us to treat not only spaces defined on open subsets of the
complex plane as in [2] and [24], but also holomorphic or harmonic func-
tions of several variables and kernels of linear partial differential operators,
thus including consequences of the work of Bierstedt and Holtmanns [7] and
Enflo and Smithies [17]. Besides the positive results, we solve a problem of
Grosse-Erdmann in the negative; see Example 20. Finally, we give represen-
tations of F ′(Ω) and of F ′(Ω, E) in the spirit of Wolff’s description of the
dual of the space of one variable holomorphic functions on a domain [41],
used by Grosse-Erdmann to obtain the extension result [24, Theorem 2].

Our proofs are functional-analytic. They are based on properties of
Fréchet–Schwartz spaces, the local completion of a locally convex space [36,
Chapter 5], a theorem of Raikov about (DFS)-spaces (see e.g. [36, 8.5.28]),
and the theory of ε-products of Schwartz [39]. In fact all the spaces of holo-
morphic or harmonic functions we are interested in are Fréchet–Schwartz
spaces and their duals are (DFS)-spaces. These powerful abstract techniques
have not been exploited before in this context. They permit us to derive
many results with relatively smooth proofs.

2. Preliminaries and notation

2.1. ε-products and locally complete spaces. Our notation for locally
convex spaces and functional analysis is standard. We refer the reader to
[27, 29, 33, 36], and we recall some terminology. For a locally convex space E,
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which we assume to be Hausdorff, E⋆ and E′ stand for its algebraic dual
and topological dual, respectively. We denote by β(E, F ) the strong topol-
ogy and by σ(E, F ) the weak topologies on E with respect to a dual pair
〈E, F 〉. As usual, if E′ is the topological dual of a locally convex space E, the
topology σ(E′, E) is called the weak⋆ topology. We denote by co = co(E′, E)
the topology of uniform convergence on the compact and absolutely convex
subsets of the locally convex space E. The polar in E of a subset A of F
in the dual pair 〈E, F 〉 is A◦ := {x ∈ E : |f(x)| ≤ 1 for all f ∈ A}. A
subspace G of E′ is called separating if u(x) = 0 for each u ∈ G implies
x = 0. Clearly this is equivalent to G being weak⋆-dense (or dense in the
co-topology). If E, F are locally convex spaces, then L(E, F ) denotes the
vector space of all continuous linear maps from E to F . Given T ∈ L(E, F )
we denote by T t ∈ L(F ′, E′) its transpose defined by T t(u) = u ◦T ∈ E′ for
each u ∈ F ′. EεF := Le(E

′
co, F ) is called Schwartz’s ε-product of E and F

[29, 39]; here e denotes the topology of uniform convergence on the equicon-
tinuous subsets of E′. The map T 7→ T t is an isomorphism between EεF
and FεE. For more information, especially for the representation of spaces
of vector-valued functions, we refer the reader to [5, 29, 38, 39]. In case Y is
a Fréchet–Schwartz (or (FS)) space, i.e. a Fréchet space which has a defining
spectrum of Banach spaces with compact linking maps, Y εE = Lβ(Y ′

β, E),
since Y is in particular a Montel space, i.e. a locally convex space which is
barrelled and such that all its bounded sets are relatively compact. Montel
spaces are reflexive and Fréchet–Schwartz spaces have even a fundamental
system of reflexive Banach spaces (cf. [29, 33]). A (DFS)-space is the strong
dual of a Fréchet–Schwartz space and can be represented as a countable in-
ductive limit of a sequence of (reflexive) Banach spaces with compact linking
maps.

A locally convex space E is said to be locally complete whenever every
absolutely convex, closed, bounded subset B of E spans a Banach space EB

endowed with the Minkowski gauge of B. A linear subspace F of E is said to
be locally closed if for every continuously embedded normed space (X, ‖ · ‖)
and every sequence (xn)n ⊆ F ∩X which converges to some x in the normed
space X, we have x ∈ F . The local closure of a linear subspace F ⊆ E is
defined as the smallest locally closed subspace of E which contains F , and it

is denoted by F
lc
. For a locally convex space E, if Ê denotes the completion

of E, the local completion Elc of E is defined as the local closure of E in Ê.
Every locally complete subspace of E is locally closed, and a locally closed
subspace of a locally complete space is locally complete [36, 5.1.20].

2.2. Holomorphic, harmonic and C∞ functions. Our notation for spaces
of (vector-valued) differentiable or holomorphic functions is standard. We
refer the reader to [4, 27, 37–39].
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A function f : Ω ⊆ RN → E from an open connected subset (a domain)
Ω of RN into a locally convex space is said to be of class C 1 if, for all
1 ≤ i ≤ N , there is a continuous function ∂f/∂xi : Ω → E such that

∂f(x)

∂xi
= lim

t→0

1

t
(f(x + tei) − f(x)), x ∈ Ω.

Here ei denotes the ith vector of the canonical basis of RN . For smooth
functions on Ω ⊆ RN we use standard multi-index notation. Thus, if α =
(α1, . . . , αN ) ∈ NN , then

∂αf =
∂|α|

∂xα
f =

∂|α|

∂xα1

1 · · · ∂xαN

N

f,

where |α| = α1 + · · · + αN . The space of all functions f : Ω → E such
that ∂|α|f/∂xα : Ω → E is a well defined continuous function for |α| ≤ k
is denoted by C k(Ω, E). Whenever f : Ω → E is infinitely differentiable
and P (∂, x) =

∑
|α|≤m aα(x)∂α is a linear partial differential operator with

smooth coefficients, then P (∂, x)f is also an infinitely differentiable function.

A function f : Ω → E defined on an open subset Ω of the complex
plane C is said to be holomorphic if, for each z0 ∈ Ω, there exists r > 0
and a sequence (an)n ⊂ E such that f(z) =

∑∞
n=0 an(z − z0)

n for each
z ∈ B(z0, r). The space of holomorphic functions with values in E is denoted
by H (Ω, E). If the space E is locally complete, a function f ∈ C∞(Ω, E)
belongs to H (Ω, E) if and only if f satisfies the Cauchy–Riemann equations.
Analogously one can define the space of vector-valued harmonic functions
h(Ω, E) as the vector-valued kernel of the Laplacian. Several variable vector-
valued holomorphic and harmonic functions are defined in a natural way.

If Ω is a domain and E is locally complete, then the spaces C∞(Ω, E)
(resp. H (Ω, E), h(Ω, E)) and C∞(Ω)εE (resp. H (Ω)εE, h(Ω)εE) can be
canonically identified via the map f 7→ Tf (u) := u◦f , u ∈ E′. This is a con-
sequence of [12, Prop. 2]. The result is well known when E is quasicomplete
(see [27, Theorem 16.7.4] and also [25, 38]).

2.3. Sheaves. We now recall the definition of topological sheaf. We refer
the reader to [6, Section 1] or [35, Chapter V, Section 2] for more details
and examples.

Definition 1. Let Ω be an open set in RN . We say that F is a sheaf

of locally convex spaces over Ω if the following conditions are satisfied:

(a) For each open subset U of Ω there is a locally convex space F (U)
such that F (∅) := {0} and there are continuous linear maps (called
restrictions) ̺U,V : F (U) → F (V ) for V ⊆ U such that ̺U,W =
̺V,W ◦ ̺U,V whenever W ⊆ V ⊆ U .
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(b) If ω ⊆ Ω is open and ω is the union of open subsets {U : U ∈ U },
then F (ω) is the projective limit of (F (U), ̺ω,U)U∈U . In particular,
for each family {fU ∈ F (U) : U ∈ U } satisfying ̺U,U∩V (fU ) =
̺V,U∩V (fV ), U, V ∈ U , there is a unique f ∈ F (ω) with ̺ω,U (f) =
fU for each U ∈ U .

Remark 2. The open mapping theorem for (LB) spaces implies that if
F is a sheaf over Ω of distinguished Fréchet spaces and {Un : n ∈ N}
is a countable open covering of an open subset ω of Ω then F (ω)′ =
indn F (Un)′, the inductive limit taken with respect to the transposes of
the restrictions.

In the following we will omit “of locally convex spaces” when we refer
to a sheaf. Our main example is the sheaf C∞(Ω) of infinitely differentiable
functions over a domain Ω: for every open set U ⊆ Ω the vector space
C∞(U) is the vector space of all infinitely differentiable functions defined
on U . Here the ̺U,V are simply the restrictions. By a closed subsheaf of C∞

over Ω we mean a sheaf F such that each F (ω) ⊆ C∞(ω) is closed for
each ω ⊆ Ω open. The restriction maps are the same. All these sheaves are
Fréchet–Schwartz sheaves; by this we mean that F (ω) is a Fréchet–Schwartz
space for each ω ⊆ Ω open. We remark that some of our results could be
formulated in a more abstract way so as to include other Fréchet–Schwartz
sheaves of functions over Ω, like the ultradifferentiable functions of Beurling
type.

Vector-valued sheaves are defined using ε-products e.g. in [6, 1.4]. Let
Ω be a domain in RN and C∞ be the sheaf of infinitely differentiable func-
tions. Let P1(∂, x), . . . , Pm(∂, x) be linear partial differential operators with
smooth coefficients on Ω. Let Pω : C∞ → (C∞)m be defined by

Pω : C
∞(ω) → C

∞(ω)m, f 7→ (P1(∂, x)f, . . . , Pm(∂, x)f),

for ω ⊆ Ω open. For a locally complete space E and ω ⊆ Ω we consider the
maps

Pωε id : C
∞(ω)εE → C

∞(ω)mεE.

These maps define a morphism in the category of sheaves of vector spaces
over Ω. Moreover, ker(Pω)εE = ker(Pωε id) and the maps

ker(Pω)εE → {f ∈ C
∞(ω, E) : P1(∂, x)f = · · · = Pm(∂, x)f = 0},

T 7→ fT , fT (x) = T (δx), x ∈ ω,

define an isomorphism of sheaves. These remarks lead to the following defi-
nition.

Definition 3. Let Ω be a domain in RN , let F be a closed subsheaf of
C∞ over Ω, and let E be a locally complete space. Then the sheaf defined
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by

F (ω, E) := {x 7→ T (δx) : T ∈ F (ω)εE}, ω ⊆ Ω open,

is called the sheaf of F -functions with values in E.

This definition is coherent with the usual definition of the vector-valued
sheaves of holomorphic and harmonic functions with values in a locally com-
plete locally convex space E by the remarks at the end of the former sub-
section. The coherence of this definition, which in principle could seem more
restrictive, is also a direct consequence of Theorem 9 below. Observe that
in the case of spaces of holomorphic or harmonic functions F on Ω, the
spaces are closed subsheaves of the sheaf C of continuous functions on Ω.
Equivalently, since all the spaces are Fréchet, the spaces C (ω) and C∞(ω)
induce the same topology on F (ω) for each ω ⊆ Ω open. The same holds for
sheaves defined by kernels of hypoelliptic linear partial differential operators
with constant coefficients. The following definitions are needed to formulate
precisely the first problem we want to deal with.

Definition 4. A set M ⊆ Ω × NN
0 is called a set of uniqueness for

F (Ω) if g ∈ F (Ω) vanishes whenever ∂αg(x) = 0 for all (x, α) ∈ M , i.e.
whenever span{δx ◦ ∂α : (x, α) ∈ M} is σ(F (Ω)′, F (Ω))-dense.

Definition 5. If M ⊆ Ω × NN
0 is a set of uniqueness for F (Ω) and

G ⊆ E′ is a separating subspace, we define FG(M, E) as the space of all
f : M → E such that for each u ∈ G there is fu ∈ F (Ω) with ∂αfu(x) =
u ◦ f(x, α), (x, α) ∈ M . Since M is supposed to be a set of uniqueness for
F (Ω), the functions fu are unique.

With the notation established so far, the first extension problem to be
considered in this paper is as follows: When is the (injective) restriction map

RM,G : F (Ω, E) → FG(M, E), f 7→ (∂αf(x))(x,α)∈M ,

surjective?

3. Extension of vector-valued functions. Hereafter, E denotes a
locally complete locally convex space, Ω an open and connected subset of
RN , F a closed subsheaf of C∞ over Ω and F (Ω, E) the corresponding
sheaf of functions with values in E. Then F (Ω) is an (FS)-space since it
is supposed to be closed in C∞(Ω). According to [2], a subspace G ⊆ E′

is said to determine boundedness if every σ(E, G)-bounded subset of E is
also bounded in E. Clearly, if G ⊆ E′ determines boundedness in E′, then
G is separating, hence dense in (E′, σ(E′, E)). The following lemma is very
important in the rest of the article. It states known results in a way which
is suitable for the applications we have in mind.
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Lemma 6.

(a) If T ∈L(E, F ), then there is a (unique) extension T lc ∈L(Elc, F lc)
of T to the local completions.

(b) If Y is a Fréchet–Schwartz space and X is a subspace of the (DFS )

space Y ′, then the local closure of X in Y ′ satisfies X
lc

= X
Y ′

.

(c) If E is a locally convex space and t is an admissible topology , i.e.

σ(E, E′) ≤ t ≤ τ(E, E′), τ(E, E′) being the Mackey topology , then

(E, t)lc = Elc algebraically. In particular , if E is locally complete,
then E equipped with an admissible topology is also locally complete.

Proof. Part (a) is exactly [36, 5.1.25]. Part (b) is a consequence of
Raikov’s theorem [36, 8.5.28]. It is enough to show that the local closure

X
lc

of X is closed in Y ′. Since Y is a Fréchet–Schwartz space, we have
Y ′ = indn Gn, Gn a Banach space and the linking maps Gn → Gn+1 are

compact for each n ∈ N. The locally closed subspace X
lc

intersects each
Gn in a closed subset of Gn. We can apply Raikov’s theorem [36, 8.5.28] to

conclude that X
lc

is closed in Y ′. Part (c) follows from [36, 5.1.6 and 7],
since

(E, τ(E, E′))∧ →֒ (E, t)∧ →֒ (E, σ(E, E′))∧

and all the admissible topologies have the same bounded sets.

In the rest of the article we will make the following natural identifica-
tion: Suppose that X is a dense locally convex subspace of the dual Y ′ of a

Fréchet–Schwartz space Y . Since Y is reflexive, we consider Y as an alge-

braic subspace of X⋆. In fact, Y is the set of all elements of the dual X⋆ of

X which are continuous on X for the topology induced by Y ′. In case no lo-
cally convex topology is mentioned on X, we endow it with the finest locally
convex topology which makes any linear mapping T : X → E continuous for
an arbitrary locally convex space E. In this case T t acts from E′ into X⋆.

Proposition 7. Let Y be a Fréchet–Schwartz space, let X ⊆ Y ′ be a

dense subspace, and let E be a locally complete space. If T : X → E is

a not necessarily continuous linear map, then the following conditions are

equivalent :

(i) There is a (unique) extension T̂ ∈ L(Y ′, E) of T .

(ii) T t(E′) ⊆ Y (= Y ′′).
(iii) (T t)−1(Y ) (= {u ∈ E′ : u ◦ T ∈ Y }) determines boundedness in E.

Proof. Trivially (i) implies (ii) and (ii) implies (iii). Clearly, the map
T : (X, σ(X, Y )) → (E, σ(E, (T t)−1(Y ))) is always continuous. If we as-
sume (iii), the latter space is locally complete. Lemma 6 implies that the
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local completion of (X, σ(X, Y )) is (Y ′, σ(Y ′, Y )) and so there is a unique

continuous linear extension T̂ : (Y ′, σ(Y ′, Y )) → (E, σ(E, (T t)−1(Y ))).
Now, Y ′ endowed with its strong topology is a bornological space and
T̂ : Y ′ → E maps bounded sets in Y ′ into bounded sets in E. Hence T̂
is continuous.

Corollary 8. Let Y be a Fréchet–Schwartz space, E a locally complete

space, T ∈ L(Y ′, E) and F a locally closed subspace of E. If there exists a

separating subspace X of Y ′ such that T (X) ⊆ F then T ∈ L(Y ′, F ).

Proof. The restriction T : X → F is continuous, hence there is a unique
extension T lc : X lc → F lc = F . Now Y ′ = X lc by Lemma 6(b), so T = T lc.

Theorem 9. Let F be a closed subsheaf of C∞ over a domain Ω ⊆ RN ,
let M be a set of uniqueness for F (Ω), and let G be a subspace of the

dual of a locally complete space E which determines boundedness. Then the

restriction map RM,G from F (Ω, E) to FG(M, E) is surjective.

Proof. Let f ∈ FG(M, E). The space X := span{δx ◦ ∂α : (x, α) ∈ M}
is a (weak⋆) dense subspace of the dual of the Fréchet–Schwartz space
Y := F (Ω). Let the linear map T : X → E be determined by T (δx ◦ ∂α) :=
f(x, α), (x, α) ∈ M . Since G is σ(E′, E)-dense, T is well defined. Let u ∈ G
and fu be the unique element in F (Ω) with ∂αfu(x) = u ◦ T (δx ◦ ∂α),
(x, α) ∈ M . We can consider fu as a linear form on X, so we obtain
u ◦ T ∈ F (Ω) = Y for all u ∈ G, hence (T t)−1(Y ) determines bound-

edness in E. By Proposition 7, there is an extension T̂ ∈ F (Ω)εE of T .

Putting f̂(x) := T̂ (δx), x ∈ Ω, we conclude that RM,G(f̂) = f .

In particular, Theorem 9 shows that if f : Ω → E is a function such that
u ◦ f ∈ F (Ω) for each u ∈ E′ then there exists T : F (Ω)′ → E such that
f(x) = T (δx) for every x ∈ Ω. Therefore, for Ω ⊆ CN = R2N open, one can
obtain directly from Theorem 9 the representation H (Ω, E) ≃ H (Ω)εE
valid for locally complete spaces E (cf. [12, 28]). Moreover, to illustrate
the scope of Theorem 9, we mention that it gives a direct proof of the
fact that weak-C∞ implies C∞: Let f : Ω → E be a map into a locally
complete space E such that u ◦ f ∈ C∞(Ω) for all u ∈ E′. Theorem 9 shows
that f(x) = Tf (δx), x ∈ Ω, with Tf ∈ C∞(Ω)εE. Using the Arzelà–Ascoli
theorem the map S : Ω → C∞(Ω)′, x 7→ δx, is infinitely differentiable, hence
f = Tf ◦ S is infinitely differentiable. This also applies to holomorphic and
harmonic functions. Thus, a general version of the Dunford–Grothendieck
theorem is a simple consequence of our extension result, Theorem 9. Also to
illustrate the applicability of Theorem 9 we mention explicitly how to extend
two results obtained in [2] to holomorphic functions with values in Banach
spaces E; it is enough to take as F the sheaf of holomorphic functions.
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Corollary 10.

(a) Let F be a closed subsheaf of C∞ over a domain Ω ⊆ RN and

let E be a locally complete locally convex space. If G ⊆ E′ deter-

mines boundedness in E then F (Ω, E) is formed by the functions

f : Ω → E such that u ◦ f ∈ F (Ω) for all u ∈ G.

(b) (cf. [2, Theorem 3.5, Lemma 3.6]) Let E be a locally complete locally

convex space. Let Ω ⊆ C be a domain, A ⊆ Ω a set with an accumu-

lation point , and f : A → E a map such that u ◦ f has an analytic

extension to Ω for each u contained in a subspace G of E′ which de-

termines boundedness on E. Then there exists f̂ ∈ H (Ω, E) which

extends f .

(c) (cf. [2, Theorem 2.2]) Let Ω ⊆ C be a domain, E a locally complete

space, F a locally closed subspace of E, and f ∈ H (Ω, E). Assume

that either

(i) the set Ω0 := {z ∈ Ω : f(z) ∈ F} has an accumulation point in

Ω, or

(ii) there exists z0∈Ω such that ∂kf(z0)/∂zk∈F for k = 0, 1, 2, . . . .

Then f(z) ∈ F for all z ∈ Ω.

Proof. Part (a) follows from Theorem 9 for M = Ω. Part (b) is a direct
consequence of Theorem 9. Part (c) follows from Corollary 8.

In fact, [28, Theorems 3 and 8] are immediate consequences of Theorem 9.

Remark 11. In [2, Theorem 3.5] it is shown that if E is a Banach space
and G is a closed and almost norming subspace of E′, which means that
E is a topological subspace of the Banach space G′, then the conclusion of
Corollary 10(b) holds. Such a subspace G ⊂ E′ determines boundedness in
E by the uniform boundedness principle. Hence Corollary 10(b) is a proper
extension of [2, Theorem 3.5]. We include an application of Corollary 10(b)
which cannot be deduced from [2, Theorem 3.5].

Let X, Y be Banach spaces. For x ∈ X and y ∈ Y ′, we define δx,y :
L(X, Y ) → K, T 7→ y(T (x)). The set G := span{δx,y : x ∈ X, y ∈ Y ′} de-
termines boundedness in L(X, Y ) endowed with its norm topology. This is a
consequence of the Banach–Steinhaus theorem. Therefore, as a consequence
of Corollary 10(b), if M is a subset of a domain Ω ⊆ C with an accumu-
lation point and f : M → L(X, Y ) is a function such that z 7→ y(f(z)(x))
has a holomorphic extension to Ω for each y ∈ Y ′ and x ∈ X, then f
has an extension f̂ ∈ H (Ω, L(X, Y )), where L(X, Y ) is endowed with its
norm topology. This extension result implies the well known fact that each
L(X, Y )-valued holomorphic function for the weak operator topology is also
holomorphic for the norm topology.
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It is worth remarking that [2, Theorem 1.5] shows that if E is a Banach
space, D is the unit disc in C and G ⊆ E′ is a subspace which does not
determine boundedness in E, then there exists a discontinuous function
f : D → E such that u ◦ f ∈ H (D) for all u ∈ G. Hence Theorem 9 is
optimal if we only require M to be a set of uniqueness.

4. Extension of locally bounded functions. Let Ω be a domain
in C. A subset M ⊆ Ω is said to fix the topology in H (Ω) (determine local

convergence in [24]) if for all K ⊆ Ω compact there is L ⊆ Ω compact and
C ≥ 1 such that

sup
z∈K

|g(z)| ≤ C sup
z∈M∩L

|g(z)| for all g ∈ H (Ω).

Grosse-Erdmann [24] posed the following problem (see the end of Section 3
and comments below the statement of Theorem 2 in the Introduction of [24]):
Let M ⊆ Ω fix the topology in H (Ω), let E be a locally convex space, let

f : M → E be a map such that f(M ∩ K) is bounded in E for all compact

K ⊆ Ω, and assume that for a separating subspace G of E′, u ◦ f has a

holomorphic extension to Ω for every u ∈ G. Does f have a holomorphic

extension to Ω? Gramsch [22] proved that this is so if G
β(E′,E)

= E′, which
clearly includes the case that E is semireflexive (cf. [28, Theorem 6]). His
result inspired Grosse-Erdmann to study this problem and he gave a positive
solution for E being Br-complete (see [24, Remark 2(b), p. 406]). Below we
give a unified proof of these two cases, and show that the answer to the
problem is in general negative.

The following definitions are needed to pose the problem in a more ab-
stract form.

Definition 12. Let Y be a Fréchet space. An increasing sequence
(Bn)n∈N of bounded subsets of Y ′ fixes the topology in Y if (B◦

n)n∈N is a
fundamental system of zero neighbourhoods of Y .

Definition 13. Let Ω be a domain in RN , and let F be a closed sub-
sheaf of C∞ over Ω. A subset M of Ω × NN

0 fixes the topology in F (Ω) if
for every compact K ⊆ Ω and every k ∈ N there is a compact L ⊆ Ω, l ∈ N

and C ≥ 1 such that

sup{|∂αg(x)| : x ∈ K, |α| ≤ k}

≤ C sup{|∂αg(x)| : x ∈ L, |α| ≤ l, (x, α) ∈ M}

for all g ∈ F (Ω).

For the space of holomorphic functions on Ω ⊆ C the subsets M ⊆ Ω
fixing the topology in H (Ω) can be characterized by a nice geometrical
property, as we see below (cf. [26, 2.5.2, 2.6.8]).
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Remark 14.

(a) Let Ω ⊆ CN be a pseudo-convex domain. Then M ⊆ Ω fixes the

topology in H (Ω) if and only if the H (Ω)-hulls K̂ ∩ MΩ, K ⊆ Ω compact,
are a fundamental system of compact subsets of Ω.

(b) If Ω ⊆ C is a domain, then it is pseudoconvex and the H (Ω)-hull
of a compact subset L ⊆ Ω is the union of L and the relatively compact
components of Ω \ L. Hence M ⊆ Ω fixes the topology in H (Ω) (equiva-
lently in h(Ω)) if and only if there is a fundamental sequence (On)n of Ω of
relatively compact open sets On with ∂On ⊆ On+1 ∩ M .

(c) In the case of Y := H (Ω) and M ⊆ Ω fixing the topology in Y ,
the constant C in Definition 13 can be taken to be 1, because powers of
holomorphic functions are holomorphic.

The cited question of Grosse-Erdmann becomes a special case of the
following more general problem. Let (Ln)n be a fundamental sequence of
compact (or relatively compact open) subsets of Ω. Let M ⊆ Ω × NN

0 . Set
Mn := {(x, α) ∈ M : x ∈ Ln, |α| ≤ n} and Bn := {δx ◦∂α : (x, α) ∈ Mn} ⊆
F (Ω)′. Observe that a set M fixes the topology in F (Ω) in the sense of
Definition 13 if and only if the sequence (Bn)n fixes the topology in F (Ω)
in the sense of Definition 12. This notation will be used in the rest of the
article.

Let M ⊆ Ω × NN
0 fix the topology in F (Ω) and let G be a separating

subspace of E′. We define

FG(M, E)lb := {f ∈ FG(M, E) : f(Mn) is bounded in E for n ∈ N}.

Observe that RM,G(f) belongs to FG(M, E)lb for each f ∈ F (Ω, E). In
this terminology, the cited question of Grosse-Erdmann becomes a special
case of the following more general problem: Let F (Ω) be a closed subsheaf

of C∞ over Ω, let M ⊆ Ω × NN
0 be a set which fixes the topology in F (Ω),

and let G ⊆ E′ be a separating subspace. Is the (injective) restriction map

RM,G : F (Ω, E) → FG(M, E)lb, f 7→ (∂αf(x))(x,α)∈M ,

surjective?

Lemma 15. Let Y be a Fréchet–Schwartz space, let (Un)n∈N be funda-

mental system of zero neighbourhoods for Y , and let X ⊆ Y ′ be a sequentially

dense subspace. If T : X → E is a linear map into a locally convex space E
then

(∗)
⋂

n∈N

span((T t)−1(Un)
σ(E′,E)

) ⊆ (T t)−1(Y ).

Proof. It is clear that the space on the left side of (∗) does not de-
pend on the choice of the fundamental system of zero neighbourhoods. Let
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Y be the reduced projective limit of a sequence (Gn)n∈N of reflexive Ba-
nach spaces such that there are compact linking maps Pn+1,n : Gn+1 → Gn

with dense range. We denote by Pn the induced map from Y to Gn. Then
Y ′ = indn G′

n is the injective inductive limit of an increasing sequence of
reflexive Banach spaces with compact inclusions in,n+1 : G′

n →֒ G′
n+1,

where in,n+1 := (Pn+1,n)t. Using the Grothendieck factorization theorem
[33, 24.33], the sequential density of X and the fact that each convergent
sequence in a (DFS)-space is convergent in one step, it is easy to see that
we can assume that Xn := G′

n ∩ X is dense in G′
n for each n ∈ N. Let Bn

be the unit ball of Gn. The sets Un := P−1
n (Bn), n ∈ N, form a fundamental

system of zero neighbourhoods in Y . We can even assume that they form a
zero basis. Take

u ∈
⋂

n∈N

span((T t)−1(Un)
σ(E′,E)

).

For each n ∈ N there is λn+1 ≥ 1 with u ∈ λn+1(T t)−1(Un+1)
σ(E′,E)

. So,
there is a net (un

α)α∈I ⊆ E′ with un
α ◦ T ∈ λn+1Un+1, α ∈ I, such that

(un
α◦T (x))α∈I converges to u◦T (x) for all x ∈ X. By the very definition of the

Un, for each α ∈ I there exists vn
α ∈ Y such that Pn+1(v

n
α)(x) = un

α◦T (x) for
each x ∈ Xn+1 and Pn+1(v

n
α) ∈ λn+1Bn+1. Now the compactness of Pn+1,n

yields a subnet (Pn(vn
σ(β)))β∈J of (Pn(vn

α))α∈I = (Pn+1,n(Pn+1(v
n
α)))α∈I such

that (Pn(vn
σ(β)))β∈J converges in the Banach space Gn to gn. But for each x ∈

Xn ⊆ Xn+1 and for each α ∈ I we have Pn(vn
α)(x) = Pn+1(v

n
α)(in,n+1(x)) =

un
α ◦ T (x). Then gn(x) = u ◦ T (x) for each x ∈ Xn and for each n ∈ N. The

density of Xn in G′
n yields Pn+1,n(gn+1) = gn for each n ∈ N. This means

precisely u ∈ (T t)−1(Y ).

Theorem 16. Let Y be a Fréchet–Schwartz space, let (Bn)n∈N fix the

topology in Y , and let T : X := span(
⋃
{Bn : n ∈ N}) → E be a linear map

into a locally complete space E which is bounded on each Bn. If

(a) (T t)−1(Y ) is strongly dense in E′ or

(b) (T t)−1(Y ) is weak⋆-dense in E′ and E is Br-complete,

then T has a (unique) extension T̂ ∈ Y εE.

Proof. We first show that X is sequentially dense in Y ′. The sequence
(B◦◦

n )n∈N is a fundamental sequence of bounded sets in the (DFS)-space Y ′.
Accordingly, for each n there is m > n such that the Banach space generated
by B◦◦

m induces on B◦◦
n the topology σ(Y ′, Y ). By the bipolar theorem, the

absolutely convex hull of Bn is σ(Y ′, Y )-dense in B◦◦
n , hence it is sequentially

dense, since this topology is metrizable. As every element of Y ′ is in one of
the sets B◦◦

n , the proof is complete.
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(1) If Vn := T (Bn)◦, Un := B◦
n, we obtain Vn ∩ (T t)−1(Y ) ⊆ (T t)−1(Un),

n ∈ N. We can apply Lemma 15 to get

(⋆)
⋂

n∈N

span(Vn ∩ (T t)−1(Y )
σ(E′,E)

) ⊆ (T t)−1(Y ).

(2) In view of Proposition 7 it is enough to show that E′ = (T t)−1(Y ).
Now case (a) is trivial, since the Vn are strong zero neighbourhoods and
(T t)−1(Y ) is β(E′, E)-dense. In the case of (b) we have to show that
(T t)−1(Y ) is nearly closed, i.e. the weak⋆-closure of the intersection of it
with any equicontinuous set is contained in it. But this follows from the fact
that each Vn absorbs equicontinuous sets, since they are strong zero neigh-
bourhoods. Thus, for each zero neighbourhood U in E, U◦ ∩ (T t)−1(Y ) ⊆
span(Vn ∩ (T t)−1(Y )) for each n ∈ N. Taking weak⋆-closures easily yields
the conclusion.

Analyzing the previous proof we see that it is enough (instead of (a)
or (b)) to ensure that (T t)−1(Y ) is weak⋆-dense and has, in addition, the fol-
lowing property: for each decreasing sequence (Vn)n∈N of strong zero neigh-
bourhoods in E′ with (⋆), one has (T t)−1(Y ) = E′.

Theorem 17. If M ⊆ Ω × NN
0 fixes the topology in F (Ω) and G ⊆ E′

is separating , then the restriction map RM,G from F (Ω, E) to FG(M, E)lb
is surjective in the following two cases:

(a) E is a Br-complete space or

(b) E is locally complete and G is strongly dense.

Proof. Let f ∈ FG(M, E)lb. There exists fu ∈ F (Ω) such that u ◦
f(x, α) = ∂αfu(x) for each (x, α) ∈ M and for each u ∈ G. Then the linear
map T : span

⋃
n Bn → E defined by T (δx ◦ ∂α) = f(x, α) is well defined

and bounded on each Bn. The conclusion follows by applying Theorem 16
to T .

From Theorem 17 we obtain a general positive solution for the problem
of Wrobel, valid for the harmonic case. That is, if Ω ⊆ CN is a domain and
E is a Banach space (or more generally a Br-complete space), if f : Ω → E
is a locally bounded function such that u ◦ f is holomorphic or harmonic for

each u ∈ G ⊆ E′ separating then f is holomorphic or harmonic. This can
be applied to the following concrete result:

Let H be a complex Hilbert space. For x, y ∈ H we consider the con-
tinuous linear mappings δx,y : L(H) → C, T 7→ 〈Tx, y〉. The subspace
G1 := span{δx,y : x, y ∈ H} ⊆ L(H)′ determines boundedness in L(H).
This can be easily checked using the Banach–Steinhauss theorem (see Re-
mark 11). The subspace G2 = span{δx,x : x ∈ H} ⊆ L(H)′ coincides with G1
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by the polarization formula for sesquilinear forms. If (ei)i∈I is an orthonor-
mal basis in H then G3 = span{δei,ej

: i, j ∈ I} ⊆ L(H)′ is σ(L(H)′, L(H))-
dense. Thus, in view of Corollary 10(a) and the above comment, we obtain
the following result: Given Ω ⊆ C open and f : Ω → L(H), the following

assertions are equivalent:

(1) f ∈ h(Ω, L(H)),
(2) u ◦ f ∈ h(Ω) for each u ∈ G1,

(3) u ◦ f ∈ h(Ω) for each u ∈ G2,

(4) f is locally bounded and u ◦ f ∈ h(Ω) for each u ∈ G3.

This extends [17, Lemma 1] and hence contradicts [17, Example 1 and
the previous assertion]. Grosse-Erdmann [24, Remark 1(d)] had already ob-
served that [17, Example 1] was not correct. We also remark that if H is a
real Hilbert space then the space G2 could not even be σ(E′, E)-dense (cf.
[33, Example 16.19]).

As an immediate consequence of Theorem 17, we obtain the following
result, which is valid for harmonic and several variable holomorphic func-
tions and extends [22, Satz 3.3] and [24, Theorem 2]. By saying that a closed
subsheaf F of C∞ over Ω satisfies the maximum principle we mean that
maxz∈K |f(z)| = maxz∈∂K |f(z)| for each f ∈ F (Ω) and for each K ⊆ Ω
compact.

Corollary 18. Let F (Ω) be closed in C (Ω) and satisfy the maximum

principle, and let (On)n be a fundamental sequence of relatively compact

subdomains of Ω with ∂On ⊆ M ∩ On+1 for each n. If f : M → E is a

function such that f(M ∩ K) is bounded in E for each compact subset K
of Ω and u ◦ f admits an extension fu ∈ F (Ω) for each u ∈ G ⊆ E′, then

f admits an extension f̂ ∈ F (Ω, E) whenever E is Br-complete and G is

separating (i.e. σ(E′, E)-dense) or E is locally complete and G is β(E′, E)-
dense.

If G ⊆ E′ determines boundedness in a locally complete space E then
(E, σ(E, G)) is a locally complete space. Moreover, if S ⊆ E′ is dense in G for
the strong β(E′, E) topology then it is also dense for the β(G, E) topology,
since these two topologies coincide on G. This observation together with
Corollary 10(a) yields the following result, which is relevant when E = X ′,
X a Banach space and G a dense subspace of X ⊆ E′.

Remark 19. The conclusions of Theorem 17 and Corollary 18 remain

true if E is locally complete and G
β(E′,E)

determines boundedness in E.

The next example shows that the assertion of Corollary 18 is not true if
E is only assumed to be locally complete and G is σ(E′, E)-dense.
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Example 20.

(a) Let Ω = C and M :=
⋃

n γn, where γn := {neit : t ∈ [0, 2π) ∩ Q}.
Then there is a function f : M →

⊕
n∈N

l1 such that f(γn) is

bounded for each n ∈ N and there exists a weak⋆-dense subspace

G ⊆ (
⊕

n∈N
l1)

′ such that u◦f admits a holomorphic extension to Ω
for each u ∈ G but f is not continuous.

(b) Let Ω = C and M :=
⋃

n γn, where γn := {neit : t ∈ [0, 2π)}.
Then there is a function f : M →

⊕
n∈N

l1(γn) such that f(γn)
is bounded for each n ∈ N and there exists a weak⋆-dense subspace

G ⊆ (
⊕

n∈N
l1(γn))′ such that u ◦ f admits a holomorphic extension

to Ω for each u ∈ G but f is not continuous.

Proof. We show (a). The proof of (b) is analogous. Take an enumeration
γn = {zn

i : i ∈ N}. First observe that the linear mapping T :
⊕

n l1 →
H (C)′, (αn)n∈N 7→

∑∞
n=1

∑∞
i=1 αn

i δzn
i
, is continuous and injective. The con-

tinuity is easily obtained from the fact that each γn is relatively compact,
and so T maps bounded sets in the bornological space

⊕
n l1 to bounded

sets in H (C)′. To see that it is injective we suppose that there exists a
nontrivial sequence (αn)n in

⊕
n l1 such that u :=

∑∞
n=1

∑∞
i=1 αn

i δzn
i

= 0 in
H (C)′. Fix n0, i0 ∈ N such that αn0

i0
6= 0 and αn

i = 0 for each n > n0 and
for each i ∈ N. We relabel the double sequence (αn

i δzn
i
) as (αkδzk

)k. We may
assume that α1δz1

= αn0

i0
δz

n0
i0

. Take k0 ∈ N such that
∑

k≥k0
|αk| ≤ |α1|/3.

The function f(z) := (z + z1)/2z1 satisfies f(z1) = 1 and |f(zk)| < 1 for

each k > 1. We get j ∈ N such that |
∑k0

k=2 αkf
j(zk)| < |α1|/3. Therefore

|u(f j)| > |α1/3|, a contradiction.

We set E :=
⊕

n l1. We return to the first enumeration of each γn. Now
we define f : M =

⋃
n γn → E, zn

i 7→ (αj)j , each αj ∈ l1 being the zero
sequence except αn which has the ith coordinate 1 and zeros elsewhere. It is
clear that f is not continuous because the l1-norm ‖f(zn

i ) − f(zn
j )‖ is 2 for

i 6= j and n ∈ N. It is also clear that f(γn) is bounded in E for each n ∈ N.
Now the injectivity and continuity of T imply that G := {g ◦T : g ∈ H (C)}
is a σ(E′, E)-dense subspace of E′. To conclude we observe that for each
g ∈ H (C), the function g ◦ T ◦ f : M → C extends to g ∈ H (C).

Remark 21. (i) It is clear that the functions in the above example
cannot be extended holomorphically to C. Therefore, this example solves
Grosse-Erdmann’s extension problem in the negative. Further, the linear
mapping T in the above proof solves problems (a) and (b) in [24] also in the
negative. In fact, T cannot be surjective because it is an injective continuous
linear mapping between two (LB)-spaces and H (C)′ is Montel but

⊕
n l1

is not.
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(ii) Example 20 shows that [2, Corollary 3.7] was incorrectly stated, as
was pointed out to Arendt and Nikolski by the present authors. It is easy
to extract from the results of [2] a correct version of [2, Corollary 3.7],
a universal counterexample to the stated version and a correct proof of
[2, Corollary 3.8]. Arendt and Nikolski have carried this out in [3]. Let us
see the contradiction between [2, Corollary 3.7] and Example 20. If we set
Γn :=

⋃
1≤k≤n γk, Vn := B(0, n + 1) (the open ball in C of radius n + 1

centred at zero) for n ∈ N, E :=
⊕

k∈N
l1, and we consider the Banach space

En :=
⊕

1≤k≤n l1 endowed with its natural norm defined as the sum of the

l1-norms of components, then the restriction

f |Γn : Γn → En+1

has image in the unit ball of En+1 for all n ∈ N. The restriction of T to each
En is continuous. Hence, for all n ∈ N,

G := {g ◦ T |En+1
: g ∈ H (C)}

is a σ(E′
n+1, En+1)-dense subspace of E′

n+1 such that, for each g ∈ H (C),
g ◦ T |En+1

◦ f |Γn admits the holomorphic extension g|Vn to Vn and

sup
z∈Vn

|g(z)| ≤ sup
z∈γn+1

|g(z)| ≤ sup
e∈BEn+1

|g ◦ T |En+1
(e)| = ‖g ◦ T |En+1

‖E′

n+1
.

[2, Corollary 3.7] would imply that f |Γn could be extended holomorphically
to fn ∈ H (Vn, En+1), but f |Γn is not continuous.

(iii) Corollary 18 implies that [2, Corollary 3.8] is true, even for several
variable holomorphic functions.

5. Wolff type results. The main tool in the proof of Grosse-Erdmann’s
theorem [24, Theorem 1] is Wolff’s theorem [41], which we now state in a
more functional-analytic way, as in the preliminaries of [24]: If Ω ⊆ C is a
domain, then for each u ∈ H (Ω)′ there exists a sequence (zi)i relatively
compact in Ω and a sequence (αi)i ∈ l1 such that u =

∑∞
i=1 αiδzi

. Our goal
in this section is to obtain similar representations for dual spaces F ′(Ω)
of closed subsheaves of C∞(Ω) and to derive extension results from these
representations. For further information about extensions of Wolff’s original
result we refer to [34, Sections 5.7.8 and 5.8], [40] and the references quoted
there.

Let Y be a Fréchet–Schwartz space and let (Bn)n be an increasing se-
quence of bounded subsets of Y ′. We introduce notation which will be useful
in the rest of the article. For n ∈ N, we denote by l1(Bn) the Banach space
of all summable families with index set Bn. The linear map

jn : l1(Bn) → Y ′
β, jn((α(b))b∈Bn

) :=
∑

b∈Bn

α(b)b,
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is well defined and continuous. We denote by Y ′(Bn) the image jn endowed
with the quotient norm. Clearly Y ′(Bn) is a Banach space continuously
embedded in Y ′

β. Finally, we set Y ′((Bn)n∈N) := indn Y ′(Bn), which is an

(LB)-space continuously included in Y ′
β.

Remark 22. Let Y be a Fréchet–Schwartz space. If (Bn)n is an increas-
ing sequence of bounded subsets of Y ′, E is a locally complete locally convex
space and T : span(

⋃
n Bn) → E is a linear map such that T is bounded on

each Bn and (T t)−1(Y ) is σ(E′, E)-dense, then there exists a unique contin-

uous linear extension T̂ : Y ′((Bn)n) → E (compare with Theorem 16).

In view of this remark, our extension problem has a positive solution
whenever (Bn)n is an increasing sequence of bounded subsets of Y ′ such
that Y ′((Bn)n∈N) = Y ′

β topologically. We now characterize these sequences
of bounded sets.

Proposition 23. Let Y be a nuclear Fréchet space with an increasing

fundamental system (‖ · ‖n)n∈N of seminorms, and let (Bn)n∈N be an in-

creasing sequence of bounded subsets of Y ′. Then the following assertions

are equivalent :

(i) Y ′((Bn)n∈N) = Y ′
β.

(ii) For every µ ∈ Y ′ there are n ∈ N, (µν)ν∈N ∈ BN
n , and (λν)ν∈N ∈ l1

such that

µ =

∞∑

ν=1

λνµν .

(iii) For every k ∈ N there are n ∈ N, (µν)ν∈N ∈ BN
n , and a decreasing

zero sequence (εν)ν∈N such that

‖f‖k ≤ sup
ν∈N

εν |µν(f)| for every f ∈ Y.

Proof. (i) and (ii) are equivalent by the open mapping theorem.

For k ∈ N, let Ck denote the polar of the unit ball of the kth semi-
norm. We denote by E′

k the Banach space spanned by Ck. Assume (i). By
Grothendieck’s factorization theorem the inductive spectra of Y ′((Bn)n∈N)
and of Y ′

β are equivalent. Since Y is nuclear there is n ∈ N such that the

inclusion ik,n : E′
k → Y ′(Bn) is nuclear. Now we observe the following two

facts, which can be easily checked:

(a) Let E be a Banach space and let I be an index set. If S : E → l1(I)
is a nuclear linear map and B is the unit ball of E then there exists
β = (β(i))i∈I ∈ l1(I) such that

S(B) ⊆ {(λ(i))i∈I : |λ(i)| ≤ |β(i)|, i ∈ I}.
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(b) If E is a Banach space, F is a Hausdorff quotient of a Banach space
G and T : E → F is a nuclear linear map then there exists a nuclear
linear map S : E → G such that T = p ◦ S, where p is the quotient
map.

We apply (a) and (b) to ik,n to obtain (µν)ν∈N ∈ BN
n and (βν)ν∈N ∈ l1

such that

Ck ⊆
{ ∞∑

ν=1

λνµν : |λν | ≤ βν , ν ∈ N
}

.

If we choose a decreasing zero sequence (εν)ν∈N such that C :=
∑∞

ν=1 |βν/εν |
< ∞, we obtain

‖f‖k ≤ sup
{ ∞∑

ν=1

λνµν(f) : |λν | ≤ βν , ν ∈ N
}
≤ C sup

ν∈N

εν |µν(f)|

for every f ∈ Y.

Assume now (iii) and fix k ∈ N. Then Ck is contained in the closure D
of the absolutely convex hull of {ενµν : ν ∈ N}, and from [36, 3.2.13] we get
D = {

∑∞
ν=1 λνενµν :

∑∞
ν=1 |λν | ≤ 1}. This shows (ii).

Remark 24. (a) Nuclearity plays an important role in the proof of the
equivalence between (ii) and (iii), but (i) and (ii) are equivalent for distin-
guished Fréchet spaces. In our setting, F (Ω) is a nuclear space because it
is a subspace of C∞(Ω).

(b) Notice that if Y ′((Bn)n∈N) = Y ′
β then (Bn)n fixes the topology in

the Fréchet–Schwartz space Y , because the polar of the unit ball of Y ′(Bn)
in Y coincides with the polar of Bn for each n ∈ N. Example 20 together
with Remark 21(i) shows that (Bn)n fixing the topology in Y is not enough
to have the equality Y ′((Bn)n∈N) = Y ′.

To obtain concrete examples of Wolff descriptions we introduce the
following notation. Let F be a closed subsheaf of C∞ over an open set
Ω ⊆ RN and let U ⊆ V ⊆ Ω be open sets. If B ⊆ F (U)′ we write
B|F (V ) := {u ◦ ̺V,U : u ∈ B} = (̺V,U )t(B) ⊆ F (V )′.

Lemma 25. Let F be a closed subsheaf of C∞ over an open domain

Ω ⊆ RN , let (Un)n be an increasing covering of Ω by open subsets, and

let (Bn
j )j ⊆ F (Un)′ be a sequence of bounded sets which fixes the topology

in F (Un) for n ∈ N. Assume also that (Bn
j )|F (Un+1) ⊆ Bn+1

j and that

Bn :=
⋃

j(B
n
j )|F (Ω) is bounded in F (Ω)′ for each n ∈ N. Suppose that

T : span(
⋃

n Bn) → E is a linear mapping into a locally complete space E
such that (T t)−1(F (Ω)) is separating and that , for all n ∈ N, there exists a

Banach space En →֒ E continuously embedded such that T (Bn) is bounded

in En. Then there exists an extension T̂ ∈ F (Ω)εE of T .
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Proof. First we observe that span(
⋃

n Bn) is dense in F (Ω)′ and so
(T t)−1(F (Ω)) is meaningful. This can be easily deduced from the descrip-
tion of F (Ω) as a projective limit of the spaces F (Un) with respect to the
restrictions, using the density of span(

⋃
j Bn

j ) in F (Un)′. For n ∈ N, we de-
fine Tn : span(

⋃
j Bn

j ) → En, µ 7→ T (µ|F (Ω)). By the construction, Tn(Bn
j )

is bounded in En for each j ∈ N and the subspace Hn := (T t
n)−1(F (Un))

of E′
n contains (T t)−1(F (Ω))|En . Hence Hn is σ(E′

n, En)-dense. Theorem

16(b) implies that there exists a continuous linear extension T̂n : F (Un)′ →

En →֒ E of Tn. We observe that T̂n+1 ◦ (̺Un+1,Un)t|span(
⋃

j Bn
j ) = Tn and that

span(
⋃

j Bn
j ) is dense in F (Un)′ for each n ∈ N. Therefore, we apply Re-

mark 2 to define T̂ : F (Ω)′ = indn F (Un)′ → E by T̂ (b) = T̂n(b) whenever

b ∈ F (Un)′. Then T̂ is the desired extension of T .

The following abstract Wolff type result is now a consequence of the
previous extension lemma.

Theorem 26. Let F be a closed subsheaf of C∞ over an open set Ω ⊆
RN , let (Un)n be an increasing covering of Ω by open subsets, and let (Bn

j )j ⊆
F (Un)′ be a sequence of bounded sets which fixes the topology in F (Un) for

n ∈ N. Assume also that (Bn
j )|F (Un+1) ⊆ Bn+1

j and that Bn :=
⋃

j(B
n
j )|F (Ω)

is bounded in F (Ω)′. Then F (Ω)′ = F (Ω)′((Bn)n∈N) (topologically).

Proof. Set E := Y ′((Bn)n∈N) and En := Y ′(Bn). We consider the inclu-
sion T : span(

⋃
n Bn) → E. Since E →֒ F (Ω)′ continuously it follows that

F (Ω) is σ(E′, E)-dense. We apply Lemma 25 to obtain a continuous linear

map T̂ : F (Ω)′ → E which extends T . But span(
⋃

n Bn) is dense in F (Ω)′.
Hence the continuous inclusion E →֒ F (Ω)′ is surjective. The topological
equality follows from Proposition 23.

We see below that we can obtain Wolff type results for not necessarily
increasing coverings by open sets.

Corollary 27. Let F be a closed subsheaf of C∞ over an open domain

Ω ⊆ RN , let (Un)n be a covering of Ω by open subsets, and let (Bn
j )j ⊆

F (Un)′ be a sequence of bounded sets which fixes the topology in F (Un)
for n ∈ N. Assume that Bn :=

⋃
j(B

n
j )|F (Ω) is bounded in F (Ω)′ for each

n ∈ N. Then for each µ ∈ F (Ω)′ there exist (αi)i ∈ l1, k ∈ N and (µi)i ⊆⋃
1≤j≤k Bj such that µ =

∑
i αiµi.

Proof. We show that, if U, V are two open subsets of Ω, (BU
j )j is a

sequence of bounded subsets of F (U)′ which fixes the topology in F (U),
(BV

j )j is a sequence of bounded subsets of F (V )′ which fixes the topol-

ogy in F (V ) and we define Cn := BU
n |F (U∪V ) ∪ BV

n |F (U∪V ), then (Cn)n

is a sequence of bounded subsets of F (U ∪ V )′ which fixes the topology in
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F (U ∪ V ). Since F is a sheaf, F (U∪V ) is the projective limit of the spaces
F (U) and F (V ) with respect to the restrictions ̺U∪V,U and ̺U∪V,V . This
implies that a fundamental system of zero neighbourhoods is given by the
sets

Wn := (̺U∪V,U )−1((BU
n )◦) ∩ (̺U∪V,V )−1((BV

n )◦), n ∈ N.

It is straightforward to show that Wn = C◦
n. Now the conclusion can be

obtained by applying Theorem 26 to the covering (Vn)n of Ω defined by
Vn :=

⋃
1≤j≤n Uj .

From Theorem 26 we also have the following corollary.

Corollary 28. Let F be a closed subsheaf of C∞ over an open domain

Ω ⊆ RN . If M ⊆ Ω × NN
0 has the property that there exists an increasing

countable covering (Uk)k of Ω by relatively compact open sets such that the

sets Mn := {(x, α) ∈ M : x ∈ Un, |α| ≤ n} fix the topology in F (Un),
n ∈ N, then F (Ω)′ = F (Ω)′((Mn)n∈N). Then the restriction map RM,G :
F (Ω, E) → FG(M, E)lb is surjective for each locally complete locally convex

space E and for each weak⋆-dense subspace G of E′.

We now list some examples satisfying the hypothesis of Corollary 28.

Example 29.

(a) Any sheaf F of smooth functions which is closed in the sheaf of
continuous functions C over Ω ⊆ RN and M := Ω. For any covering
(Uk)k of Ω by relatively compact open subsets, Mk = Uk fixes the
topology in F (Uk).

(b) The sheaf H of holomorphic functions over Ω ⊆CN, and M := Ω \K,
K ⊆ Ω compact. For any increasing covering (Uk)k of Ω by relatively
compact open subsets such that K ⊆ U1 the sets Mk := M ∩ Uk fix
the topology of H (Uk) (cf. [24, Corollary 1]).

(c) The sheaf H of holomorphic functions over Ω := CN , N ∈ N, and
M :=

⋃
k,n∈N

S(0, k − 1/n). For Uk := B(0, k), k ∈ N, the sets
Mk := M ∩ Uk fix the topology H (Uk) (here B(a, r) and S(a, r)
denote the ball and the sphere centered and a with radius r respec-
tively). Example 20 shows that M :=

⋃
k S(0, k) does not satisfy the

hypothesis of Corollary 28 in the one variable case.

We also have the following consequences:

(i) In the three examples above, Corollary 28 can be formulated in the
following way. For each µ ∈ F (Ω)′ there exist k ∈ N, a sequence (zν)ν in
Mk and a sequence (αν)ν ∈ l1 such that

µ =

∞∑

ν=1

ανδzν .
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Hence, if E is a locally complete space, G is a weak⋆-dense subspace of E′

and f : M → E is a function such that f(M ∩K) is bounded in E for each
compact subset K of Ω and u◦f admits an extension in F (Ω) for all u ∈ G

then there exists an extension f̂ ∈ F (Ω, E) of f . We also remark that in
(b) and (c) one can take the sheaf of harmonic functions on Ω ⊆ C instead
of the sheaf of holomorphic functions. Thus, we have proper extensions of
[24, Theorem 1, Corollary 1].

(ii) Example 29(a) and Proposition 23 together imply that for each
compact subset K of the open set Ω ⊂ CN , there exists a decreasing
zero sequence (εν)ν of positive numbers and a relatively compact sequence
(zν)ν ⊆ Ω such that, for each f ∈ H (Ω),

sup
z∈K

|f(z)| ≤ sup
ν∈N

εν |f(zν)|.

In case Ω = CN , Example 29 shows that for each K compact there
exists k0 ∈ N such that the sequence (zν)ν can be even taken in the set⋃

1≤k≤k0

⋃
n∈N

S(0, k − 1/n). Again we remark that there is no k0 ∈ N such
that the sequence above could be taken in

⋃
k≤k0

S(0, k). This is a conse-
quence of Example 20 and Proposition 23.

Finally, we obtain Wolff type results for closed subsheaves F (Ω, E) of
C∞(Ω, E) with E Fréchet. To do this, we consider in these spaces the natural
topology of uniform convergence of the derivatives on compact subsets of Ω,
which makes it a Fréchet space. This topology coincides with the one induced
by the ε-product F (Ω)εE. We refer to [27, 16.7] for the proof of this fact
for the sheaf of one variable holomorphic functions.

Proposition 30. Let F be a closed subsheaf of C∞ over an open set

Ω ⊆ RN . Let (Bn)n be an increasing sequence of bounded subsets of F (Ω)′

such that F (Ω)′ = F (Ω)′((Bn)n∈N). Let E be a Fréchet space. For each

µ ∈ F (Ω, E)′ there exists a sequence (αk)k ∈ l1, n0 ∈ N, a sequence (bk)k ⊆
Bn0

and a bounded sequence (vk)k ⊆ E′ such that

µ(f) =
∞∑

k=1

αkbk(vk ◦ f) for each f ∈ F (Ω, E).

Proof. The space F (Ω) is nuclear and hence F (Ω) has the approxi-
mation property. Moreover, F (Ω) is also separable. Thus, there exists a
projective spectrum (Hn)n of separable Hilbert spaces such that F (Ω) is
its reduced projective limit. Let E be the reduced projective limit of a se-
quence (En)n of Banach spaces. We have

F (Ω, E) = F (Ω) ⊗̂ε E = projn Hn ⊗̂ε En.

We can apply [14, 16.6] to obtain

F (Ω, E)′ = indn H ′
n ⊗̂π E′

n.
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algebraically. Let µ ∈ F (Ω, E)′. There exists k0 ∈ N such that µ ∈
H ′

k0
⊗̂π E′

k0
. Therefore, there exists a bounded sequence (hk)k in H ′

k0
→֒

F (Ω)′, a bounded sequence (ek)k in E′
k0

→֒ E and a sequence (λk)k in l1
such that

µ(f) =
∞∑

k=1

λk(hk ⊗ vk)(f) =
∞∑

k=1

λkhk(vk ◦ f).

Since (hk)k is bounded in F (Ω)′ = F (Ω)′((Bn)n∈N), there exists n0 ∈ N

such that (hk)k is bounded in F (Ω)′(Bn0
). Hence we can get a sequence

(bi)i ⊆ Bn0
and M > 0 such that for each k ∈ N there exists (αk

i )i ∈ l1 such
that

∑
i |α

k
i | < M and hk =

∑
i αk

i bi. Therefore, for each f ∈ F (Ω, E),

µ(f) =

∞∑

k=1

λk(hk ⊗ vk)(f) =

∞∑

k=1

λkhk(vk ◦ f) =

∞∑

k=1

∞∑

i=1

λkα
k
i bi(vk ◦ f).

Relabelling the double series gives the desired formula.

By Example 29(a), in the sheaf H of holomorphic functions over Ω⊆CN ,
for each µ ∈ H (Ω, E)′, there exist (αk)k ∈ l1, (vk)k ⊆ E′ bounded and
(zk)k ⊆ Ω relatively compact such that, for each f ∈ H (Ω, E),

µ(f) =
∞∑

k=1

αkvk(f(zk)).
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[39] —, Théorie des distributions à valeurs vectorielles I-II, Ann. Inst. Fourier (Greno-

ble) 7 (1957), 1–141; 8 (1959), 1–209.
[40] R. V. Sibilev, A uniqueness theorem for Wolff–Denjoy series, Algebra i Analiz 7

(1995), 170–199 (in Russian); English transl.: St. Petersburg Math. J. 7 (1996),
145–168.

[41] J. Wolff, Sur les séries
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