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Unbounded ∗-representations of tensor product locally

convex ∗-algebras induced by unbounded C∗-seminorms

by

M. Fragoulopoulou (Athens) and A. Inoue (Fukuoka)

Abstract. The existence of unbounded ∗-representations of (locally convex) tensor
product ∗-algebras is investigated, in terms of the existence of unbounded ∗-representa-
tions of the (locally convex) factors of the tensor product and vice versa.

1. Introduction. The study of (unbounded) ∗-representations is moti-
vated by the Wightman formulation of quantum field theory and the repre-
sentation theory of Lie algebras (see, for instance, [20]). In the Wightman
formulation of quantum field theory, one assumes that the “smeared fields
Φ(f)” generate a ∗-algebra and that a field theory is a cyclic ∗-representation
of this algebra satisfying some additional assumptions like Lorentz invari-
ance and local commutativity (see [14, p. 88]). A question that researchers
in the theory of ∗-representations often face is the following: under which
conditions could one obtain the existence of well-behaved ∗-representations,
in the sense that potential pathologies of the unbounded operators involved
could be ruled out?

T. V. Powers introduced and studied in [14] and [15] a class of well-
behaved self-adjoint ∗-representations of commutative ∗-algebras, called
standard ∗-representations. In 2001 resp. 2002, S. J. Bhatt, A. Inoue and
H. Ogi (see [7]) resp. K. Schmüdgen (see [19]) introduced independently
a class of well-behaved ∗-representations in the sense mentioned above.
S. J. Bhatt, A. Inoue and H. Ogi studied well-behaved ∗-representations by
introducing the so-called “unbounded C∗-seminorms” (see Section 2).
K. Schmüdgen studied well-behaved ∗-representations associated with a
“compatible pair” (A,X ) consisting of a ∗-algebra A with identity and a
normed ∗-algebra X (not necessarily having an identity) which is an A-
module, so that a certain left action of A is defined on X . A. Inoue re-
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lated in [11] the two concepts of well-behaved ∗-representations introduced
in [7] and [19]. Moreover, in a series of joint papers (see, e.g., [3–6]) the
well-behaved ∗-representations defined in [7] were studied in various ways.

The present paper aims to investigate the existence of unbounded ∗-
representations of (topological) tensor product ∗-algebras in terms of un-
bounded C∗-seminorms and unbounded m∗-seminorms. In this aspect, the
known theory of bounded ∗-representations of m∗-convex tensor product al-
gebras (see, e.g., [9, Chapter VII]), the properties of the enveloping locally
C∗-algebra (enveloping pro-C∗-algebra) of the latter (ibid.), as well as the
methods developed in [7] and in [4, 5] play a significant rôle.

More precisely, Section 2 deals with the background material. In Sec-
tion 3 the existence of unbounded ∗-representations of a tensor product
∗-algebra A⊗ B is guaranteed by giving unbounded C∗-seminorms p, q on
A and B resp. and vice versa (see Propositions 3.1, and 3.2). In Section 4
we construct well-behaved ∗-representations of A⊗B (as before) from given
ones of A,B and vice versa, using the so-called w-semifinite unbounded
C∗-seminorms. Section 5 deals with the problem of Section 4 on Fréchet lo-
cally convex tensor product ∗-algebras using “naturally” defined unbounded
m∗-seminorms on Fréchet locally convex ∗-algebras. We close this study with
some applications and some comments concerning further investigation of
this kind of problems.

2. Preliminaries. Throughout this paper we deal with complex asso-
ciative algebras. All topological algebras we consider (save, of course, the
seminormed ones) are supposed to be Hausdorff topological spaces.

An unbounded m∗-(semi)norm resp. C∗-(semi)norm on a ∗-algebra A
is a submultiplicative ∗-(semi)norm resp. C∗-(semi)norm p defined on a ∗-
subalgebra D(p) of A. Each unbounded C∗-(semi)norm is an unbounded
m∗-(semi)norm (see [17]). Various examples can be found in [7, Section 7].
If p is an unbounded m∗-seminorm resp. unbounded C∗-seminorm on a
∗-algebra A, the set

Np ≡ ker(p) = {x ∈ D(p) : p(x) = 0}

is a ∗-ideal in D(p), while the set

Ip = {x ∈ D(p) : ax ∈ D(p) ∀a ∈ A}(2.1)

is the largest left ideal of A contained in D(p). A key tool for the construc-
tion of an unbounded ∗-representation of A in terms of an unbounded C∗-
seminorm p on A is the condition Ip 6⊂ Np (cf. [7, Remark 2.3]). If C(R) is the
∗-algebra of all continuous functions on R, and Cb(R) its ∗-subalgebra con-
sisting of all bounded continuous functions on R, then the supremum norm
‖·‖∞ on Cb(R) is an unbounded C∗-(semi)norm on C(R), and I‖·‖∞ = Cc(R),
the algebra of all continuous functions on R with compact support.
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For A and p as above, denote by Ap the Banach ∗-algebra resp. C∗-
algebra which is the completion of the normed ∗-algebra (D(p)/Np)[‖ · ‖p]
under the m∗-norm resp. C∗-norm ‖x + ker p‖p := p(x), x ∈ D(p), induced
by p. We shall use the notation xp = x + ker p, x ∈ D(p). If p is an un-
bounded C∗-seminorm p on A, then Ap as a C∗-algebra (the enveloping

C∗-algebra of the C∗-seminormed algebra D(p)[p]) has a (bounded) faith-
ful ∗-representation Πp on a Hilbert space HΠp . It is shown in [7, Propo-
sition 2.2] that Πp gives rise to an unbounded ∗-representation πp of A

on a Hilbert space Hπp such that ‖πp(x)‖ ≤ p(x) for all x ∈ D(p) and

‖πp(x)‖ = p(x) for all x ∈ Ip. From the definition of πp (ibid.), it fol-
lows that πp is nontrivial, that is, Hπp 6= {0}, if and only if Ip 6⊂ Np. Ex-
amples of unbounded C∗-seminorms that satisfy this condition are given in
[6, Section 6]. Based on the above, we fix the following notation:

Rep(Ap) = {all faithful nondegenerate ∗-representations Πp of Ap},

Rep(A, p) = {πp : Πp ∈ Rep(Ap)},

i.e., Rep(A, p) denotes all nontrivial ∗-representations πp of A, deriving from
the elements Πp of Rep(Ap), and

RepWB(A, p) = {πp ∈ Rep(A, p) : Hπp = HΠp}.

An unbounded C∗-seminorm p on A is called weakly semifinite (briefly,
w-semifinite) if RepWB(A, p) 6= ∅; an element πp in RepWB(A, p) is called a
well-behaved ∗-representation of A defined by p (see [6, p. 4] and [7, p. 54]).

For topological tensor product (∗-)algebras we refer the reader to [9, 13,
21]. For convenience we fix some notation. If A[τA], B[τB] are locally convex
∗-algebras with continuous multiplication, denote by A⊗

π
B their projective

tensor product and by A ⊗̂ B their completed projective tensor product (see
[9, 13]). Suppose that τA, τB are respectively defined by the families {p},
{q} of ∗-seminorms. Then, the topology π on A ⊗ B is determined by the
∗-seminorms {r} such that

r(z) = inf
{ ∑

i

p(xi)q(yi) : z =
∑

i

xi ⊗ yi

}
, z ∈ A⊗ B,(2.2)

where the infimum is taken over all representations
∑

i xi⊗ yi of z ∈ A⊗B.
If A[p], B[q] are (semi)normed algebras we shall denote the r as in (2.2) by
‖ · ‖γ , and A⊗

π
B by A⊗

γ
B [9, 21].

Furthermore, if A[p], B[q] are C∗-seminormed algebras and R(A[p]) resp.
R(B[q]) denote the sets of all p-continuous bounded ∗-representations of A[p]
resp. q-continuous bounded ∗-representations of B[q], then the corresponding
minimal and maximal C∗-seminorms on A⊗ B denoted by rmin resp. rmax
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are defined as follows:

rmin(z) := sup{‖(π1 ⊗ π2)(z)‖ : (π1, π2) ∈ R(A[p])×R(B[q])},

rmax(z) := sup{‖π(z)‖ : π ∈ R(A[p] ⊗̂ B[q])},
(2.3)

for each z ∈ A ⊗ B (see [21, pp. 206, 207] and [9, Section 31]). Note that
for any π1, π2, π as before, one has

‖(π1 ⊗ π2)(z)‖ ≤ ‖z‖γ , ‖π(z)‖ ≤ ‖z‖γ , ∀z ∈ A⊗ B.

The corresponding C∗-seminormed tensor product algebras under rmin and
rmax will be denoted by A ⊗

min
B resp. A ⊗

max
B. In the case when A,B are

C∗-algebras, the C∗-algebra tensor product under the minimal and maximal
C∗-crossnorms ‖ · ‖min resp. ‖ · ‖max will be denoted by A ⊗̃

min
B resp. A ⊗̃

max
B.

Finally, if H1, H2 are Hilbert spaces, their Hilbert space tensor product
will be denoted by H1 ⊗̃ H2.

3. Unbounded ∗-representations of tensor product ∗-algebras.

In this section, we construct unbounded C∗-seminorms on a tensor product
∗-algebra, in terms of given unbounded C∗-seminorms on the factors, and
vice versa.

Let A, B be ∗-algebras and p, q unbounded C∗-seminorms on A, B
resp. with domains D(p), D(q). Consider the corresponding C∗-seminormed
algebras D(p)[p], D(q)[q] and the ∗-subalgebra D(r) := D(p)[p]⊗D(q)[q] of
A ⊗ B. Then the minimal and maximal C∗-seminorms rmin, rmax on D(r)
(see (2.3)) are unbounded C∗-seminorms on A⊗ B defined by p, q.

Using the very definitions, one proves easily that (see (2.1))

Irmin = Ip ⊗ Iq = Irmax.

In particular,

Irmin 6⊂ Nrmin ⇔ Ip 6⊂ Np and Iq 6⊂ Nq.

Indeed, suppose that Irmin 6⊂ Nrmin , but Ip ⊂ Np. Then p(x) = 0 for all
x ∈ Ip, while for each z ∈ D(r) and (π1, π2) ∈ R(D(p)[p])×R(D(q)[q]),

‖(π1 ⊗ π2)(z)‖ ≤ ‖z‖γ = inf
{ ∑

i

p(xi)q(yi) : z =
∑

i

xi ⊗ yi

}
.

Therefore rmin(z) = 0 for all z ∈ Irmin , which contradicts our hypothesis.
Hence, Ip 6⊂ Np and similarly Iq 6⊂ Nq.

Conversely, suppose that Ip 6⊂ Np, Iq 6⊂ Nq, but Irmin ⊂ Nrmin . It follows
that rmin(x ⊗ y) = 0 for all (x, y) ∈ Ip × Iq, that is, p(x)q(y) = 0 for all
(x, y) ∈ Ip × Iq, so that p(x) = 0 for all x ∈ Ip or q(y) = 0 for all y ∈ Iq,
which is a contradiction. Hence, Irmin 6⊂ Nrmin .

Note that ‖ · ‖λ � rmin � rmax � ‖ · ‖γ , where ‖ · ‖λ is the injective
∗-seminorm on D(p)[p] ⊗ D(q)[q] (see [21, pp. 206–208] and [9, Proposi-
tion 31.3]), so that
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rmin(x⊗ y) = p(x)q(y) = rmax(x⊗ y), ∀x ∈ D(p) and y ∈ D(q).

Summing up the above and taking into account the discussion at the begin-
ning of Section 2, we are led to the following

Proposition 3.1. If A, B are ∗-algebras and p, q unbounded C∗-semi-

norms on A, B resp. such that Ip 6⊂ Np and Iq 6⊂ Nq, then the tensor

product ∗-algebra A⊗B admits an unbounded ∗-representation deriving from

an unbounded C∗-seminorm r on A⊗ B induced by p, q with Ir 6⊂ Nr.

Suppose now that A, B are ∗-algebras with identities eA, eB resp., and
A0, B0 ∗-subalgebras of A, B resp. with eA ∈ A0 and eB ∈ B0. Let r be an
unbounded C∗-seminorm on the ∗-algebra A⊗B such that D(r) := A0⊗B0.
Then the relations

p(x) := r(x⊗ eB), ∀x ∈ A0 and q(y) := r(eA ⊗ y), ∀y ∈ B0

define unbounded C∗-seminorms on A, B resp. with D(p) := A0 and D(q)
:= B0. Moreover,

r(x⊗ y) = r((x⊗ eB)(eA ⊗ y)) ≤ p(x)q(y), ∀x⊗ y ∈ D(r),

r(z) ≤ ‖z‖γ , ∀z ∈ D(r),

Ir = Ip ⊗ Iq and Ir 6⊂ Nr ⇒ Ip 6⊂ Np and Iq 6⊂ Nq.

So, we can state

Proposition 3.2. Let A, B be ∗-algebras with identities eA, eB resp. Let

A0, B0 be ∗-subalgebras of A, B resp. such that eA ∈ A0 and eB ∈ B0. If r
is an unbounded C∗-seminorm on A⊗B with D(r) := A0⊗B0 and Ir 6⊂ Nr,
then A, B admit unbounded ∗-representations induced by unbounded C∗-

seminorms p, q on A, B deriving from r such that D(p) = A0, D(q) = B0,
Ip 6⊂ Np, Iq 6⊂ Nq and r(x⊗ y) ≤ p(x)q(y) for all (x, y) ∈ A0 × B0.

4. Well-behaved ∗-representations of tensor product ∗-algebras.

As mentioned in Section 1, unbounded ∗-representations may show patholo-
gies. So, naturally one wishes to have conditions under which unbounded
∗-representations exhibit good behaviour. In [4, 5] various conditions have
been elaborated that yield the existence of so-called well-behaved ∗-repre-
sentations (see Section 2). In the present section, using some of these results
we investigate the construction of well-behaved ∗-representations of ten-
sor product ∗-algebras defined by unbounded C∗-seminorms or unbounded
m∗-seminorms.

Theorem 4.1. Let A, B be ∗-algebras and πp, πq be well-behaved ∗-re-
presentations of A, B induced by w-semifinite unbounded C∗-seminorms p, q
on A, B resp. such that Ip 6⊂ Np and Iq 6⊂ Nq. Then A ⊗ B admits a
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well-behaved ∗-representation πr induced by a w-semifinite unbounded C∗-

seminorm r on A⊗ B with Ir 6⊂ Nr, and πr = πp ⊗ πq on Hp ⊗Hq, where

Hp, Hq are the Hilbert spaces associated with πp, πq resp.

Proof. For convenience we give the construction of πp (see [7, p. 57]) in
the following diagram (for the notation, see Section 2):

A ←֓ D(p)[p]−→ (D(p)/Np)[‖ · ‖p] →֒ Ap

πp

y
yΠp

L†(D(πp)) B(Hp)

where Πp is a nondegenerate faithful ∗-representation of Ap on a Hilbert

space Hp. Set Hπp := D(πp)
‖·‖

with ‖ · ‖ the Hilbert space norm on Hp and
D(πp) := 〈πp(x + Np)ξ : x ∈ Ip, ξ ∈ Hp〉, where 〈· · · 〉 means linear span.
L†(D(πp)) is the ∗-algebra in which πp takes values (see [10, p. 8]), and

πp(a)(ξ) = πp(a)
(∑

k

Πp(xk + Np)ξk

)
:=

∑

k

Πp(axk + Np)ξk, ∀a ∈ A.

Since πp is well-behaved we have Hp = Hπp . If πq is the corresponding
well-behaved ∗-representation of B we similarly have Hq = Hπq . Consider
now the unbounded C∗-seminorm r = rmax on D(r) := D(p) ⊗ D(q) (see
(2.3)). Then, by [9, p. 392, Theorem 31.7], we get the isomorphism

Ap ⊗̃
max
Bq = (A⊗ B)r

of C∗-algebras, with (A⊗B)r the enveloping C∗-algebra of the C∗-seminorm-
ed algebra D(r)[r], constructed as Ap in Section 2. Take now a faithful non-
degenerate bounded ∗-representation Πq of the C∗-algebra Bq. The bounded
∗-representation Πp ⊗Πq of Ap ⊗

max
Bq in Hp ⊗̃ Hq is faithful nondegenerate

and ‖ · ‖max-continuous, so that (see also [9, p. 375, Proposition 30.2]) it ex-
tends (uniquely up to equivalence) to a (continuous) faithful nondegenerate
∗-representation of Ap ⊗̃

max
Bq = (A⊗B)r inHp⊗̃Hq, also denoted by Πp⊗Πq.

Let now πr be the (unbounded) ∗-representation of A⊗B deriving from the
unbounded C∗-seminorm r = rmax through the faithful nondegenerate ∗-re-
presentation Πp ⊗ Πq of (A ⊗ B)r. We shall show that πr is well-behaved,

which equivalently means that D(πr)
‖·‖

= Hp ⊗̃ Hq. Take the well-behaved
∗-representation of B deriving from the w-semifinite unbounded C∗-semi-
norm q. Consider πp ⊗ πq on A ⊗ B with D(πp ⊗ πq) := D(πp) ⊗D(πq). It
is easily seen that

D(πp)⊗D(πq) ⊂ D(πr) ⊂ Hp ⊗̃ Hq.

Taking now the ‖ · ‖-closures in Hp ⊗̃ Hq and using the continuity of the
tensor map ⊗ we obtain
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D(πp)
‖·‖
⊗D(πq)

‖·‖
⊂ D(πr)

‖·‖
⊂ Hp ⊗̃ Hq,

where D(πp)
‖·‖

= Hp and D(πq)
‖·‖

= Hq, so that closing again we finally

get D(πr)
‖·‖

= Hp ⊗̃ Hq, which equivalently means that r is w-semifinite
and πr well-behaved. We note further that

πr = πp ⊗ πq on Hp ⊗Hq

since

(D(p) ⊗
max

D(q))/Nr = D(r)/Nr = D(p)/Np ⊗
max

D(q)/Nq,

where the second equality is an isometric isomorphism.

Given two ∗-algebras A, B endowed with unbounded m∗-seminorms p, q
resp., recall that ‖·‖γ denotes the projective unbounded tensor m∗-seminorm
on A⊗ B with D(‖ · ‖γ) := D(p)⊗D(q).

Theorem 4.2. Let A, B be ∗-algebras with identities eA resp. eB and

p, q unbounded m∗-seminorms on A, B resp. with eA ∈ D(p), eB ∈ D(q)
and I‖·‖γ

6= {0}. Suppose that A⊗B admits a well-behaved ∗-representation

πr deriving from a w-semifinite unbounded C∗-seminorm r on A ⊗ B with

D(r) = D(‖ · ‖γ), r ≤ ‖ · ‖γ and Ir 6⊂ Nr. Then A, B admit well-behaved

∗-representations πri
, i = 1, 2, deriving from w-semifinite unbounded C∗-

seminorms r1, r2 resp. with D(r1) = D(p), r1 ≤ p and Ir1 6⊂ Nr1 , resp.

D(r2) = D(q), r2 ≤ q and Ir2 6⊂ Nr2.

Proof. By our assumption on A⊗ B, [4, Corollary 3.6] implies that the
enveloping C∗-algebra E(D(‖·‖γ)) of D(‖·‖γ) is nontrivial with Ip⊗q 6⊂ kerµ
for some µ ∈ R(D(‖ · ‖γ)). But by [9, p. 413, Theorem 32.4],

E(D(‖ · ‖γ)) = E(D(p) ⊗̂D(q)) = E(D(p)) ⊗̃
max
E(D(q)),

and since E(D(‖·‖γ)) is nontrivial the same is true for E(D(p)) and E(D(q)).
Define now µp(x) := µ(x⊗ eB) for all x ∈ D(p). Then

‖µp(x)‖ = ‖µ(x⊗ eB)‖ ≤ ‖x⊗ eB‖γ = p(x)q(eB), ∀x ∈ D(p).

Therefore, µp ∈ R(D(p)). In the same way, one defines µq ∈ R(D(q)).
Clearly,

µ(x⊗ y) = µp(x)µq(y), ∀(x, y) ∈ D(p)×D(q).

So, if Ip ⊂ kerµp, then µp(x) = 0 for all x ∈ Ip, so that µ(x⊗ y) = 0 for all
x ⊗ y ∈ Ip ⊗ Iq = Ir, which implies Ip⊗q ⊂ ker µ, a contradiction. Hence,
Ip 6⊂ ker µp and in the same way Iq 6⊂ kerµq. Now, by [4, Corollary 3.6]
there are well-behaved ∗-representations of A, B, say πr1 , πr2 , induced by
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w-semifinite unbounded C∗-seminorms r1 and r2 on A, B resp. such that
D(r1) = D(p), r1 ≤ p, Ir1 6⊂ Nr1 and D(r2) = D(q), r2 ≤ q, Ir2 6⊂ Nr2 .

Remark. Let r̄ = rmax be induced by r1, r2 on D(r̄) = D(p) ⊗ D(q).
Theorem 4.1 implies that r̄ is w-semifinite with Ir̄ 6⊂ Nr̄; the corresponding
well-behaved ∗-representation πr̄ coincides with πr1 ⊗ πr2 on Hr1 ⊗Hr2 .

5. Well-behaved ∗-representations of locally convex tensor

product ∗-algebras. In this section, we investigate the existence of well-
behaved ∗-representations of tensor product locally convex ∗-algebras de-
fined by unbounded C∗-seminorms.

A locally convex algebra with a continuous involution is called a locally

convex ∗-algebra. A Fréchet ∗-algebra is a metrizable complete locally convex
∗-algebra. LetA[τ ] be a metrizable locally convex ∗-algebra with identity eA.
We may always suppose that τ is defined by a sequence (pn)n∈N of seminorms
with the properties:

(i) p1 ≤ p2 ≤ · · · ;
(ii) pn(xy) ≤ pn+1(x)pn+1(y), ∀x, y ∈ A, ∀n ∈ N;
(iii) pn(x∗) = pn(x), ∀x ∈ A, ∀n ∈ N;
(iv) pn(eA) = 1, ∀n ∈ N.

Such a family (pn)n∈N will be called a defining sequence of seminorms for
A[τ ].

Concerning properties (iii) and (iv) see resp. [9, p. 32, Theorem 3.7] and
[8, p. 241, Corollary and Theorem 3].

Suppose now that A[τA] is a Fréchet ∗-algebra with (pn)n∈N a defining
sequence of seminorms. Set

D(pA∞) = {x ∈ A : sup
n

pn(x) <∞} with pA∞(x) := sup
n

pn(x), x ∈D(pA∞).

Then D(pA∞)[pA∞] is a Banach ∗-subalgebra of A[τA]. If B[τB] is a second
Fréchet ∗-algebra with (qn)n∈N a defining family of seminorms and pB∞ the
corresponding m∗-norm on D(pB∞), recall that (see Section 2) ‖ · ‖γ denotes
the projective tensor m∗-norm on D(pA∞) ⊗ D(pB∞). In this connection, we
have

Proposition 5.1. Let A[τA], B[τB] be unital Fréchet ∗-algebras with

defining sequences of seminorms (pn)n∈N resp. (qn)n∈N and identities eA
resp. eB. Then the following are equivalent :

(1) The metrizable locally convex tensor product ∗-algebra A ⊗
π
B ad-

mits a well-behaved ∗-representation deriving from a w-semifinite

unbounded C∗-seminorm r on A ⊗
π
B with r ≤ ‖ · ‖γ on D(r) :=

D(pA∞)⊗D(pB∞) and Ir 6⊂ Nr.
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(2) A[τA], B[τB] have well-behaved ∗-representations deriving from w-

semifinite unbounded C∗-seminorms rA, rB on A[τA], B[τB] resp.,
with ri ≤ pi

∞ on D(pi
∞) and Iri

6⊂ Nri
, i = A, B.

Proof. (1)⇒(2). Denote by (rn)n∈N the defining sequence of seminorms
for the projective tensorial topology π on A⊗ B (see (2.2)). Consider now

D(r∞) = {z∈A⊗ B : sup
n

rn(z)<∞} with r∞(z) := sup
n

rn(z), z∈D(r∞).

Then D(r∞) is a normed ∗-algebra. Property (iv) of pn, qn, n ∈ N, implies
that

eA ∈ D(pA∞), eB ∈ D(pB∞) and eA ⊗ eB ∈ D(r∞).

The elementary tensor eA ⊗ eB is also an identity of the Fréchet ∗-algebra
A⊗̂B. Thus, the assertion follows by applying Theorem 4.2 with pA∞ in place
of p and pB∞ in place of q.

(2)⇒(1). By [4, Theorem 3.5] there exist pi
∞-continuous representable

positive linear forms fi on D(pi
∞) with Ipi

∞
6⊂ ker fi, i = A,B. Let f =

fA ⊗ fB. Then f is a ‖ · ‖γ-continuous positive linear form on D(pA∞) ⊗
γ

D(pB∞), which uniquely extends to a (continuous) positive linear form on

D(pA∞) ⊗̂D(pB∞), also denoted by f [12]. Moreover, Ipi
∞
6= {0}, i = A,B, so

IpA∞⊗pB∞
6= {0}, since IpA∞⊗pB∞

= IpA∞ ⊗ IpB∞ . Now, by the GNS-construction

f is representable on D(pA∞) ⊗̂D(pB∞), hence also on D(pA∞)⊗
γ

D(pB∞), and

clearly f is ‖ · ‖γ-continuous with IpA∞⊗pB∞
6⊂ ker f . If IpA∞⊗pB∞

⊂ ker f , then
either IpA∞ ⊂ ker fA or IpB∞ ⊂ ker fB, which is a contradiction. So, from [4,
Theorem 3.5] we have (1).

For the next result we need some extra concepts. Let A be a ∗-algebra
with ̺A(a∗a) <∞ for all a ∈ A, where ̺A denotes the spectral radius. Then
the quantity

pA(a) := ̺A(a∗a)1/2, a ∈ A,

is called the Pták function. V. Pták [16] gave a number of important charac-
terizations of hermiticity in Banach ∗-algebras through various properties of
this function. A ∗-algebra A is called hermitian if spA(a) ⊂ R for all a∗ = a
in A, where spA(a) is the spectrum of a ∈ A.

A C∗-seminorm p on a ∗-algebra A is called spectral if ̺A(a) ≤ p(a)
for all a ∈ A. In every hermitian Banach ∗-algebra, the Pták function is
a spectral C∗-seminorm [16]. Let now pA∞, pB∞ and r∞ be as before, but
with r∞ defined through the defining family of seminorms for the Fréchet
∗-algebra A⊗̂B, so that D(r∞) will now be a Banach ∗-subalgebra of A⊗̂B.
Then we have the following
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Theorem 5.2. Let A[τA] and B[τB] be Fréchet ∗-algebras with identities

eA resp. eB and A ⊗̂ B the Fréchet ∗-algebra (with identity), corresponding

to the completed projective tensor product of A[τA] and B[τB]. Then:

(1) If D(r∞) is hermitian and IpA∞ ⊗ IpB∞ 6⊂ NpD(r∞)
, then A[τA], B[τB]

have well-behaved ∗-representations πrA , πrB deriving from w-semi-

finite unbounded C∗-seminorms rA resp. rB with D(ri) = D(pi
∞) and

spectral unbounded C∗-seminorms r′A, r′B with D(r′i) = D(pi
∞) such

that ‖πri
(x)‖ ≤ r′i(x) ≤ pi

∞(x) for all x ∈ D(pi
∞), i = A,B.

(2) If either of A[τA], B[τB] is commutative and both D(pi
∞), i = A,B,

are hermitian with Ipi
∞
6⊂ Np

D(pi
∞)

, i = A,B, then A ⊗̂ B has a well

behaved ∗-representation πr of the kind of πri
, i = A,B, as in (1).

Proof. (1) By the very definitions (see beginning of this section) we have
eA ∈ D(pA∞) and eB ∈ D(pB∞). Moreover,

r∞(eA ⊗ y) = sup
n

qn(y), ∀y ∈ D(pB∞),

r∞(x⊗ eB) = sup
n

pn(x), ∀x ∈ D(pA∞).

It follows that

r∞(x⊗ y) = r∞((x⊗ eB)(eA ⊗ y)) ≤ pA∞(x)pB∞(y),

∀(x, y) ∈ D(pA∞)×D(pB∞).

Therefore, D(pA∞)⊗D(pB∞) ⊂ D(r∞). In particular, D(pi
∞), i = A,B, is iso-

metrically imbedded into D(r∞), so it is hermitian as a closed ∗-subalgebra
of a hermitian Banach ∗-algebra. Thus, the Pták function pD(pi

∞) is a C∗-

seminorm on D(pi
∞) with pD(pi

∞) ≤ pi
∞, i = A,B [16]. Moreover,

Ipi
∞
6⊂ Np

D(pi
∞)

, i = A,B.

Indeed, suppose IpA∞ ⊂ Np
D(pA∞)

, i.e. pD(pA∞)(x) = 0 for all x ∈ IpA∞ . But the

topology ‖·‖γ is finer than the r∞(·)-topology on D(pA∞)⊗D(pB∞), therefore

D(pA∞) ⊗̂D(pB∞) ⊂ D(pA
∞)⊗D(pB∞)

r∞
⊂ D(r∞).

Hence, ̺D(r∞)(z) ≤ ̺
D(pA∞)⊗̂D(pB∞)(z) for all z ∈ D(pA∞) ⊗̂D(pB∞). So, for any

(x, y) ∈ D(pA∞)×D(pB∞) we obtain (see also [9, p. 407, Corollary 31.21])

pD(r∞)(x⊗ y)2 = ̺D(r∞)(x
∗x⊗ y∗y) ≤ ̺

D(pA∞)⊗̂D(pB∞)(x
∗x⊗ y∗y)

= ̺D(pA∞)(x
∗x)̺D(pB∞)(y

∗y) = pD(pA∞)(x)2pD(pB∞)(y)2,

which implies pD(r∞)(x ⊗ y) = 0 whenever x ∈ IAp∞ ; thus IpA∞ ⊗ IpB∞ ⊂
NpD(r∞)

, a contradiction. The same is true if IpB∞ ⊂ Np
D(pB∞)

. The assertion

now follows from [5, Theorem 3.5].
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(2) Since both D(pA∞), D(pB∞) are commutative and hermitian Banach
∗-algebras, it follows from [12, p. 65, Theorem III.3] (and/or [9, p. 447,
Theorem 34.15]) that D(pA∞) ⊗̂D(pB∞) is also hermitian. Let p = ‖ · ‖γ with
D(p) = D(pA∞) ⊗̂D(pB∞). Then p is an unbounded m∗-(semi)norm of A ⊗̂ B
with

pD(p) ≤ p on D(p) and Ip 6⊂ NpD(p)
.(5.1)

Indeed, from the assumptions in (2) there are x ∈ IpA∞ and y ∈ IpB∞ such that
pD(pA∞)(x) 6= 0 and pD(pB∞)(y) 6= 0. Let z = x⊗y. Then x⊗y ∈ IpA∞⊗IpB∞ ⊂ Ip
and (see [9, p. 407, Corollary 31.21])

pD(p)(x⊗ y)2 = ̺D(p)(x
∗x⊗ y∗y) = ̺D(pA∞)(x

∗x)̺D(pB∞)(y
∗y)

= pD(pA∞)(x)2pD(pB∞)(y)2;

therefore pD(p)(x⊗ y) 6= 0, which means that the second statement in (5.1)
is true. The assertion now follows from [5, Theorem 3.5].

Applications. (1) LetA be an arbitrary hermitian Banach ∗-algebra with
identity and C(R,A) the Fréchet ∗-algebra of all continuous functions from
R to A with the topology of compact convergence. Then Theorem 5.2(2)
applies with C(R) in place of A, and A in place of B.

One gets a special case by replacing the real numbers R with the natural
numbers N.

Note that C(R,A) = C(R) ̂̂⊗A, where the latter is the completion with
respect to the injective tensorial topology and the equality holds up to a
∗-isomorphism of Fréchet ∗-algebras (see [13, p. 391, Theorem 1.1]). That
the tensorial topology is not the one considered in Theorem 5.2 does not
affect the proof of statement (2) of this theorem (cf. e.g., [9, Corollary

34.16]). Moreover, in the present case, D(p
C(R)
∞ ) = Cb(R), the C∗-algebra

of all bounded continuous functions on R, while D(pA∞) = A with p = ‖ · ‖λ,

the injective tensor norm [21], and D(p) = Cb(R) ̂̂⊗A.

(2) Theorem 5.2(2) also applies for C(R × R) = C(R) ̂̂⊗ C(R) and/or
C(R× N) (for the preceding identification, see [13, p. 392, Corollary 1.1]).

(3) Theorem 4.1 applies to any pair A, B of algebras described in [7,
p. 75, Example 7.1(1), (a) and (b)] and [4, Examples 3.9(1)–(5)].

One does not expect that algebras of complex-valued or vector-valued
smooth or analytic functions have unbounded ∗-representations. Take, for
instance, the Fréchet ∗-algebra O(C) of all entire functions on the complex

plane C. Then D(p
O(C)
∞ ) = C and I

p
O(C)
∞

= {0}. Therefore, neither O(C)

nor O(C,A), A a Fréchet ∗-algebra with identity, may have unbounded
∗-representations.
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Remark. Investigating the existence of unbounded ∗-representations
of (topological) tensor product ∗-algebras induced by unbounded C∗-semi-
norms can go further by using positive linear forms and tensor products of
so-called GB∗-algebras (cf. [1]). To the best of our knowledge nothing is
known on tensor products of GB∗-algebras. Because of the importance of
GB∗-algebras in the theory of unbounded ∗-representations, the study of
these topics seems to be interesting.
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