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on Fourier hyperfunctions
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Dedicated to Professor Dr. D. Vogt on the occasion of his 65th birthday

Abstract. We characterize the partial differential operators P (D) admitting a con-
tinuous linear right inverse in the space of Fourier hyperfunctions by means of a dual
(Ω)-type estimate valid for the bounded holomorphic functions on the characteristic va-
riety VP near R

d. The estimate can be transferred to plurisubharmonic functions and is
equivalent to a uniform (local) Phragmén–Lindelöf-type condition.

1. Introduction. Continuous linear right inverses for partial differential
operators and convolution operators have been studied in many classical
spaces of (generalized) functions. The problem was posed by L. Schwartz
for partial differential operators in C∞(Rd) and has been solved in this case
and for the spaces of (ultra)distributions and ultradifferentiable functions by
R. Meise, B. A. Taylor and D. Vogt (see [22, 25]) by means of a Phragmén–
Lindelöf condition. Since then corresponding results have also been obtained
for weighted spaces of (ultra)distributions and (ultra)differentiable functions
and convolution operators (mainly in one variable). A by no means complete
list of relevant papers is contained in the references (intended as a first hint
to the relevant literature, see [1, 11–14, 17–23, 25, 28]).

In the present paper, we will study this topic for Sato’s space of Fourier
hyperfunctions (see [30] and [9, 10]). This space of generalized functions is
the dual space P∗(R

d)′ of P∗(R
d) := lim indj→∞ P∗,j, where

P∗,j := {f ∈ H(Uj) | ‖f‖j := sup
z∈Uj

|f(z)| exp(|z|/j) <∞}

is the space of exponentially decreasing holomorphic test functions on strips

Uj := {z ∈ C
d | |ℑ(z)| < 1/j}
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near R
d. We have chosen this way of defining Fourier hyperfunctions to

emphasize the analogy to Schwartz’ tempered distributions since P∗(R
d) can

be considered as a holomorphic counterpart of the Schwartz space S(Rd) of
rapidly decreasing test functions. L. Schwartz’ problem has been solved for
the space S(Rd)′b of tempered distributions in [12] by different methods. The
reader should compare the results with the present case.

Let P (D) be a partial differential operator with constant coefficients in
d variables and let

VP := {z ∈ C
d | P (−z) = 0}, XP := VP ∩ R

d.

Let d(x, VP ) and d(x,XP ) denote the distance from x ∈ R
d to VP (and to

XP , respectively).

One might think that P (D) admits a right inverse in P∗(R
d)′b if XP = ∅.

While this is not true, we will prove the following characterization in this
basic case: If XP = ∅ then P (D) admits a right inverse in P∗(R

d)′b iff there
is ε > 0 such that d(x, VP ) ≥ ε for x ∈ R

d (see 2.6).

To state the characterization for XP 6= ∅ we need some more notation:
Let Br(z0) := {z ∈ C

d | |z − z0| < r} if z0 ∈ C
d, and for f ∈ H(Uj) let

‖f‖VP ,j be the canonical norm ‖ ‖j of P∗,j restricted to VP , i.e.

‖f‖VP ,j := sup
z∈Uj∩VP

|f(z)| exp(|z|/j).

Main Theorem. Let XP 6= ∅. The following are equivalent :

(a) P (D) admits a right inverse in P∗(R
d)′b.

(b) There is D ∈ N such that for any j, n and k there is C0 such that

for any f ∈ H(Uj),

(1.1) ‖f‖VP ,Dnj ≤ C0‖f‖1−1/n
VP ,k ‖f‖1/n

VP ,j .

(c) There is C1 > 0 such that for any α ∈ N
d
0,

(1.2) |P (α)(x)| ≤ C1|P (x)| if x ∈ R
d and d(x,XP ) ≥ 1/C1

and VP satisfies the following uniform local Phragmén–Lindelöf con-

dition:

(UPL)loc there are r1 > r2 > 0 and C2 > 0 such that , for any a ∈ XP

and any plurisubharmonic function v on VP ∩ Br1
(a), the fact

that

(1.3) v(x) ≤ 0 for x ∈ XP ∩Br1
(a), v(z) ≤ 1 for z ∈ VP ∩Br1

(a)

implies that

(1.4) v(z) ≤ C2|ℑ(z)| for z ∈ VP ∩Br2
(a).

Several equivalent intermediate conditions are needed in the proof of this
characterization (see 3.4 and 4.6).
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The local Phragmén–Lindelöf condition (PL)loc(a) has been introduced
by Hörmander in his pioneering paper [7] on surjective partial differen-
tial operators on real analytic functions. (UPL)loc is a uniform version of
(PL)loc(a).

Variants of Hörmander’s Phragmén–Lindelöf conditions have been in-
tensively studied since then (see [4, 23, 24, 26]) and were applied to several
interesting problems in analysis, e.g. to characterize the surjective partial
differential operators on Roumieu type ultradifferentiable functions and on
real analytic functions (see [2–5, 34, 35]), to the right inverse problem for
partial differential operators already mentioned (see [22, 25]), or to char-
acterize the real analytic varieties admitting an extension operator for real
analytic functions [32]. In fact, the present paper owes very much to the
point of view from [32].

The Main Theorem has several interesting implications:

If ∅ 6= XP is compact then P (D) admits a right inverse in P∗(R
d)′b iff

VP satisfies Hörmander’s (PL)loc(a) for any a ∈ XP .

If P (D) is homogeneous then P (D) admits a right inverse in P∗(R
d)′b iff

VP satisfies (PL)loc(0).

If P (D) admits a right inverse in P∗(R
d)′b then any localization of P at

a ∈ XP or at ∞ also admits a right inverse in P∗(R
d)′b, while the principal

part Pm(D) of P in general need not.

The paper is organized as follows: In the second section, the necessity of
(1.1) is shown. The proof is based on the fact that P∗(R

d)′b is isomorphic
to a power series space of finite type by Hermite expansion (see [16]). We
show that kerP (D) ⊂ P∗(R

d)′b satisfies a strong (tame) (Ω)-type condition
if P (D) has a right inverse in P∗(R

d)′b. By duality and a tame version of
the division and extension theorem (related to the Ehrenpreis/Palamodov
fundamental principle) in P∗(R

d) this can be translated into (1.1).

The sufficiency of (1.1) is proved in Section 3 using the tame splitting
theory for exact sequences of power series spaces of finite type from [11].

In Section 4, the estimate (1.1) is transferred to psh functions using
the construction of suitable holomorphic approximations for psh functions
from [23]. This is used to show that (b) and (c) of the Main Theorem are
equivalent.

(PL)loc(0) is equivalent to a scaled local version of (1.1) for psh functions
(see 4.4(c)) which is used in Section 5 to transfer our results to several types
of localizations of P . We also prove that (PL)loc(0) is equivalent to a local
uniform radial Phragmén–Lindelöf condition combined with the following
distance condition (see 4.5): there are r1 > r2 > 0 and B ≥ 1 such that

(1.5) d(z,XP ∩Br1
(0)) ≤ B|ℑ(z)| if z ∈ VP ∩Br2

(0).
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2. The basic tame estimates. In the following, P (D) is always a
partial differential operator with constant coefficients in d variables and

VP := {z ∈ C
d | P (−z) = 0}.

We want to study when P (D) admits a right inverse in P∗(R
d)′b, that is,

when there is a continuous linear operator

R : P∗(R
d)′b → P∗(R

d)′b such that P (D) ◦R = Id on P∗(R
d)′.

Though we will look for necessary conditions for this problem in this section,
we first treat a simple sufficient condition:

Example 2.1. P (D) admits a right inverse in P∗(R
d)′b if

(2.1) VP ∩ Uj0 = ∅ for some j0 ∈ N.

Proof. We first notice that there is C > 0 such that for all polynomials
P with deg(P ) ≤ m we have, for any x ∈ R

d,

(2.2) 1/C ≤ d(x, VP )
∑

α 6=0

|P (α)(x)/P (x)|1/|α| ≤ C if P (x) 6= 0

(see [8, 11.1.4]), where d(x, VP ) := infz∈VP
|x− z| denotes the distance from

x ∈ R
d to VP .

Let Py(x) := P (x + iy) for y ∈ R
d. Then d( · , VPy) ≥ 1/(2j0) by as-

sumption if |y| < 1/(2j0). Hence, (2.2) implies that there is ε > 0 such
that

|P (z)| ≥ ε if |ℑ(z)| < 1/(2j0),

and therefore the division operator

SP̌ : P∗(R
d) → P∗(R

d), SP̌ (f) := f/P (− · ),
is a continuous linear operator in P∗(R

d). Thus, R := F ◦St
P̌
◦F−1 is a right

inverse for P (D) since the Fourier transformation F is an isomorphism in
P∗(R

d)′b (see e.g. [6, Chap. IV.6] or [16, 3.6]).

Condition (2.1) means that d(x, VP ) ≥ 1/j0 if x ∈ R
d. In fact, (2.1) holds

iff there is C1 such that

(2.3) |P (α)(x)| ≤ C1|P (x)| if α 6= 0 and x ∈ R
d.

This can be easily checked using (2.2). We will see in 2.6 below that (2.1)
is also necessary for the existence of a right inverse for P (D) in P∗(R

d)′b if
XP := VP ∩ R

d = ∅. From now on we will assume that

(2.4) VP ∩ Uj 6= ∅ for any j.

In this general case, division by P̌ in P∗(R
d)′ needs more sophisticated meth-

ods (see Section 3) and we will concentrate in the rest of this section on
necessary conditions for the existence of a right inverse for P (D).
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We will have to use precise (so-called tame) estimates in the proofs, and
recall some basic related notions first.

A Fréchet space E with a fixed increasing system (| |j)j∈N of seminorms
defining the topology of E is called a graded Fréchet space.

In this paper, P∗(R
d)′b will always be considered with the canonical grad-

ing defined by

|ν|j := sup{|ν(f)| | f ∈ P∗(R
d), ‖f‖j ≤ 1} if ν ∈ P∗(R

d)′.

A linear mapping

T : (E, | |j) → (F, | |j)
between two graded (F)-spaces (E, | |j) and (F, | |j) is called (linearly)
tame if there is A ∈ N such that for any j ∈ N there is C1 > 0 such that for
any f ∈ E,

|T (f)|j ≤ C1|f |Aj.

We call T tame open iff there is A ∈ N such that for any j ∈ N there is
C1 > 0 such that for any g ∈ F there is f ∈ E with T (f) = g such that

|f |j ≤ C1|g|Aj.

Finally, T is a tame isomorphism iff T is bijective, tame and tame open.

The linear topological structure of P∗(R
d)′b is known in this precise sense

by the following result from [16]:

Theorem 2.2. P∗(R
d)′b endowed with its canonical grading is tamely

isomorphic to Λ0(k
1/(2d)) by Hermite expansion.

Recall that power series spaces of finite type and their canonical gradings
are defined as follows: Let (ak)k∈N be an increasing sequence of positive
numbers. Then

Λ0(ak) :=
{
(ck)k∈N

∣∣∣ ∀j ∈ N : |(ck)|j :=
∑

k∈N

|ck|e−ak/j <∞
}
.

Tame maps are the appropriate tool when working with power series spaces
of finite type. So we will use these precise continuity estimates in this paper,
and we will always fix the grading in the (F)-spaces under consideration.

Our basic tool from the theory of partial differential equations is a tame
version of the division and extension theorem in P∗(R

d) (see 2.3 below). Let

(2.5) P = P1 . . . Pr with irreducible and relatively prime factors.

Let ̺j(f) := f
∣∣
VP∩Uj

and

‖f‖VP ,j := sup
z∈Uj∩VP

|f(z)| exp(|z|/j) if f ∈ H(Uj).
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Theorem 2.3. Let P be as in (2.5).

(a) ̺j(P (− · )f) = 0 if f ∈ P∗,j. Conversely , if ̺j(f) = 0 for f ∈ P∗,j

then there is g ∈ P∗,2j such that P (− · )g = f on U2j.

(b) For any j there is Cj such that for any f ∈ H(Uj) with ‖f‖VP ,j <∞
there is g ∈ P∗,8j such that

̺8j(f) = ̺8j(g), ‖g‖8j ≤ Cj‖f‖VP ,j .

Proof. (a) If ̺j(f) = 0 then f = P (− · )g for some g ∈ H(Uj) by (2.5).
By the Malgrange lemma (see e.g. [8, 7.3.12]) there is C1 such that for any
z ∈ U2j ,

(2.6) |g(z)|e|z|/(2j) ≤ C1 sup
|η|≤1/(2j)

|f(z + η)|e|z|/(2j) ≤ C2‖f‖j .

(b) The proof of [8, 15.3.3], applied to Pj(z) := P (z/(4j)), shows that
there are C, cj and Cj such that for any F ∈ H(Uj) there is G ∈ H(U4j)
such that ̺8j(F ) = ̺8j(G) and

sup
z∈U8j

|G(z)|e−|z|/(4j) ≤ C
( \

U4j

|G(z)|2e−|z|/(8j) dz
)1/2

(2.7)

≤ cjC sup
z∈VP∩Uj

|F (z)|e−|z|/(4j)(1 + |z|)cj

≤ CjC sup
z∈VP∩Uj

|F (z)|

if the right hand side is finite. Let f ∈ H(Uj) with ‖f‖VP ,j < ∞ and set

F (z) := f(z)
∏d

l=1 cosh(zl/j). Then (2.7) can be applied to obtain G ∈
H(U4j). Set g(z) := G(z)/

∏d
l=1 cosh(zl/j). For z ∈ U8j we clearly get

|g(z)|e|z|/(8j) ≤ |G(z)|e−|z|/(4j) ≤ CjC sup
z∈VP∩Uj

|F (z)| ≤ C ′
j‖f‖VP ,j

and ̺8j(f)(z) = ̺8j(g)(z).

The tame invariant behind our calculations is a strong formulation of a
dual (Ω)-type condition. For (ck)k∈N ∈ Λ0(ak)

′ let |(ck)|∗j := supk∈N |ck|eak/j

be the canonical dual norms in the dual power series space Λ0(ak)
′ of finite

type. An easy calculation shows that for any k, n, j ∈ N there is C1 such
that

| |∗nj ≤ C1(| |∗k)1−1/n(| |∗j)1/n.

Thus by 2.2 there is B ∈ N such that for any k, n, j ∈ N there is C2 such
that

(2.8) ‖g‖Bnj ≤ C2‖g‖1−1/n
k ‖g‖1/n

j if g ∈ P∗,j .

Inequality (2.8) can be transferred to the dual of ker(P (D)) if P (D) has a
right inverse in P∗(R

d)′b and this leads to the first version of the main result
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of this section. Here and in similar subsequent estimates we set a∞ := ∞ if
a ≥ 0.

Theorem 2.4. Let P satisfy (2.4) and let P (D) admit a right inverse

in P∗(R
d)′b. Then there is D ∈ N such that for any j, n, k ∈ N there is C1

such that for any f ∈ H(Uj),

(2.9) ‖f‖VP ,Dnj ≤ C1‖f‖1−1/n
VP ,k ‖f‖1/n

VP ,j .

Proof. (a) Let P = Pm1

1 . . . Pmr
r with irreducible and relatively prime

factors and let R be a right inverse for P (D) in P∗(R
d)′b. Then RQ :=∏

i≤r Pi(D)mi−1R is a right inverse for Q(D) :=
∏

i≤r Pi(D) in P∗(R
d)′b and

VP = VQ. We may thus assume that P = Q. We find that R is tame by

[31, 5.1] since P∗(R
d)′b is tamely isomorphic to Λ0(k

1/(2d)) (with its canonical
grading) by 2.2. Since the Fourier transformation is a tame isomorphism in
P∗(R

d)′b (see [16]), Rt defines a left inverse L : P∗(R
d) → P∗(R

d) for the
multiplication operator MP̌ in P∗(R

d) and there is A ∈ N such that

(2.10) ‖L(f)‖Aj ≤ C1‖f‖j if f ∈ P∗,j .

Let π(f) := f − P (− · )L(f) for f ∈ P∗(R
d). Then

(2.11) ‖π(f)‖2Aj ≤ C2‖f‖j if f ∈ P∗,j.

(b) Let f ∈ H(Uj). By 2.3(b), for any k ≥ j there is gk ∈ P∗,8k such that

(2.12) ̺8k(gk) = ̺8k(f), ‖gk‖8k ≤ Ck‖f‖VP ,k.

Notice that by 2.3(a), for any k ≥ j,

(2.13) ̺8k(π(gk)) = ̺8k(gk − P (− · )L(gk)) = ̺8k(gk) = ̺8k(f).

By 2.3(a) and (2.12) there is hk ∈ P∗,16k such that P (−z)hk(z) = gj(z) −
gk(z) if z ∈ U16k. This implies by the definition of π and (2.10) that π(gj) =
π(gk) on U17Ak and hence

‖f‖VP ,17ABjn ≤ ‖π(gj)‖17ABjn ≤ c1‖π(gj)‖1−1/n
17Ak ‖π(gj)‖1/n

17Aj

≤ c2‖π(gk)‖1−1/n
17Ak ‖π(gj)‖1/n

17Aj ≤ c3‖gk‖1−1/n
8k ‖gj‖1/n

8j

≤ c4‖f‖1−1/n
VP ,k ‖f‖1/n

VP ,j

by (2.8) and (2.11)–(2.13).

We can omit the exponential weights in (2.9) and then state (2.9) in a
much stronger form. Set

XP := VP ∩ R
d

and for f ∈ H(Uj) let

|||f |||j := sup
z∈VP∩Uj

|f(z)|, |||f |||XP
:= sup

x∈XP

|f(x)|

(|||f |||j and |||f |||XP
may be infinite).
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Theorem 2.5. Let VP satisfy (2.4). Then (2.9) is valid iff XP 6= ∅ and

there is D ∈ N such that for any j and n and any f ∈ H(Uj),

(2.14) |||f |||Dnj ≤ |||f |||1−1/n
XP

|||f |||1/n
j .

Proof. Necessity. (a) (2.9) implies that for any j, n, k ∈ N and any f ∈
H(Uj) we have

(2.15) |||f |||Dnj ≤ |||f |||1−1/n
k |||f |||1/n

j .

Indeed, let f ∈ H(Uj) be bounded on VP ∩ Uj . Then ‖g‖VP ,j is finite for

g(z) := f/
∏d

l=1 cosh(zl/j) and we get by (2.9), for fixed z0 ∈ VP ∩ UDnj ,

|f(z0)| ≤ C(z0)|g(z0)| ≤ C(z0)C1‖g‖1−1/n
VP ,k ‖g‖1/n

VP ,j(2.16)

≤ C3(z0)|||f |||1−1/n
k |||f |||1/n

j .

Applying (2.16) to fm instead of f for m ∈ N we get (2.15).
(b) The transition to |||f |||XP

instead of |||f |||k now follows similarly
to [32, (4)]: When proving (2.14) we may assume that |||f |||Dnj > 0. Fix
z0 ∈ VP ∩ UDnj such that |||f |||Dnj ≤ 2|f(z0)| and set

g(z) := f(z)e−〈z−z0〉2 where 〈z − z0〉2 :=
∑

n≤d

z2
j .

Choose zk ∈ VP ∩Uk such that |||g|||k ≤ 2|g(zk)|. Then ℑ(zk) → 0 and ℜ(zk)
is bounded since g(z) → 0 if ℜ(z) → ∞ and

0 < |||f |||Dnj ≤ 2|f(z0)| ≤ 2|||g|||Dnj ≤ 2|||g|||1−1/n
k |||g|||1/n

j

≤ 4|g(zk)|1−1/n|||f |||1/n
j e4/(j2n)

since
|e−〈z−z0〉2 | = e−|ℜ(z−z0)|2+|ℑ(z−z0)|2 ≤ e4/(j2) if z ∈ Uj .

We can thus assume that ζ := lim zk exists. Clearly, ζ ∈ R
d ∩ VP = XP ,

hence this set is non-void. We may take the limit as k → ∞ and obtain

|||f |||Dnj ≤ 4e4/(j2n)|g(ζ)|1−1/n|||f |||1/n
j ≤ 4e4/j2|f(ζ)|1−1/n|||f |||1/n

j

≤ 4e4/j2|||f |||1−1/n
XP

|||f |||1/n
j .

As in (a), we can get rid of the constant. This proves (2.14).

Sufficiency. Let f ∈ H(Uj) with ‖f‖VP ,j < ∞. For z0 ∈ VP ∩ UDnj we
set

g(z) := f(z)
d∏

l=1

cosh(zl/(Dnj))e
−〈z−z0〉2 .

Then g is bounded on VP ∩ Uj and

|f(z0)|e|z0|/(Dnj) ≤ |g(z0)| ≤ |||g|||Dnj ≤ |||g|||1−1/n
XP

|||g|||1/n
j
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by (2.14). To pass to f on the right hand side we notice that for x ∈ R
d,

|x|/(Dnj) − |ℜ(x− z0)|2 + |ℑ(z0)|2 = |x|/(Dnj) − |x− z0|2 + 2|ℑ(z0)|2
≤ C1 + |z0|/(Dnj) + |x− z0|/(Dnj) − |x− z0|2 ≤ C2 + |z0|/(Dnj)

and therefore

(2.17) |||g|||1−1/n
XP

≤ C3e
(1−1/n)|z0|/(Dnj)‖f‖1−1/n

XP ,k .

For z ∈ Uj we similarly get

(1 − 1/n)|z0|/(Dj) + |z|/(Dnj) − |z − z0|2 + 2|ℑ(z − z0)|2 ≤ C4 + |z|/j
and therefore

e(1−1/n)|z0|/(Dj)|||g|||j ≤ C5‖f‖VP ,j .

This estimate together with (2.17) implies

(2.18) ‖f‖VP ,Dnj ≤ C6‖f‖1−1/n
XP ,k ‖f‖1/n

VP ,j .

Inequality (2.9) follows.

Combining 2.1 and 2.5 we get

Corollary 2.6. Let XP = ∅. Then P (D) admits a right inverse in

P∗(R
d)′b iff VP ∩ Uj0 = ∅ for some j0.

A simple negative example is provided by P (x, y) := xy + it for fixed
t ∈ R. Clearly, XP = ∅ if t 6= 0 and VP ∩ Uj 6= ∅ for any j, hence P (D)
admits no right inverse in P∗(R

d)′b by 2.6. This also shows that our problem
is very sensitive to small perturbations since Q(D) := D1D2 admits a right
inverse in P∗(R

d)′b.

We finally show that a distance condition is valid on VP if P satisfies
(2.14). A local version is also connected to the local Phragmén–Lindelöf
condition (see 4.5).

Proposition 2.7. Let XP 6= ∅ and let P satisfy (2.14). Then

(2.19) d(z,XP ) ≤ 4D|ℑ(z)| if z ∈ VP ∩ U2D.

Proof. Fix z0 ∈ VP ∩ U2D and set g(z) := e−〈z−z0〉2 . Choose j ∈ N such
that 1/(2D(j + 1)) ≤ |ℑ(z0)| < 1/(2jD). By (2.14) (for n = 2) we get

1 = g(z0) ≤ |||g|||2Dj ≤ |||g|||1/2
XP

|||g|||1/2
j ≤ e−d(z0,XP )2/2+|ℑ(z0)|2+2/j2

≤ e−d(z0,XP )2/2+(32D2+1)|ℑ(z0)|2

by the choice of j.

Condition (2.19) is equivalent to certain polynomial inequalities (see
(2.22) below):
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Remark 2.8. The following are equivalent :

(a) There is A ≥ 1 such that

(2.20) d(z,XP ) ≤ A|ℑ(z)| if z ∈ VP ∩ UA.

(b) There is B ≥ 1 such that

(2.21) d(x,XP ) ≤ Bd(x, VP ) if x ∈ R
d and d(x,XP ) < 1/B.

(c) There is C ≥ 1 such that for any α,

(2.22) |P (α)(x)|min{1/C, d(x,XP )}|α| ≤ C|P (x)| if x ∈ R
d.

Proof. (a)⇒(b). For x ∈ R
d with d(x,XP ) < 1/A we choose z ∈ VP

such that |x− z| = d(x, VP ). Then

|ℑ(z)| ≤ d(x, VP ) ≤ d(x,XP ) < 1/A.

Choose y ∈ XP such that |z − y| = d(z,XP ). Then (2.20) implies

d(x,XP ) ≤ |x− y| ≤ |x− z| + |z − y| ≤ d(x, VP ) + d(z,XP )

≤ d(x, VP ) +A|ℑ(z)| ≤ (A+ 1)d(x, VP ).

(b)⇒(c). If d(x,XP ) < 1/B we get, by (b) and (2.2),

d(x,XP )
∑

α 6=0

|P (α)(x)/P (x)|1/|α|≤Bd(x, VP )
∑

α 6=0

|P (α)(x)/P (x)|1/|α|≤BC1

and this implies (2.22) for these x. If d(x,XP ) ≥ 1/B then (2.2) shows that

|P (α)(x)|(1/B)|α| ≤ C
|α|
1 |P (x)|

if α 6= 0. This completes the proof of (2.22).
(c)⇒(a). By (2.22) and (2.2) there is C1 such that

(2.23) min{1/C, d(x,XP )} ≤ C1d(x, VP ) if x ∈ R
d.

Let z ∈ VP ∩ UCC1
. Then d(ℜ(z), XP ) ≤ 1/C since otherwise (2.23) implies

that
1/C ≤ C1d(ℜ(z), VP ) ≤ C1|ℑ(z)| < 1/C,

a contradiction. Choose y ∈ XP such that |y −ℜ(z)| = d(ℜ(z), XP ). Then

d(z,XP ) ≤ |z − y| ≤ d(ℜ(z), XP ) + |ℑ(z)| ≤ C1d(ℜ(z), VP ) + |ℑ(z)|
≤ (C1 + 1)|ℑ(z)|

by (2.23) since d(ℜ(z), XP ) ≤ 1/C.

3. Tame splitting theory. We will show in this section that the esti-
mates (2.9) and (2.14) are also sufficient for the existence of a right inverse
for P (D) in P∗(R

d)′b. We will use tame splitting theory to solve this problem;
we recall the corresponding basic notions and facts first. An exact sequence

(3.1) 0 → E
S−→ F

T−→ G→ 0
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of graded (F)-spaces E, F and G is called tame exact iff S is a tame isomor-
phism onto its range (with the grading induced from F ) and T is tame and
tame open. The splitting of (3.1) is decided by means of the tame invariants
(DN)t and (Ω)t which are defined as follows (see e.g. [11, 1.3]): a graded
(F)-space (E, | |j) satisfies (DN)t if there are A ∈ N and C ≥ 1 such that
for any n ≥ C there are j and C1 such that

| |n ≤ C1| |1/(Cn)
A | |1−1/(Cn)

j .

A space E satisfies (Ω)t if for any j there is j ≤ D ∈ N such that for any
n ≥ D and k there is C1 such that for any t > 0,

WnD ⊂ t1/nWk +
C1

t1−1/n
Wj ,

where Wl := {f ∈ E | |f |l < 1} is the unit ball with respect to | |l.
We will be checking (Ω)t in a dual formulation. In fact, E satisfies (Ω)t

iff for any j there is j ≤ D ∈ N such that for any n ≥ D and k there is C1

such that

(3.2) |y|∗Dn ≤ C1(|y|∗k)1−1/n(|y|∗j)1/n if y ∈ E′,

where |y|∗l := sup|f |l≤1 |y(f)| are the dual seminorms for | |l (see e.g. [33,

1.9] and compare (2.8)).
Notice that (DN)t and (Ω)t are inherited by tame isomorphisms and that

(3.3) any power series space of finite type satisfies (DN)t and (Ω)t

(see [11, 1.4(b)]). The following tame splitting theorem (see [11, 1.6]) is a
special case of the general splitting theorem from [29].

Theorem 3.1. Let E, F and G be graded (FN)-spaces and let

0 → E
S−→ F

T−→ G→ 0

be a tame exact sequence. Then the sequence is split if E and G satisfy (DN)t

and (Ω)t.

We want to apply 3.1 to the sequence

(3.4) 0 → ker(P (D))
Id−→ P∗(R

d)′b
P (D)−−→ P∗(R

d)′b → 0,

which is exact by [19, Remark after 3.3]. Notice that many of the assump-
tions of 3.1 are satisfied for (3.4) for any P (D). Since ker(P (D)) is endowed
with the grading induced by P∗(R

d)′b, the identity is a tame isomorphism.
Clearly, P (D) is also tame. P∗(R

d)′b satisfies (DN)t and (Ω)t by 2.2 and
(3.3), and ker(P (D)) satisfies (DN)t since (DN)t is inherited by subspaces.
Hence 3.1 applies if ker(P (D)) satisfies (Ω)t and if P (D) is tame open. This
is shown in the next two lemmata.

To check (Ω)t we will prove (3.2) for the dual space of ker(P (D)), which
may be identified with the quotient space P∗(R

d)/P (− · )P∗(R
d) via Fourier
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transformation since the multiplication operator MP̌ is surjective and since
P∗(R

d)′b is an (FS)-space.

Lemma 3.2. Let XP 6= ∅ and let P satisfy (2.5) and (2.14). Then

ker(P (D)) satisfies (Ω)t.

Proof. ker(P (D)) is tamely isomorphic to E := ker(MP̌ ) by Fourier
transformation. Recall that the grading on E ⊂ P∗(R

d)′b is defined by

|ν|j := sup{|ν(f)| | f ∈ P∗(R
d), ‖f‖j ≤ 1} if ν ∈ E.

Let [f ] ∈ E′ = P∗(R
d)/P (− · )P∗(R

d). To show (3.2) we fix j and we may
assume that |[f ]|∗j <∞. Then there is g ∈ P∗,j such that

(3.5) g ∈ [f ] and ‖g‖VP ,2j ≤ ‖g‖2j ≤ |[f ]|∗j <∞.

Indeed,

|ν(f)| = |[f ](ν)| ≤ |[f ]|∗j |ν|j if ν ∈ E = ker(MP̌ ).

By the Hahn–Banach theorem there is g ∈ P∗(R
d) such that ν(g) = ν(f) if

ν ∈ E (hence g ∈ [f ]) and such that

|µ(g)| ≤ |[f ]|∗j |µ|j if µ ∈ P∗(R
d)′.

For z := x+ iy ∈ U2j we apply this estimate to

µz,m := exp(|z|/j)
∑

l≤m

δ(l)x /l! ∈ P∗(R
d)′

and conclude that g ∈ P∗,2j and that g satisfies (3.5). Moreover, for fixed k,

(3.6) ‖g‖XP ,2k ≤ |[f ]|∗k <∞.

Indeed, as above we get g̃ ∈ [f ] such that

|[f ]|∗k ≥ ‖g̃‖VP ,2k ≥ ‖g̃‖XP ,2k = ‖g‖XP ,2k

since g, g̃ ∈ [f ], hence g̃ = g on VP ∩ Ul for some l and therefore g̃ = g on
XP = VP ∩ R

d.
By (3.5), (3.6) and (2.18) we get

(|[f ]|∗j)1/n(|[f ]|∗k)1−1/n ≥ ‖g‖1/n
VP ,2j‖g‖

1−1/n
XP ,2k ≥ C1‖g‖VP ,2Dnj ≥ C2|[f ]|∗16Dnj.

The last estimate is seen as follows: By 2.3(b) there is g̃ ∈ P∗,16Dnj such that
g = g̃ on VP ∩ U16Dnj (hence [f ] = [g] = [g̃]) and ‖g̃‖16Dnj ≤ C3‖g‖VP ,2Dnj.
This completes the proof, since |[f ]|∗16Dnj = |[g̃]|∗16Dnj ≤ ‖g̃‖16Dnj by defini-
tion.

Lemma 3.3. P (D) : P∗(R
d)′b → P∗(R

d)′b is tame open if P satisfies (2.5)
and (2.14).

Proof. (a) Clearly,

Ml := MP̌ : P∗,l → P∗,2l
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is continuous. Let Kl := ker(M t
l ) ⊂ (P∗,2l)

′. We then have the following
density result: ker(MP̌ ) is dense in K8Dj with respect to | |j for any j.
Indeed, | |j is the canonical (dual) norm on P ′

∗,j. Let g ∈ (P ′
∗,j)

′ be such

that g(ker(MP̌ )) = 0. Passing by the reflexive spaces P̃∗,l defined with L2-
norms instead of sup-norms we see that g ∈ P∗,2j. Since δx ∈ ker(MP̌ ) if
x ∈ XP , we know that g(XP ) = 0 and therefore g(VP ∩U4Dj) = 0 by (2.14)
for n = 2. This implies by 2.3(a) that g = P (− · )h for some h ∈ P∗,8Dj and
therefore

〈g, ν〉 = 〈P (− · )h, ν〉 = 0

if ν ∈ K8Dj.

(b) To prove the lemma, it is sufficient to show that

(3.7) MP̌ : P∗(R
d)′b → P∗(R

d)′b is tame open.

Let ν ∈ P∗(R
d)′ with |ν|2j ≤ 1. For k ≥ j let

Hk : Ek := P (− · )P∗,k → C, Hk(f) := ν(g) if f = P (− · )g, g ∈ P∗,k.

By (2.6) we have

|Hk(f)| = |ν(g)| ≤ |ν|2k‖g‖2k ≤ |ν|2k‖f‖k.

By the Hahn–Banach theorem, Hk may be extended to µk ∈ (P∗,k)
′ such

that

(3.8) |µk|k ≤ |ν|2k.

Clearly, 〈MP̌µ2k, f〉 = ν(f) if f ∈ P∗,k. If k ≥ l ≥ j then (µ2k − µ2l)(El) = 0
and hence (µ2k − µ2l) ∈ Kl. Since ker(MP̌ ) is dense in K8Dl with respect to
| |l for any l by (a), we may use the classical Mittag-Leffler argument to get
µ ∈ P∗(R

d)′ such that P (− · )µ = ν and |µ|j ≤ 2 by (3.8).

Theorem 3.4. Let XP 6= ∅. The following are equivalent :

(a) P (D) admits a right inverse in P∗(R
d)′b.

(b) There is D such that for any j, n and k there is C1 such that for

any f ∈ H(Uj),

‖f‖VP ,Dnj ≤ C1‖f‖1−1/n
VP ,k ‖f‖1/n

VP ,j .

(c) There is D ∈ N such that for any j and n and any f ∈ H(Uj),

|||f |||Dnj ≤ |||f |||1−1/n
XP

|||f |||1/n
j .

Proof. By 2.4 and 2.5 we only have to show (c)⇒(a). We may assume
that P is as in (2.5) since then any prime factor of P and therefore also
P (D) has a right inverse. The claim now follows from 3.1 (and the remarks
following that theorem) by 3.2 and 3.3.
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4. Uniform Phragmén–Lindelöf conditions. Having an estimate for
holomorphic functions on an algebraic variety V , one of the main goals is to
transfer the estimate to plurisubharmonic (psh) functions on V since these
have more flexibility than holomorphic functions in concrete constructions.
This will lead to a uniform condition of Phragmén–Lindelöf type and to the
corresponding local version, connecting our problem to the manifold results
which have been obtained for such conditions in recent times (see [4, 5, 7,
22–26, 32, 34, 35]).

The following theorem transfers the crucial condition (2.14) from 2.5 to
psh functions defined on VP ∩Uj . Recall that a function u 6= −∞ is (weakly)
psh on an algebraic variety V (in symbols u ∈ PSH(V )) if u is locally
bounded from above and upper semicontinuous (usc) on V and if u is psh
near the regular points.

For u ∈ PSH(VP ∩ Uj) we set, just as before,

|||u|||VP ,j := |||u|||j := sup
z∈VP∩Uj

u(z) and |||u|||XP
:= sup

x∈XP

u(x).

Theorem 4.1. Let XP 6= ∅ and let P satisfy (2.14). For any j, n ∈ N

and any v ∈ PSH(VP ∩ Uj) we have, with D from (2.14),

(4.1) |||v|||4Dnj ≤
(

1 − 1

n

)
|||v|||XP

+
1

n
|||v|||j if |||v|||j <∞.

Proof. The main step is the proof of the following claim (for D from
(2.14)): For any 0 < θ < 1, any n, k, j ∈ N with k > j and any z0 ∈
VP ∩ U4Dnj there is C1 such that for any v ∈ PSH(VP ∩ Uj) satisfying

(4.2) v(z) ≥ 1 if z ∈ VP ∩ Uj

we have

(4.3) v(z0) ≤ C1 +
1

θ

(
1 − 1

n

)
|||v|||k +

(
1

θn
+ 1 − θ

)
|||v|||j.

We first show that the claim implies (4.1): we may assume that v 6= −∞
on VP ∩ U4Dnj and that |||v|||j <∞. Set

vc,t(z) := max{v(z) + c+ 1, 1}t, z ∈ VP ∩ Uj ,

for c > 0 and t ≥ 1. Clearly, vc,t ≥ 1. Let z0 ∈ VP ∩ U4Dnj. If v(z0) > −∞
then we choose c > 0 such that v(z0) ≥ −c and get by (4.3), for t ≥ 1,

t ≤ t(v(z0) + c+ 1) = vc,t(z0)

≤ C1 +
1

θ

(
1 − 1

n

)
|||vc,t|||k +

(
1

θn
+ 1 − θ

)
|||vc,t|||j

= C1 +
t

θ

(
1 − 1

n

)
|||ṽc|||k + t

(
1

θn
+ 1 − θ

)
|||v|||j + (c+ 1)t

(
1

θ
+ 1 − θ

)
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for ṽc := max{v(z),−c} since |||vc,t|||k = t(|||ṽc|||k + c + 1) and |||vc,t|||j =
t(|||v|||j + c+ 1) since z0 ∈ VP ∩U4Dnj ⊂ VP ∩ Uj . Dividing by t and letting
t→ ∞ we get

v(z0) ≤
1

θ

(
1 − 1

n

)
|||ṽc|||k +

(
1

θn
+ 1 − θ

)
|||v|||j + (c+ 1)

(
1

θ
− θ

)
.

Letting θ ↑ 1 we get

v(z0) ≤
(

1 − 1

n

)
|||ṽc|||k +

1

n
|||v|||j if v(z0) > −∞.

Hence v 6= −∞ on VP ∩ Uk since v 6= −∞ on VP ∩ U4Dnj and therefore (as
c→ ∞)

(4.4) |||v|||4Dnj ≤
(

1 − 1

n

)
|||v|||k +

1

n
|||v|||j.

We may replace |||v|||k in (4.4) by |||v|||XP
as in the proof of 2.5. Notice that

lim supk→∞ v(zk) ≤ v(limk→∞ zk) since v is psh. We thus obtain

|||v|||4Dnj ≤ C ′
1 +

(
1 − 1

n

)
|||v|||XP

+
1

n
|||v|||j.

As above, we can get rid of the constant C ′
1. This proves (4.1).

Let 1 ≤ v ∈ PSH(VP ∩Uj) be bounded from above and let κ := |||v|||j+1.
Let z0 ∈ VP ∩ U4Dnj. We first construct a kind of local extension u ∈
PSH(VP ) of v as follows: Let ϑ(z) := (|ℑ(z)| − 1/k)κjk/(k − j) if |ℑ(z)| ≥
1/k and ϑ(z) := 0 if |ℑ(z)| ≤ 1/k. Then ϑ is psh on C

d. For z ∈ VP let
ũ(z) := max{v(z), ϑ(z)} if |ℑ(z)| ≤ 1/j and ũ(z) := ϑ(z) if |ℑ(z)| ≥ 1/j.
Then ũ ∈ PSH(VP ) by the definition of κ and

(4.5) |||ũ|||k = |||v|||k and |||ũ|||j ≤ |||v|||j + 1.

Set u(z) := ũ(z) − |ℜ(z − z0)|2 + |ℑ(z − z0)|2 if z ∈ VP . If we prove that

(4.6) u(z0) ≤ C2 +
1

θ

(
1 − 1

n

)
|||ũ|||k +

(
1

θn
+ 1 − θ

)
|||ũ|||j

then (4.3) follows since

v(z0) ≤ u(z0) ≤ C2 +
1

θ

(
1 − 1

n

)
|||ũ|||k +

(
1

θn
+ 1 − θ

)
|||ũ|||j

≤ C3 +
1

θ

(
1 − 1

n

)
|||v|||k +

(
1

θn
+ 1 − θ

)
|||v|||j

by (4.6) and (4.5).
To prove (4.6) we need a set of holomorphic functions fz for z ∈ VP

near z0 such that fz(z) almost equals u(z) and such that fz essentially has
the same growth as u on VP so that we can then apply (2.14). A possible
construction of such functions was explained in [23] and a modification will
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suit our purposes. We will use the notation from [23] and refer to that paper
for any details. We may assume that P satisfies (2.5) and that the first unit
vector is non-characteristic for P . Then the discriminant D(w) for w ∈ C

d−1

does not vanish identically. The set

S0 := {(s, w) ∈ C × C
d−1 | |D(w)| < δ(1 + |w|)−C}

contains the singular points of VP . UsingD(w) we can define a pseudoconvex
open neighborhood Ω of the regular points with the properties listed in [23,
4.1] and such that for any psh u on a neighborhood of VP ∩ S0 we have

(4.7) u(z) ≤ max{u(ζ) | ζ ∈ VP \ S0, |ζ − z| ≤ 1/(12k)}
(cf. [23, 4.1(iv)]). In fact we may use the construction of [23, 4.1] for P (12kz)
instead of P and then shrink the coordinates again to arrive at (4.7).

To prove (4.6) for z0 ∈ VP ∩U4Dnj we may assume that z0 ∈ (VP \ S0)∩
U3nDj by (4.7) if k > nj (without loss of generality). By [23, 4.1] we then
have z0 = (si(w), w), where si(w + · ) is a holomorphic function on B :=
{τ ∈ C

d−1 | |τ | < ε(z0)} such that z(τ) := (si(τ +w), τ +w)) ∈ VP ∩Ω and
the radius satisfies ε(z0) = ε1(1 + |z0|)−C1 and

(4.8) |z(τ) − z0| ≤ 1/(12k) if |τ | ≤ 8ε(z0)

(by the argument after (4.7), cf. also [23, 4.1(v)(c)]).

With a constant C to be determined later we now define holomorphic
functions fτ on Ω as in the proof of [23, 5.1] (using [23, 3.2] with ψ defined
by [23, (5.5)]) for δ := Cε(z0)/((1 + |z0|)κ). Notice that

u(z) ≥ v(z) − |z − z0|2 ≥ 0 if |z − z0| ≤ 1.

By the proof of [23, 5.1] (see [23, (5.7)]) there is an exceptional set E ⊂ B
such that for τ ∈ B \E we have, for r defined by (1 − r)/(1 + r) = θ,

ln |fτ (z(τ))| ≥ θu(z(τ)) + ln(rδ/2) − C4 ln(2 + |z(τ)|)(4.9)

≥ θu(z(τ)) − lnκ− C5 ln(2 + |z0|)
≥ θu(z(τ)) − (1 − θ)θ(κ− 1)/2 − C6 ln(2 + |z0|)
≥ θu(z(τ)) − (1 − θ)θ|||ũ|||j/2 − C7(z0)

by the definition of κ and ũ.

The measure of the exceptional set E is estimated in [23, p. 304] by

|E| ≤ C8|B| δ

ε(z0)
sup

|τ |≤2ε(z0)
{u(si(w + τ), w + τ)(4.10)

+ C9(ln |D(w)| + ln(2 + |w|))}
≤ CC8|B|(|||u|||j + C10 ln(2 + |w|))/(κ(1 + |z0|))
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≤ CC8|B|(κ+ C11 ln(2 + |z0|))/(κ(1 + |z0|))
≤ CC8(1 + 2C11)|B| ≤ |B|(1 − θ)/2

if C = (1 − θ)/(2C8(1 + 2C11)), where we have used (4.5) and the fact that
|||u|||j ≤ |||ũ|||j + 1 ≤ κ+ 1.

We thus deduce by the subaveraging property of psh functions, (4.9)
and (4.10) that

u(z0) ≤
1

|B|
\
B

u(z(τ)) dτ =
1

|B|
\
E

u(z(τ)) dτ +
1

|B|
\

B\E

u(z(τ)) dτ(4.11)

≤ |E|
|B| |||u|||j + 2C7(z0) +

(1 − θ)|||ũ|||j
2

+
1

θ
sup

τ∈B\E
ln |fτ (z(τ))|

≤ C12 + (1 − θ)|||ũ|||j +
1

θ
sup

τ∈B\E
ln |fτ (z(τ))|.

By (2.14) and [23, 3.2(iii)], for τ ∈ B \E, and hence z(τ) ∈ VP ∩U2Dnj since
z0 ∈ U3Dnj, we get

ln |fτ (z(τ))| ≤ (1− 1/n)|||ln |fτ | |||XP
+ |||ln |fτ | |||2j/n

≤ (1− 1/n)|||u+C13 ln(2+ | · |)|||k + |||u+C13 ln(2+ | · |)|||j/n
= (1− 1/n)|||ũ− |ℜ(· − z0)|2 + |ℑ(· − z0)|2 +C13 ln(2+ | · |)|||k

+ |||ũ− |ℜ(· − z0)|2 + |ℑ(· − z0)|2 +C13 ln(2+ | · |)|||j/n
≤ C14(z0) + (1− 1/n)|||ũ|||k + |||ũ|||j/n.

Combining this estimate with (4.11) we get

u(z0) ≤ C15 + (1 − 1/n)|||ũ|||k/θ + (1/(nθ) + 1 − θ)|||ũ|||j.
This completes the proof of (4.6) and of Theorem 4.1.

Inequality (4.1) implies a uniform Phragmén–Lindelöf condition on VP

near R
d:

Proposition 4.2. Let XP 6= ∅ and let P satisfy (4.1). Then the fol-

lowing condition (UPL) holds: there are Ci > 0 and j0 such that for any

v ∈ PSH(VP ∩ Uj0), if

(4.12) v(x) ≤ 0 for x ∈ XP , v(z) ≤ 1 for z ∈ VP ∩ Uj0 ,

then

(4.13) v(z) ≤ C1|ℑ(z)| for z ∈ VP ∩ UC2
.

Proof. Let j0 := 1 and C2 := 4D for D as in (4.1). Let z ∈ VP ∩ U4D.
Choose n ∈ N such that 1/(4D(n+1)) ≤ |ℑ(z)| < 1/(4Dn). Since |||v|||XP

≤
0 and |||v|||1 ≤ 1 by assumption, from (4.1) we get

v(z) ≤ |||v|||4Dnj ≤ |||v|||j/n ≤ 1/n ≤ 8D|ℑ(z)|.
This shows (4.13) for C1 := 8D.
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Recall that VP satisfies (PL)loc(a) at a ∈ XP (the local Phragmén–
Lindelöf condition at a) if there are 0 < r2 < r1 and A > 0 such that for
any v ∈ PSH(VP ∩Br1

(a)), if

(4.14) v(x) ≤ 0 for x ∈ XP ∩Br1
(a), v(z) ≤ 1 for z ∈ VP ∩Br1

(a),

then

(4.15) v(z) ≤ A|ℑ(z)| for z ∈ VP ∩Br2
(a).

The uniform Phragmén–Lindelöf condition (UPL) from 4.2 can be translated
into a uniform (PL)loc-condition:

Proposition 4.3. Let XP 6= ∅ and let P satisfy (UPL). Then the fol-

lowing condition (UPL)loc holds: there are r1 > r2 > 0 and C such that for

any a ∈ XP , if v ∈ PSH(VP ∩Br1
(a)) satisfies

(4.16) v(x) ≤ 0 for x ∈ XP ∩Br1
(a), v(z) ≤ 1 for z ∈ VP ∩Br1

(a),

then

(4.17) v(z) ≤ C|ℑ(z)| for z ∈ VP ∩Br2
(a).

Proof. Let r1 := 2/j0 and r2 ≤ r1/8 = 1/(4j0) and fix z0 ∈ VP with
|z0 − a| < r2. For z ∈ VP ∩ Uj0 set

u(z) := max{0, v(z) + 4(−|ℜ(z − z0)|2 + |ℑ(z)|2)/r21}/2
if |ℜ(z − z0)| < r1/

√
2 and u(z) = 0 if |ℜ(z − z0)| ≥ r1/

√
2. Then u is

well-defined since |z−a| < r1 if |ℜ(z0)−a| < r2 ≤ r1/8, |ℜ(z−z0)| < r1/
√

2
and z ∈ Uj0 . Furthermore, u ∈ PSH(VP ∩ Uj0) since

4(−|ℜ(z − z0)|2 + |ℑ(z)|2)/r21 < −1 if |ℜ(z − z0)| = r1/
√

2 and z ∈ Uj0 .

Also observe that u satisfies (4.12) by (4.16). Hence,

v(z0) ≤ 2u(z0) ≤ 2C1|ℑ(z0)| if z0 ∈ UC2
.

The claim is proved for r2 := 1/max{4j0, C2}.
For l, k ∈ N and a ∈ C

d let

bl,k(a) := {z ∈ C
d | |ℜ(z − a)| < 1/l, |ℑ(z − a)| < 1/k} and bl,k := bl,k(0).

For a bounded u ∈ PSH(VP ∩ bl,k(a)) we set, as before,

|||u|||bl,k(a) := sup
z∈VP∩bl,k(a)

u(z), |||u|||XP ,B1/l(a) := sup
x∈XP ∩B1/l(a)

u(x).

It is interesting to notice that (PL)loc(0) may be formulated in the spirit of
(4.1), i.e. as a dual (Ω)t-type condition:

Proposition 4.4. The following are equivalent :

(a) P satisfies (PL)loc(0) with constants 1 ≥ r1 > r2 > 0 and A.

(b) Let l ≥ 1/r2, j ∈ N and a ∈ R
d∩Br2/2(0). Let u ∈ PSH(VP ∩bl,jl(a))

be bounded above. If
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(4.18) u(x) ≤ 0 for x ∈ XP ∩B1/l(a), u(z) ≤ 1 for z ∈ VP ∩ bl,jl(a),

then

(4.19) u(z) ≤ 8r1Ajl|ℑ(z)| for z ∈ VP ∩ b2l,8jl(a).

(c) There is D ≥ 1 such that for any l ≥ 1/r2, any j, n ∈ N and a ∈
R

d ∩Br2/2(0) and u ∈ PSH(VP ∩ bl,jl(a)) bounded above,

(4.20) |||v|||b2l,Djln(a) ≤
(

1 − 1

n

)
|||v|||XP ,B1/l(a) +

1

n
|||v|||bl,jl(a).

(d) There are R2 > R1 > 0 and D such that for any j, n and k there is

C1 such that for any f ∈ H(B1/R1
(0)),

(4.21) |||f |||bR2,Djn(0) ≤ C1|||f |||1−1/n
bR1,k(0)|||f |||

1−1/n
bR1,j(0).

Proof. (a)⇒(b). Let u ∈ PSH(VP ∩ b2l,jl(a)), a ∈ R
d ∩Br2/2(0), satisfy

(4.22) u(x) ≤ 0 if x ∈ XP ∩B1/(2l)(a), u(z) ≤ 1 if z ∈ VP ∩ b2l,jl(a).

Set v(z) := max{0, u(z) + 8l2(−|ℜ(z − a)|2 + |ℑ(z)|2)}/(8jl) if z ∈ VP ∩
b2l,4jl(a) and v(z) := 0 if z ∈ (VP ∩U4jl)\b2l,4jl(a). Then v ∈ PSH(VP ∩Ujl)
since

u(z) + 8l2(−|ℜ(z − a)|2 + |ℑ(z)|2) < 1 + 8l2(−1/(2l)2 + 1/(4jl)2) ≤ −1/2

by (4.22) if z ∈ VP , |ℜ(z − a)| = 1/(2l) and |ℑ(z)| < 1/(4jl). A similar
calculation shows that v(z) ≤ 3/(16jl) if z ∈ VP ∩ U4jl. Hence we may
define ṽ ∈ PSH(VP ) by ṽ(z) := max{v(z), |ℑ(z)|} if z ∈ VP ∩ U4jl and
ṽ(z) := |ℑ(z)| if z ∈ VP \ U4jl. Clearly,

ṽ(x) ≤ 0 if x ∈ XP , ṽ(z) ≤ max{r1, 3/(16jl)} = r1 if z ∈ VP ∩Br1
(0).

Let z := a + it and |t| < 1/(8jl). Then z ∈ Br2
(0) since jl ≥ 1/r2 and

a ∈ Br2/2(0) ∩ R
d, and by (PL)loc(0) we get

(4.23) u(a+ it)/(8jl) ≤ ṽ(a+ it) ≤ r1A|t|.
If u ∈ PSH(VP ∩ bl,jl(a)) satisfies (4.18) then (4.22) holds for u(ξ + · )
instead of u if ξ ∈ R

d and |ξ| < 1/(2l). Then (4.23) shows (4.19).
(b)⇒(c). If |||v|||XP ,B1/l(a) = |||v|||bl,jl(a) then (4.20) clearly holds. Let

|||v|||XP ,B1/l(a) < |||v|||bl,jl(a) and set

u(z) := (v(z) − |||v|||XP ,B1/l(a))/(|||v|||bl,jl(a) − |||v|||XP ,B1/l(a)).

Then u satisfies (4.18) and we get by (4.19), for z ∈ b2l,Djln(a) ⊂ b2l,8jl(a),

u(z) ≤ 8r1Alj|ℑ(z)| ≤ 1/n

for D := 8max{1, r1A}. This shows (4.20).
(c)⇒(a). This follows similarly to 4.2 (set a = 0, j = 1 and l = 1/r2).



292 M. Langenbruch

(c)⇒(d). We apply (4.20) for l := 1/r2, a = 0 and v := ln |f | to show
(4.21) for j ≥ j0 := 1/r2. Then (4.21) easily follows for any j.

(d)⇒(c). This may be proved as in 4.1, using the extension procedure
from 4.3.

Formula (4.20) is used in Section 5 to transfer (UPL)loc from P to the
localizations of P .

(PL)loc(0) also implies a local version of the distance condition (2.19)
and a locally uniform radial Phragmén–Lindelöf condition. Recall that the
condition (RPL)loc(a) (the radial Phragmén–Lindelöf condition at a ∈ XP )
holds iff there are 0 < r2 < r1 and A > 0 such that for any v ∈ PSH(VP ∩
Br1

(a)), if

(4.24) v(x) ≤ 0 for x ∈ XP ∩Br1
(a), v(z) ≤ 1 for z ∈ VP ∩Br1

(a),

then

(4.25) v(z) ≤ A|z − a| for z ∈ VP ∩Br2
(a).

Condition (RPL)loc(a) was introduced in [24, 2.3] and has been intensively
studied since then. We now get the following characterization:

Proposition 4.5. Let 0 ∈ XP . The following are equivalent :

(a) VP satisfies (PL)loc(0).
(b) There are 0 < r2 < r1 and A > 0 such that for any v ∈ PSH(VP ∩

Br1
(0)), if

(4.26) v(x) ≤ 0 for x ∈ XP ∩Br1
(0), v(z) ≤ 1 for z ∈ VP ∩Br1

(0),

then

(4.27) v(z) ≤ Ad(z,XP ∩Br2
(0)) for z ∈ VP ∩Br2

(0).

Moreover ,

(4.28) d(z,XP ∩Br1
(0)) ≤ A|ℑ(z)| for z ∈ VP ∩Br2

(0).

(c) There are 0 < r2 < r1 and A > 0 such that P satisfies (4.28) and

(RPL)loc(a) at any a ∈ XP ∩Br2
(0) for these constants.

Proof. (a)⇒(b). The local distance condition (4.28) is proved as in 2.7
with (4.20) (for v(z) := −|ℜ(z − z0)|2 + |ℑ(z − z0)|2 and l := 1/r2) instead
of (2.14). Inequality (4.27) follows from (4.15) since

|ℑ(z)| ≤ inf
x∈Rd

|z − x| ≤ inf
x∈XP ∩Br2 (0)

|z − x| = d(z,XP ∩Br2
(0)).

(b)⇒(c). With rj from (b) and a ∈ XP ∩Br2/2(0) assume that v satisfies
(4.24) for 2r1 instead of r1. Then (4.26) holds for v, and (4.27) implies that
for any a ∈ XP ∩Br2/2(0),

v(z) ≤ Ad(z,XP ∩Br2
(0)) ≤ A|z− a| if z ∈ VP ∩Br2/2(a) ⊂ VP ∩Br2

(0).
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(c)⇒(b). As above we get (4.27) since infa∈XP∩Br2/2(0) |z−a| = d(z,XP ∩
Br2/2(0)).

(b)⇒(a). This is evident since

d(z,XP ∩Br1
(0)) ≥ d(z,XP ∩Br2

(0)) if z ∈ Br2/2(0).

Indeed, if z ∈ Br2/2(0) and x ∈ Br1
(0) \Br2

(0) then

|z − x| ≥ r2/2 ≥ |z| ≥ d(z,XP ∩Br2
(0))

and therefore d(z,XP ∩ (Br1
(0) \Br2

(0))) ≥ d(z,XP ∩Br2
(0)).

We can now add the Phragmén–Lindelöf conditions to the characteriza-
tion from 3.4:

Theorem 4.6. Let XP 6= ∅. The following are equivalent :

(a) P (D) admits a right inverse in P∗(R
d)′b.

(b) VP satisfies (4.1).
(c) VP satisfies (UPL).
(d) VP satisfies (UPL)loc and for any C ≥ 1 there is C1 such that for

any α ∈ N
d
0,

(4.29) |P (α)(x)| ≤ C
|α|+1
1 |P (x)| if x ∈ R

d and d(x,XP ) ≥ 1/C.

Proof. (a)⇒(b)⇒(c). This has been shown in 3.4 and 4.1, and in 4.2,
respectively.

(c)⇒(b). (UPL) implies that there is C1 > 0 such that for any j and any
v ∈ PSH(VP ∩ Uj), if

(4.30) v(x) ≤ 0 for x ∈ XP , v(z) ≤ 1 for z ∈ VP ∩ Uj ,

then

(4.31) v(z) ≤ C1j|ℑ(z)| for z ∈ VP ∩ UC1j .

To prove this, let v satisfy (4.30) and set ṽ(z) := max{v(z), 2j|ℑ(z)|} if
z ∈ VP∩Uj and ṽ(z) := 2j|ℑ(z)| if z ∈ VP∩(U1\Uj). Then ṽ ∈ PSH(VP∩U1)
and

ṽ(x) ≤ 0 if x ∈ XP and ṽ(z) ≤ 2j if z ∈ VP ∩ Uj0 .

Now (4.31) follows from (UPL) (i.e. from (4.13) for ṽ). (4.30) and (4.31)
imply (4.1) similarly to the part “(b)⇒(c)” in the proof of 4.4 (set u(z) :=
(v(z) − |||v|||j)/(|||v|||j − |||v|||XP

) if |||v|||XP
< |||v|||j).

(b)⇒(a). This follows from 3.4 since (4.1) implies (2.14).

(c)⇒(d). (UPL)loc was shown in 4.3. Since (a), (b) and (c) are equivalent
we may use 2.7 and 2.8 (especially (2.22)) to show (4.29).

(d)⇒(b). We have to show (4.1) for j ≥ j0, since it then also holds
for j ≤ j0 (and j0D instead of D). Let l0 := 1/r2. If z ∈ VP ∩ UDjn and
|ℜ(z) − a| < 1/(2l0) for some a ∈ XP , then the desired estimate for v(z)
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directly follows from (UPL)loc and (4.20) with l = l0. On the other hand, if
d(ℜ(z), XP ) ≥ 1/(2l0) and z ∈ VP then

|ℑ(z)| ≥ d(ℜ(z), VP ) ≥ ε > 0

by (4.29) and (2.2) since z ∈ VP . So (4.1) holds if j > 1/ε := j0.

Corollary 4.7. Let XP be compact. Then P (D) admits a right inverse

in P∗(R
d)′b iff VP satisfies (PL)loc(a) for any a ∈ XP and there is C such

that for any α ∈ N
d
0,

(4.32) |P (α)(x)| ≤ C|P (x)| if x ∈ R
d and |x| ≥ C.

Proof. If XP = ∅ the statement follows from 2.6 and (2.3). Let XP 6= ∅.
Necessity. This follows from 4.6(d).

Sufficiency. (4.32) implies (4.29) since XP is compact. Moreover,
(UPL)loc follows from the assumption by a compactness argument (and e.g.
4.4).

Corollary 4.8. Let P be homogeneous. Then P (D) admits a right in-

verse in P∗(R
d)′b iff VP satisfies (PL)loc(0).

Proof. Necessity. This follows from 4.6(d) since 0 ∈ XP .

Sufficiency. We show (UPL). Let v ∈ PSH(VP ∩ U1) satisfy (4.12) for
j0 := 1. For j ∈ N fixed let u(z) := v(jz). Then u satisfies (4.18) for l := 2/r2
and a = 0 (since r2 < 1 without loss of generality) and we know by 4.4(b)
that there is C independent of j such that

v(jz) = u(z) ≤ C|ℑ(jz)| if |ℜ(jz)| < jr2/2 and |ℑ(jz)| < r2/8.

This proves (UPL) for v since C is independent of j.

5. Localizations. For ζ ∈ C
d and t ∈ R let

P̃ (ζ, t) :=
(∑

α

|P (α)(ζ)|2|t|2|α|
)1/2

.

We will consider limits of polynomials Qs of the form

Qs(z) := P (ζs + tsz)/P̃ (ζs, ts), s ∈ N,

where ζs ∈ C
d and ts 6= 0. Notice that the Taylor coefficients (cα) of Qs at

0 satisfy

1/(deg(P ))! ≤ ‖(cα)‖2 ≤ 1.

Hence any sequence of polynomials of this form has a convergent subse-
quence. Several types of localizations of P are defined in this way and we
will study the question if the crucial estimates of this paper (and especially
(UPL)) are inherited by such limits.
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The set L(P, x0) of localizations of P at x0 ∈ XP ∪ {∞} is defined as
follows. Let Pol0 denote the set of non-zero polynomials in d variables. For
x0 ∈ XP let

L(P, x0) := {Q ∈ Pol0 | ∃ζs ∈ C
d, (ts)s ⊂ R \ {0}, c 6= 0 :

ζs → x0, ts → 0, |ℑ(ζs)| = o(|ts|), P (ζs + tsz)/P̃ (ζs, ts) → cQ(z)}
and let

L(P,∞) := {Q ∈ Pol0 | ∃ζs ∈ C
d, (ts)s ⊂ R \ {0} bounded, c 6= 0 :

|ζs| → ∞, |ℑ(ζs)| = o(|ts|), P (ζs + tsz)/P̃ (ζs, ts) → cQ(z)}.
We say that P satisfies (PL)loc(∞) (the (uniform) local Phragmén–Lindelöf
condition at ∞) if there are r1 > r2 > 0 and C such that for any a ∈ XP , if
|a| ≥ 1/r2, v ∈ PSH(VP ∩Br1

(a)) satisfies

v(x) ≤ 0 for x ∈ XP ∩Br1
(a), v(z) ≤ 1 for z ∈ VP ∩Br1

(a)

then
v(z) ≤ C|ℑ(z)| for z ∈ VP ∩Br2

(a).

The following result could also be obtained by the methods of [4, 3.5]
(see also [5, 2.7]). We present here a different argument based on the scaled
(Ω)-type estimate in 4.4(c) since it is essentially elementary and might be
interesting in its own right.

Theorem 5.1. Let P satisfy (PL)loc(x0) for some x0 ∈ XP ∪{∞}. Then

for any Q ∈ L(P, x0) defined by ζs, ts as above there is D̃ depending only

on lim sup |ts| such that for any j, n and k there is C1 such that for any

f ∈ H(Uj),

(5.1) ‖f‖
VQ,D̃nj

≤ C1‖f‖1−1/n
VQ,k ‖f‖1/n

VQ,j .

Hence (UPL) and (UPL)loc are satisfied with a constant which is uniform

for any Q ∈ L(P, x0) if x0 ∈ XP .

Proof. By a real shift of the variables we may assume that x0 ∈ {0,∞}.
(a) For ζs := ys + iηs, ts and c 6= 0 as above let

Qs(z) := P (ζs + tsz)/P̃ (ζs, ts) → cQ(z).

For simplicity of notation we assume that x1 is non-characteristic for Q.
Then for m := deg(Q) we have

Qs(z) =
∑

J

aJ,s(z
′)zJ

1 , Q(z) =

m∑

J=1

aJ(z′)zJ
1

with am ≡ const, where the polynomials aJ,s converge locally uniformly to
aJ for any J . For ε > 0 let

Vε(z
′) := VQ(z′, · ) +Bε(0) ⊂ C.
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Let z0 ∈ VQ ∩U
D̃nj

for D̃ := 4DC1/r2, where D is the constant from (4.20)

and C1 := lim sup |ts| + 1. By Hurwitz’ theorem we get s0 such that for
s ≥ s0 and |z′−z′0| ≤ 2 each component of Vε(z

′) contains the same number
of zeros of Qs(z

′, · ) and of Q(z′, · ), and the remaining zeros of Qs(z
′, · ) are

larger than 3 in modulus.

(b) Let f ∈ H(Uj) be such that ‖f‖VQ,j < ∞. By 2.3 we can assume
that f ∈ P∗,j . Let 0 < ε < r2/(4C1knD) be fixed. We then find z̃ with
|z̃ − z0| < ε and Qs(z̃) = 0 by (a), that is, P (ξs) = 0 for ξs := ζs + tsz̃.
Let xs := ℜ(ξs). Then xs ∈ Br2/2(0) for large s if x0 = 0 (and |xs| ≥ 1/r2
for large s if x0 = ∞). We may thus apply 4.4 for a := xs for large s. Let
l := C1/(r2|ts|). Then l ≥ 1/r2 ≥ 1 and ξs ∈ b2l,Djln(xs) for large s by
the definition of l since z0 ∈ U

D̃nj
, ε < r2/(4C1knD) ≤ r2/(4C1jnD) and

|ηs| = |ℑ(ζs)| = o(|ts|). Let f̃(z) := f((z − ζs)/ts). Then f(z̃) = f̃(ξs), and
formula (4.20) in 4.4 implies that

(5.2) |f(z0)|e|z0|/(D̃nj) ≤ (ε sup
z∈U2j

|f ′(z)| + |f̃(ξs)|)e|z0|/(nj)

≤ εe|z0|/(nj) sup
z∈U2j

|f ′(z)|+(e|z0|/k|||f̃ |||XP ,B1/l(xs))
1−1/n(e|z0|/j |||f̃ |||bl,jl(xs))

1/n

since l ≥ 1/r2 ≥ 1. If x ∈ XP and |xs − x| ≤ 1/l then Qs(x̃) = 0 for
x̃ := (x − ζs)/ts and |x̃ − z0| ≤ 2 for large s by the definition of l and xs.
By the remarks in (a) we thus find ẑ ∈ VQ with |ẑ − x̃| < ε ≤ 1/(4k) and
therefore

e|z0|/k|||f̃ |||XP ,B1/l(xs) ≤ εe|z0|/k sup
z∈U2k

|f ′(z)| + C2‖f‖VQ,k

for large s since l ≥ 1 and x̃ ∈ U4k (as |ηs| = o(|ts|)). Similarly,

e|z0|/j|||f̃ |||bl,jl(xs) ≤ εe|z0|/j sup
z∈U2j

|f ′(z)| + C2‖f‖VQ,j .

Now (5.1) follows if we insert these estimates in (5.2) and let ε ↓ 0. The last
claim of the theorem follows from 3.4 and 4.6 since lim sup |ts| = 0 by the
definition of L(P, x0) for x0 ∈ XP .

Corollary 5.2. The operatorQ(D) admits a right inverse inP∗(R
d)′b for

anyQ ∈ L(P, x0) and x0 ∈ XP ∪∞ if P (D) admits a right inverse in P∗(R
d)′b.

The following example shows that the uniformity of the constants in
(PL)loc(∞) is important, that is, we may not replace (PL)loc(∞) in 5.1 by
the assumption that (PL)loc(a) holds for any a ∈ XP if |a| is large.

Example 5.3. Let P (x) := x3(x
2
1x

2
2+1)−1. Then XP consists of regular

points and therefore P satisfies (PL)loc(x0) for any x0 ∈ XP . However,
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Q(x) := x2
1x

2
2 + 1 ∈ L(P,∞) (use ζs := (0, 0, s) and ts := 1, s ∈ N) and

Q does not satisfy (5.1) since Q(D) does not admit a right inverse in P∗(R
d)′

by 2.6. Indeed, XQ = ∅ while zj := (j, i/j, 0) ∈ VQ and ℑ(zj) → 0.

Also, the principal part Pm of P is a limit of the general form indicated at
the beginning of this section, since cPm(x) = lims→∞ P (sx)/P̃ (0, s). How-
ever, we get a negative result in this case since the existence of a right
inverse for P (D) in P∗(R

d)′b in general is not inherited by the principal part
Pm(D):

Example 5.4. Let P (x) :=
∑d

j=1 x
2
j + 1. Then P (D) admits a right

inverse in P∗(R
d)′b by 2.1 while the principal part (i.e. the Laplacian) does

not.

Proof. Observe that P2(x) =
∑d

j=1 x
2
j does not satisfy (PL)loc(0) by [22].

Hence the claim follows from 4.6.
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[7] L. Hörmander, On the existence of real analytic solutions of partial differential op-

erators with constant coefficients, Invent. Math. 21 (1973), 151–182.

[8] —, The Analysis of Linear Partial Differential Operators, I, II, Springer, Berlin,
1983.

[9] A. Kaneko, Introduction to Hyperfunctions, Kluwer, Dordrecht, 1988.

[10] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial

differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. I A
Math. 17 (1970), 467–517.

[11] M. Langenbruch, Solution operators for partial differential equations in weighted

Gevrey spaces, Michigan Math. J. 37 (1990), 3–24.



298 M. Langenbruch

[12] M. Langenbruch, Real roots of polynomials and right inverses for partial differential

operators in the space of tempered distributions, Proc. Roy. Soc. Edinburgh Sect. A
114 (1990), 169–179.

[13] —, Splitting of the ∂-complex in weighted spaces of square integrable functions, Rev.
Mat. Univ. Complut. Madrid 5 (1992), 201–223.

[14] —, Continuous linear right inverses for convolution operators in spaces of real an-

alytic functions, Studia Math. 110 (1994), 65–82.

[15] —, Hyperfunction fundamental solutions of surjective convolution operators on real

analytic functions, J. Funct. Anal. 131 (1995), 78–93.

[16] —, Hermite functions and weighted spaces of generalized functions, Manuscripta
Math. 119 (2006), 269–285.

[17] —, Division problems for Fourier ultrahyperfunctions, Bull. Belg. Math. Soc. Simon
Stevin 14 (2007), to appear.

[18] M. Langenbruch, Generalized Fourier expansion in kernels of convolution operators

on Fourier hyperfunctions, Analysis 27 (2007), 1001–1023.

[19] —, Convolution operators on Fourier hyperfunctions, preprint.

[20] M. Langenbruch and S. Momm, Complemented submodules in weighted spaces of

analytic functions, Math. Nachr. 157 (1992), 263–276.

[21] R. Meise and B. A. Taylor, Splitting of closed ideals in (DFN)-algebras of entire

functions and the property (DN), Amer. Math. Soc. Transl. 302 (1987), 341–370.

[22] R. Meise, B. A. Taylor and D. Vogt, Characterization of the linear partial differential

operators with constant coefficients that admit a continuous linear right inverse,
Ann. Inst. Fourier (Grenoble) 40 (1990), 619–655.

[23] —, —, —, Equivalence of analytic and plurisubharmonic Phragmén–Lindelöf condi-
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