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Haar measure and continuous representations
of locally compact abelian groups

by

JEAN-CHRISTOPHE TOMASI (Bastia)

Abstract. Let £(X) be the algebra of all bounded operators on a Banach space X,
and let 6 : G — L(X) be a strongly continuous representation of a locally compact and
second countable abelian group G' on X. Set o'(0(g)) := {N/|A\| | A € a(6(g))}, where
a(6(g)) is the spectrum of 0(g), and let Ty be the set of all g € G such that o' (0(g)) does
not contain any regular polygon of T (by a regular polygon we mean the image under a
rotation of a closed subgroup of the unit circle T different from {1}). We prove that 6 is
uniformly continuous if and only if X is a non-null set for the Haar measure on G.

1. Introduction. A characterization of uniform continuity for strongly
continuous groups was given in [7]. Indeed the authors proved that a strongly
continuous one-parameter group (7'(¢));cr on a Banach space X is uniformly
continuous if and only if {t € R | o'(T(t)) # T} is non-meager, where T
denotes the unit circle of C and o'(T'(t)) := {N|\ | A € o(T(t))}, well
defined since T'(t) is invertible. The following generalization of this result
was obtained in [I]: if G is a second countable and locally compact abelian
group then either € is uniformly continuous or Xy := {g € G | there is no
P € P with P C 0'(6(g))} is meager, where P is the set of regular polygons
of T. So when the representation is not uniformly continuous, the angular
distribution of the spectrum of 0(g) is rather dispersed, except for g in a
meager set in G.

In the present work, we are interested in another condition, obtained by
replacing meager set by null set.

EXAMPLE 1.1. Let (T(t))ser be the translation group on L?(R) defined
by (T'(t)f)(z) = f(z +t). This one-parameter group is strongly continuous,
not uniformly continuous and for all ¢t # 0, o(T'(t)) = T, thus Xy = {0} is
indeed a null set.
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Following J. Esterle (see [2], [3]) we define a representation of a topological
group G on a Banach algebra A to be a map 6 : G — A such that (1) =1,
where 1 and I respectively denote the unit elements of G and A, and 0(uv) =
O(u)b(v).

In [2] the author established a zero-v/3 law for representations of locally
compact abelian groups: if # : G — A is a locally bounded representation of
such a group on a Banach algebra then either 6 is uniformly continuous or
limsup,_,; p(0(g) — 1) > V/3, where p denotes the spectral radius.

As a consequence of our results we find, but only in the case of strongly
continuous representations of locally compact and second countable abelian
groups, that either ¢ is uniformly continuous or liminf,_,; jec\ar p(0(g) — 1)

> /2 where M is a null set in G.

2. Characterization of uniform continuity. For a locally bounded
representation of a locally compact abelian group G, there are some argu-
ments, based on Gelfand—Hille’s theorem, Shilov’s idempotent theorem and
the standard structure theorem for locally compact abelian groups (see [2])
that allow us to go from spectral continuity (that is, limg—1 p(6(g) — 1) = 0)
to uniform continuity.

Furthermore R. Phillips (see [5]) proved that the continuity for one-
parameter groups can be read through the characters, in the sense that if
T :R — A is a locally bounded representation of R on a commutative Ba-
nach algebra A then its uniform continuity is equivalent to the continuity of
t € R — x(T(t)) for all x € A, where A denotes the character space of A.

However, going from the continuity through each character (that is, xoT
continuous for all x € A) to the uniform condition on A: limy . p(A(t) — 1)
= 0 required, in the case of R, an analytical argument difficult to adapt to
a general group.

Therefore in order to generalize this result from R to any locally compact
abelian group, we had to use in [I] the Phillips theorem and the standard
structure theorem for locally compact abelian groups, and to deal separately
with compact groups and euclidean groups R".

Here, we present a direct proof of this generalization and also a simplified
proof of the Phillips result.

In what follows we denote by V(1) the family of all neighborhoods of the
unit element of G.

LEMMA 2.1. Let 0 be a locally bounded representation of a topological
abelian group G on a Banach algebra A. Then for all ¢ > 0 there exists
Ve € V(1) such that for all g € V,

0(0(g)) C{zeC|l—-e<|z|] <1+¢€}.
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Proof. Since 6 is locally bounded, there exist M > 1 and V' € V(1) such
that for all ¢ € V, [|6(g9)|]] < M. By the continuity of the product, for all
n > 1 there exists V,, € V(1) such that for all g € V,,, [|6(¢™)|| < M and
10(g~™)|| < M. Since o(0(g~™)) = {1/X| X € 0(6(g"))} we obtain

o(0(g") € {z € C | 1/M < |2| < M},
and since o(0(g™)) = ((6(g)))"™, we have
(1M < 2| < MM"
for all g € V,, and z € 0(0(g)). This yields the desired conclusion. m

PROPOSITION 2.2. Let 0 be a locally bounded representation of a locally
compact abelian group G on a commutative Banach algebra A. The following
assertions are equivalent:

(i) 0 is uniformly continuous.
(ii) 0 is spectrally continuous.
(iii) For all x € A, x 00 is conlinuous.

Proof. (1)=(ii)=-(iii): Clear.

(iii)=-(ii): Let V € V(1) be compact and symmetric. Then H = |, .y V"
is a locally compact and o-compact subgroup of G. We have H € V(1), hence
it suffices to show that 0y := 6|y is spectrally continuous.

We first show that {x o 05 /|x 0 0x| | x € A} is compact in C(H,T)
equipped with the topology of compact convergence. Since H is o-compact,
this topology is metrizable, thus it suffices to check that {x o 0 /|x o 0| |
X € A} is sequentially compact. So let (Xn © 0 /|Xn © 0m|)nen be a sequence
in {x00u/|xobu| | x € A}. The Gelfand space A is compact, and thus
{xo0u/|xobu||xe A} C C(H,T) is compact for the product topology
and so is the set of restrictions to V' that we denote {x o 6y /|x o yv|}.

By hypothesis we have {x o 0y /|y o 0y|| x € A} € C(V,T), and thus
we can apply Eberlein-Smulian’s theorem (see [9, p. 296]): {x 08y /|x o 6y] |
X € A} is sequentially compact in TV, therefore we can extract a subsequence
(Xng ©0v/|Xn, © Ov|)ken that converges to an element y o 6y /|x o fy|, that
is, for all g € V., o, 0y (9))/Ix, (00 (9))] — x(0v(9))/Ix(8y (9))]-

But since it concerns restrictions of morphisms, the convergence extends
from V to H = |J,,cy V", and using the dominated convergence theorem,
we find that for all f € L'(H), f(xn, ©0#/|Xn, ©0ul) — f(x 0 0u/|x 0 0nl)
(where L'(H) denotes the L'-space of H with respect to a Haar measure m
and f denotes the Fourier transform of f).

Since in the dual group H the topology of compact convergence on H
coincides with the weak™ topology that H inherits as a subset of L>~(H),
we conclude that xn, © 0r/|xn, © Om| — x 0 0m/|x o Om|, which proves the
compactness.
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Then, by Ascoli’s theorem, {x o 0z /|x 0 0| | x € A} is equicontinuous;
so for all € > 0 there exists W, € V(1) in H such that for all h € W,
sup, 4 © 0 () Ix 0 031 (h)] — 1] < .

Lemma 2.1 yields V, € V(1) such that for all h € V; and all x € A,

xolgh)e{zeC|1l—e<|z| <1+¢€},
and thus for all h € W, NV, and all x € A,

[x 0 01 (R) = 1] < [x 0 () = x © O (h)/Ix o 6 (B
+[xo0u(h)/Ixo0u(h) - 1|
< 2e,

that is, p(6m(h) — I) < 2¢, and Oy is spectrally continuous.
(ii)=-(i): See Theorem 3.3 in [2]. =

3. Preliminary results. Let G be a topological group and ¢ : G — T
a morphism. Define

Iy, := {\€T | there is a net (g;) in G converging to 1 such that ¢(g;) — A}

= (] o)

wev()
(see |2]). Then:

e [, is a closed subgroup of T (thus I, = Iy the group of kth roots of
unity for some k > 1, or I, =T).

e ¢ is continuous if and only if I, = {1}.

e If the group locally admits division by every n > 1 (in the sense that
for every n € N there exist V' € V(1), a compact subset W of G
containing 1 and a map ¢ : V' — W such that ¢(1) = 1 and " (u) = u
for every u € V'), then one can easily check that I, is divisible, thus
either I', =T or I, = {1}.

LEMMA 3.1. Let I' be a subset of T, and V an open subset of T such
that \V NI # 0 for all X € T. Then there exists a compact set K CV such
that \K N I" # () for all X € T.

Proof. Since V' is open in T, there exists a sequence (Op, )nen of relatively
compact open sets in V with O,, C O,41 for alln € Nand V = UneN O,.
It suffices to show that there exists an element of the sequence (ﬁn)neN
intersected by every AI'.

If it is not true then for all n € N there exists \,, € T such that A\,I"NO,,
=, thus \,7 € T\ O, C T\ O, =: F,. As the sequence (O,)nen is
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increasing, (F,)nen is a decreasing sequence of closed sets such that

N Fu=()T\On=T\|JOn=T\V.

neN neN neN
Moreover, since T is compact, we can suppose that (A,)nen is convergent.
Denote by A its limit, let 4 € I" and N € N. For all £ > N, we have A\yu €
M C F, C Fy, and so Ay € Fy = Fy. Finally \I' C Mpen Fn =T\ V,
which is a contradiction. =

LEMMA 3.2. Let G be a locally compact and second countable abelian
group and m a Haar measure on G. If A C G is measurable with m(A) > 0,
then for every N > 1 there exists Uy € V(1) such that for all (g1,...,9nN)
e UV,

N
m(AﬁiOlgiA) > 0.

Proof. As G is o-finite, we can assume that m(A) < co. Let § € ]0,1]
and « = /(N 4 1). We know, by regularity of m, that there exist K C
A C U with K and U respectively compact and open satisfying m(K) >
(I1—a)m(U); since K is compact, there exist Uy € V(1) such that Uy K C U.
Let us check by finite induction on k that for all k£ € {1,..., N} and for all
(gla s 7gk) S Uf?

k
m(Kﬁ ﬂgJ() > (1= (k+1a)m(U).
i=1

We have m(K N g1K) > m(K) +m(g1K) —m(U) for KU g K C U, and
since m is translation-invariant, we obtain m(K N g1 K) > (1 — 2a)m(U).
Suppose that m(K N ﬂi-“:l g K)>(1—(k+1)a)m(U) for some 1 < k < N,
then
k+1 k+1
m(Kﬁ m giK) = m(glKﬂ (Kﬂ ﬂ gzK))
i=1 =2
k+1
> m(g1K) —I—m(Kﬂ ﬂ giK) —m(U).
=2
Thus, by induction hypothesis and invariance of m,
k+1
m(g1K) +m<Kﬂ ﬂ giK> —m(U)
i=2

which is the expected result.
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In particular, for all (g1,...,9n5) € U,

@mﬂ%) (1= (N + Daym(U)
= (1= B)m(U) = (1= Bm(4) > 0. »

LEMMA 3.3. Let ¢ be a morphism from a locally compact abelian group
G into T, and m a Haar measure on G. If V is an open subset of T such
that \V NIy, # 0 for all X € T, and if A C G is measurable with m(A) > 0,
then o(A)NV # (.

Proof. Suppose that ¢(A) NV = (. Let us prove that there exist a sym-
metric and open Vj € V(1) and an open set V4 in T such that for all A € T,

AVINT, #0 and VoVi CV.

By Lemma 3.1 there exists a compact set K C V such that A\AK NI, # ()
for all A € T; thus if 7 : T x T — T denotes the product on T x T, the
compact set {1} x K is a subset of the open set 7~!(V) and so there exist
a symmetric open unit-neighborhood Vj and an open set Vi containing K
such that

VoxWViCr i(V) and VoV CV.
Since AVi NI, # 0 for all A € T, we can easily deduce that T = U/\enp AV,

and then by compactness there exists N > 1 such that T = Uf\il A V1 with
A € F<p~
By Lemma 3.2 there exists U; € V(1) in G such that for all (g1,...,9n)
cUN, m(ANNY, giA) > 0 and thus AN, giA # 0.
Let i € {1,...,N} and \; € I,. Since I, C ¢(Uy), there exists g; € Uy
such that A\jp(g;)~! € Vo, that is, \; € »(g;)Vo, and thus
N N N
T=JaVi € |Jeg)oi € | ela)V.
i=1 i=1 i=1
so T = UL, ¢(9)V and G = o7 1(T) = UL, g™ (V).
Let g € AN ﬂz 1glA C @G. There exists ip € {1,...,N} such that
g € gi,p 1(V), thus 9o g € =1 (V). Since g € g;,A, we obtain 9o g e
AN ~Y(V), which is a contradiction. u

PROPOSITION 3.4. Let G be a locally compact abelian group, m a Haar
measure on G, K(T) the space of all compact subsets of T equipped with the
Hausdorff metric and w : G — K(T) a Borel map. Let (p;)ics be a family of
morphisms from G into T such that p;(g) € w(g) for alli € I and g € G.
Fori eI set

Qp, ={9€G|VXeT, X\, Zw(g)}.

Then the set | J;c; £2,, has measure zero.
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Proof. The proof is in two steps.

STEP 1. Suppose that | J,c; I, is infinite. Then the family of groups I,
contains elements of arbitrarily large order, and so for each nonempty open
set U of T there exists ¢ € I such that A, NU # () for every X € T.

Let g € G be such that w(g) # T. Then the open set T \ w(g) is non-
empty and thus there exists i € I such that \I,, € w(g) for all A € T, so
that g € £2,,. Since the other inclusion is obvious, we obtain (J;c; 2, =
{g € G| w(g) # T}, which is measurable as the inverse image of an open set
in C(T).

Let V = {V,, | n € N} be a basis of open subsets on T. Set A,, = {g € G |
w(g) NV, = 0}. Then the set {g € G | w(g) # T} = U,en An is a Borel
subset of T.

If m({g € G| w(g) # T}) > 0 then there exists ng € N such that
m(Ap,) > 0; since (J;c; Iy, is infinite, there exists 49 € I such that AV, N
Iy, # 0 forall A € T, but v;,(g) € w(g) for all g € G, hence cp;Ol(VnO) N Ap,

= (), which contradicts Lemma 3.3; so J,;-; {25, has measure zero.

i€l

STEP 2. Suppose that (J;c; Iy, is finite, thus {I},, | i € I} = {I}, }7";.
For all j € {1,...,m}, define 2; = {g € G |VA € T, \[}), € w(g)} and let
us check that (2; has measure zero.

Let W = {W,, | n € N} be the (countable) set of finite unions W,, of
elements of V such that A\I},, N W, # () for all A € T.

Let g € £2;. For all X € T, we have AT}, Z w(g), thus AI}, NT\w(g) # 0,
and by Lemma 3.1, there exists a compact subset K C T \ w(g) such that
AK NIy, #0forall A eT.

Since K is compact and T\ w(g) is open, there exists W,, € W such that
KCW,CT\w(g),sog€ B, :={g9g€ G| W,Nw(g) =0} Therefore
2; = U,en B (the other inclusion is obvious). But for all n € N, B, is
measurable since w is Borel, and since {C' € K(T) | C N W,, = 0} is a Borel
subset of IC(T), §2; is measurable too.

If m(£2;) > 0 then there exists ng € N such that m(B,) > 0; but there
exists a morphism ¢ in the family (¢;)ie; such that I, = I)), and since
for all g € G, p(g) € w(g), we find that ¢~ Y(W,,) N By, = 0, whereas
A, N Wy # 0 for all A € T, which contradicts Lemma 3.3.

Accordingly U;¢c; 2y, = UjL; £2; has measure zero.

4. The main result and consequences. Let GG be a locally compact
abelian group, X a Banach space and 0 : G — L(X) a strongly continuous
representation of G on X. We are interested in the distribution of the ar-
guments of the elements of the spectrum o(6(g)) when 6 is not uniformly
continuous. We write:
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Ap for the closed subalgebra of £(X) generated by 0(G) (so Ap is
commutative),
o4,(0(g)) for the spectrum of (g) in Ay,

Ay for the character space of Ay,
e K!={)\/|\|| A € K} for K C C*.

We have the following results:
LEMMA 4.1.

(i) For all g € G, o' (8(g)) = 0}19 (0(9))-
(i) For all x € Ay, the map g — |(x 0 0)(g)| is a continuous morphism
from G into (RT*, x).

Proof. (i) We have a(0(g)) C o04,(0(g)), thus o(0(g)) C 01149(9(9)).
Moreover we know that doa,(0(g)) € o(6(g)) and since 0 ¢ 04,(0(g)) it
is clear that (9o 4,)(0(g)) = 01149(0(9)) (every half-line from the origin that
intersects 04,(0(g)) intersects also its boundary by connectedness), hence
a4,(0(g)) € o' (0(9)).

(ii) 0 is locally bounded so there exist M > 1 and an open V € V(1)
such that ||0(g)|| < M for all g € V. Then |y o 0(g~)| < M forall g € V,
thus 1/M < [x 0 6(g)| < M for all g € V. Therefore I},.4 is a bounded
multiplicative subgroup of (R™*, x), that is, Iyop) = {1}, which shows that
|x o 0| is continuous. =

Recall two useful results:

LEMMA 4.2 (see [7]). Let X be a Banach space, T € L(X), andY a T-
invariant closed subspace of X. Then poo(T) C poo(Tly) where poo denotes

the unbounded connected component of the resolvent set p. If 0 € poo(T)
then o' (Tyy) C o'(T).

PROPOSITION 4.3 (see [8] or [10]). If X is a separable Banach space,
then the map T w o(T) (respectively T + o*(T)) from L(X) into K(C)
(respectively IC(T)) is Borel (where KC(C) and IKC(T) are equipped with the
Hausdorff topology and L(X) with the strong operator topology).

For x € Ay, we denote by x1 the morphism from G into T defined by
x1(9) == (x 2 0)(9)/1(x 0 0)(g)| and we set:

0, ={geG|YNET, A}, Z o*(8(g))},
2= U 2,
XEAg
59 := {g € G| there is no P € P with P C 0'(6(g))},
where P is the set of regular polygons of T.
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THEOREM 4.4. Let G be a locally compact and second countable abelian
group, m a Haar measure on G, X a Banach space, and 0 : G — L(X) a
strongly continuous representation of G on X. Then §2 is a null set for m.

Proof. Note that x1(g) € o' (8(g)) for all x € Ay.

STEP 1. Suppose that X is separable. By Proposition 4.3 and the strong
continuity of #, the map g +— ¢'(6(g)) from the locally compact abelian
group G into KC(T) is Borel, so the result is a consequence of Proposition 3.4.

STEP 2. Suppose that X is not separable. If 6 is uniformly continuous
then for all x € A, x o 0 and xi are continuous by Proposition 2.2 and
Lemma 4.1, hence Iy, = {1} and 2, = 0.

If 6 is not uniformly continuous, there exist § > 0 and a sequence (g )nen
in G such that lim, g, = 1 and ||#(g,) — I|| > J. So there exists a sequence
(@ )nen of unit vectors in X such that ||0(gn)zn—2,|| > ¢ for all n € N. Now
set Y := span({J,en10(9)2n | g € G}); since G is separable and 6 strongly
continuous, {#(g)z, | ¢ € G} is separable, thus Y is separable, and clearly
Y is (0(g))gec-invariant. Using the first step we conclude that UxeAg vy
has measure zero, where

Qx,Y = {g eG | VA€ Ta >\FX1 g 01(0(9)|Y)}'

If g € 2, then o'(0(g9)) # T, thus 0 € poo(f(g)), and by Lemma 4.2,
a'(6(g),y) € a'(0(g)), further g € 2, y, that is, 2, C 2y y.
Accordingly Uxe A, (2, is a null set for m. =

REMARK. If @ is uniformly continuous, the theorem is uninteresting be-
cause {2, is empty for all x € Ap; the interesting case concerns the strongly
continuous representations that are not uniformly continuous:

COROLLARY 4.5. Let G be a locally compact and second countable abelian
group, m a Haar measure on G, X a Banach space, and 0 : G — L(X) a
strongly continuous representation. Then 0 is uniformly continuous if and
only if Xy is a non-null set for m.

Proof. 1f 6 is uniformly continuous then there exists an open set U € V(1)
in G such that o' (0(g)) € B(0;1/2) forallg € U, and so U C Xy is a non-null
set.

If € is not continuous, then by Proposition 2.2 there exists y € Ag such
that x o 6 is not continuous, that is, by Lemma 4.1, x1 is not continuous, so
Iy, # {1} and thus, except for the null set £2,, o(6(g)) contains the image
of I'y, under a rotation. =

REMARK. The theorem and its corollary are valid without the hypothesis
of second countability of G provided that the space X is separable.
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REMARK 4.6. If there is x € Ay such that I, = T then {g € G |
ol(0(g)) # T} C §2,, and thus {g € G | 01(6(g)) # T} is a null set.

Recall the following lemma (see [7]):

LEMMA 4.7. Let X be a Banach space and B € L(X). If 0 ¢ o(B) then
ol (B) # T if and only if o}(B) # T where oy(-) is the Kato essential spec-
trum (the spectrum corresponding to the set of all semi-Fredholm operators).

COROLLARY 4.8. Let 6 be a strongly continuous representation of an
abelian, locally compact, locally connected and second countable group G on
a Banach space X. Then 0 is uniformly continuous if and only if {g € G |
o1(0(g)) # T} is a non-null set.

Proof. If 0 is uniformly continuous, it suffices to apply Corollary 4.5 for
ol(6(9)) € o (6(g)).

For the converse, recall that an abelian, locally compact, locally con-
nected and second countable group is isomorphic to R" x T™ x D with
n €N, m e NU{Xy} and D discrete (see [6, Proposition 8.34, Proposition
8.43, and Theorem 8.46|). Such a group locally admits division, thus if 0 is
not continuous then by Proposition 2.2 there exists y € Ag such that x o0
is not continuous, that is, Iy, = T, and it suffices to apply Remark 4.6 and
Lemma 4.7. u

COROLLARY 4.9. If X is a hereditarily indecomposable Banach space
then a strongly continuous representation of a locally compact, locally con-
nected and second countable abelian group G on X is automatically uniformly
continuous.

Proof. Recall that for all g € G, 0(g9) = A\gI + Sy where Ay € 0(0(g))
and Sy is a strictly singular operator (see [4]), thus Ay # 0 and it is easy to
check that o(0(g)) = {\s/|\g|} Where o(.) is the essential spectrum, since
01(0(g)) C ol(g) for all g € G. The result then follows from Corollary 4.8.

Finally, we conclude with a result announced in the introduction:

COROLLARY 4.10. Let 0 be a strongly continuous representation of a
locally compact and second countable abelian group G on a Banach space X.
Then either 0 is uniformly continuous or there is a null set M in G such
that

liminf p(d(g) — 1) > V2.
gég}gégwp( (9)—1) =

Proof. Since 6 is locally bounded, we can apply Lemma 2.1, and for every
€ > 0 there exists V. € V(1) such that for all g € V,

o(0(g) C{zeC|1—e<|z| <1+

Assume now that 6 is not continuous. There exists a null set M in G such
that for all g € G\ M, 0'(6(g)) contains a regular polygon AI,. Then if



Representations of groups 35

g € V.\ M there exists 21 € o*(0(g)) such that |z; — 1| > /2, and thus there
exists z € o(A(g)) such that [z — 1| > v/2 — €. Hence, p(0(g) — 1) > V2 — ¢
forallge V.. m
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