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Hausdorff and Fourier dimension

by

Thomas William Körner (Cambridge)

Abstract. There is no constraint on the relation between the Fourier and Hausdorff
dimension of a set beyond the condition that the Fourier dimension must not exceed the
Hausdorff dimension.

1. Introduction. Throughout this paper we work on the circle T = R/Z
but similar results hold on Tn and Rn. All measures will be Borel measures
and |I| will denote the length of an interval I.

Definition 1.1. The Hausdorff dimension of a set E ⊆ T is the infimum
of the set of real numbers α with the following property. Given any ε > 0,
we can find a countable collection I of closed intervals such that⋃

I∈I
I ⊇ E and

∑
I∈I
|I|α ≤ ε.

It is easy to see that 0 ≤ α ≤ 1.
Salem proved the following result (see, for example, Section 3 of Chap-

ter 10 in [Kah] or the original paper [S]).

Theorem 1.2. If µ is a probability measure and |n|α/2µ̂(n) → 0 as
|n| → ∞ then suppµ has Hausdorff dimension at least α.

Definition 1.3. The Fourier dimension of a closed set E in T is the
supremum of the set of real numbers β such that there exists a probability
measure µ with suppµ ⊆ E and |n|β/2µ̂(n)→ 0 as |n| → ∞.

It is easy to see that β ≥ 0.
Salem’s theorem tells us that the Fourier dimension cannot exceed

the Hausdorff dimension. It is relatively easy to find examples of sets
with Fourier dimension 0 and specified Hausdorff dimension. (For example,
in [Kau3], Kaufman has shown that there are Kronecker sets of every pos-
sible Hausdorff dimension, and a Kronecker set automatically has Fourier
dimension 0.) In [S], Salem showed that there exist sets of every possible
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Hausdorff dimension with their Hausdorff dimension equal to their Fourier
dimension. Such sets are now called Salem sets and several constructions of
such sets have been found (see [Kah]). An interesting application of Salem
sets was discovered by Mockenhaupt [M1] who used them to extend work
by Stein and Tomas from multidimensional spaces to one dimension. (For
further applications see [M2] and [P].)

If we take a Salem set E1 ⊆ [0, 1/4] of Hausdorff dimension β and a
closed set E2 ⊆ [1/2, 3/4] with Fourier dimension 0 and Hausdorff dimension
α where 1 ≥ α ≥ β ≥ 0 then, automatically,

Fourier dim(E1 ∪ E2) = max(Fourier dim(E1),Fourier dim(E2)) = β

and

Haus dim(E1 ∪ E2) = max(Haus dim(E1),Haus dim(E2)) = α,

but this example is not very enlightening since the Fourier dimension reflects
properties of E1 and the Hausdorff dimension properties of E2.

We shall give an example of a set with specified Fourier and Hausdorff
dimensions which is not subject to the objections raised above.

Theorem 1.4. Given 1 ≥ α > β > 0, there exists a probability measure
µ such that |n|β/2µ̂(n)→ 0 as |n| → ∞ and suppµ has Hausdorff dimension
α and Fourier dimension β.

The proof I shall give works, with slight modifications, in the cases α = β
and β = 0 but simpler proofs already exist in these two cases.

My original proof was probabilistic, but I have since had the pleasure of
reading the PhD thesis of Papadimitropoulos in which he explains a non-
probabilistic construction of Salem sets due to Kaufman [Kau2]. (Kaufman’s
construction was inspired by a paper of Jarńık [J] and further developed by
Bluhm [B]. Part of Papadimitropoulos’s thesis is published as [P].) Kauf-
man’s ideas allow a much neater development and I have rewritten this
paper to take advantage of this fact.

2. First remarks. We shall prove Theorem 1.4 in the following form.

Theorem 2.1. Given 1 ≥ α > β > 0, there exists a probability measure
µ with support E having the following properties:

(i) E has Hausdorff dimension α.
(ii) If σ is a non-zero measure with suppσ ⊆ E and γ < β then

lim sup
|n|→∞

|n|γ/2|σ̂(n)| =∞.

(iii) |n|β/2µ̂(n)→ 0 as |n| → ∞.

We obtain Theorem 2.1 from a more specific result.
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Theorem 2.2. Given 1 ≥ α > β > 0, there exists a non-zero positive
measure µ with support E having the following properties:

(i) There exists a constant C such that

C|I|α ≥ µ(I) for every interval I.

(ii) Given ε > 0 and α > γ > β, we can find intervals I1, . . . , IM with
M⋃
m=1

Im ⊇ E and |I1| = · · · = |IM | ≤ εM−1/γ .

(iii) |n|β/2µ̂(n)→ 0 as |n| → ∞.

In order to introduce some notation required in the proof of Theorem 2.1
from Theorem 2.2 and elsewhere, we state the following standard lemma
whose proof is left to the reader.

Lemma 2.3. Let K : R→ R be an infinitely differentiable function with
the following properties:

(i′) K(x) ≥ 0 for all x ∈ R.
(ii′)

	
RK(x) dx = 1.

(iii′) K(x) = 0 for |x| ≥ 1/4.

If N is a positive integer and we define KN : T→ R by

KN (t) =
{
NK(Nt) if |t| ≤ 1/(4N),
0 otherwise,

then KN is an infinitely differentiable function having the following prop-
erties:

(i) KN (t) ≥ 0 for all t ∈ T.
(ii)

	
TKN (t) dt = 1.

(iii) KN (t) = 0 for |t| ≥ 1/(4N).
(iv) |K̂N (r)| ≤ 1 for all r.
(v) There exists a constant A independent of N such that |K̂N (r)| ≤

A(N/r)2 for all r 6= 0.
(vi) There exists a constant B independent of N such that ‖KN‖∞

≤ BN .

Proof of Theorem 2.1 from Theorem 2.2. First we show that E has
Hausdorff dimension exactly α. The proof is entirely standard. Condition (ii)
of Theorem 2.2 shows, directly from the definition, that E has Hausdorff
dimension at most α. On the other hand, condition (i) of Theorem 2.2 tells us
that if I is a countable collection of closed intervals such that

⋃
I∈I I ⊇ E, then

C
∑
I∈I
|I|α ≥

∑
I∈I

µ(I) ≥ µ(E) > 0,

so E cannot have Hausdorff dimension less than α.
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Next we prove (ii). Without loss of generality, we may suppose that
‖σ‖ = 1. We shall suppose that |n|γ/2|σ̂(n)| ≤ B for all n 6= 0 and derive a
contradiction.

Observe first that σ ∗Kq → σ weakly as m →∞. In particular, we can
find a q0 such that

‖σ ∗Kq‖1 ≥ 1/2 for all q ≥ q0.

Let ε > 0. By condition (ii) of Theorem 2.2, we can find a set of intervals
I1, . . . , IM with

M⋃
m=1

Im ⊇ E and |I1| = · · · = |IM | ≤ εM−1/γ .

We take ε small enough to ensure that M ≥ q0 and choose N to be the
smallest integer with εM−1/γ ≥ N−1. Setting

LN = σ ∗KN ,

we know that Ln is an infinitely differentiable function with

‖LN‖1 =
�

T
|LN (t)| dt ≥ 1

2
.

We also know that

suppLN ⊆ suppKN + suppσ ⊆
M⋃
m=1

(Im + suppKN ) ⊆
M⋃
m=1

Jm

where J1, . . . , JM are closed intervals with

|J1| = · · · = |JM | ≤ 2N−1.

Thus, using Schwarz’s inequality,

1
4
≤ ‖LN‖21 = ‖LN IsuppLN

‖21 ≤ ‖LN‖22‖IsuppLN
‖22 = ‖LN‖22

�

suppLN

1 dt

≤ ‖LN‖22 · (2MN−1) ≤ 4‖LN‖22εγNγ−1

and so �

T
|LN (t)|2 dt = ‖LN‖22 ≥

ε−γ

16
N1−γ .

On the other hand, we know that

|L̂N (r)| = |K̂N (r)| |σ̂(r)| ≤


1 for r = 0,
B|r|−γ/2 for |r| ≤ N ,
ABN2|r|−(γ+4)/2 for |r| ≥ N + 1.
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Thus, using Parseval’s equality,

‖LN‖22 =
∞∑

r=−∞
|L̂N (r)|2 = |L̂N (0)|2 +

∑
1≤|r|≤N

|L̂N (r)|2 +
∑

|r|≥N+1

|L̂N (r)|2

≤ 1 +
∑

1≤|r|≤N

B2|r|−γ +
∑

|r|≥N+1

A2B2N4|r|−4−γ

≤ 1 +
4B2

1− γ
N1−γ +A2B2N1−γ = 1 +B2

(
4

1− γ
+A2

)
N1−γ

and, combining the results of the last two paragraphs, we get
ε−γ

16
N1−γ ≤ 1 +B2

(
4

1− γ
+A2

)
N1−γ .

This inequality fails for ε sufficiently small, so (iii) follows by reductio ad
absurdum.

3. Baire category. It is notationally simpler to obtain the proof of
Theorem 2.2 by Baire category methods than by a direct inductive con-
struction. For this purpose, we look at a metric space of a type that I have
considered in various other papers (for example [Kö]).

Lemma 3.1.

(i) Consider the space F of non-empty closed subsets of T. If we set

dF (E,F ) = sup
e∈E

inf
f∈F
|e− f |+ sup

f∈F
inf
e∈E
|e− f |,

then (F , dF ) is a complete metric space.
(ii) Let 1 > β > 0. Consider the space E consisting of ordered pairs

(E,µ) where E ∈ F and µ is a positive measure with suppµ ⊆ E
and |r|βµ̂(r)→ 0 as |r| → ∞. If we take

dE((E,µ), (F, σ)) = dF (E,F ) + ‖µ− σ‖+ sup
r 6=0
|r|β|µ̂(r)− σ̂(r)|,

then (E , dE) is a non-empty complete metric space.
(iii) We continue with the notation and hypotheses of part (ii). Suppose

1 ≥ α > 0. Let C > 0 and let G = G(α, β) be the set of (E,µ) ∈ E
such that

C|I|α ≥ µ(I) for every interval I.

Then G is a closed subset of E (with the metric dE). Provided that C
is large enough, G contains the point (T, 2τ), where τ is the Lebesgue
measure of total mass 1.

Proof. (i) This metric is called the Hausdorff metric and is discussed,
with proofs, in [Ku] (see Chapter II §21 VII and Chapter III §33 IV).
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(ii) Use weak compactness. Observe that, writing m for the Haar mea-
sure, we have (T,m) ∈ E .

(iii) If I is a fixed interval, the set GI of (E,µ) ∈ E such that

C|I|α ≥ µ(I)

is closed. Since G is the intersection of such sets, it must be closed.
If we choose C = 2, then (T, 2τ) ∈ G.

In what follows we shall suppose 1 ≥ α > β > 0 and consider G = G(α, β)
defined as in Lemma 3.1 with C sufficiently large that (T, 2τ) ∈ G(α, β). We
write dG = dG(α,β) for the restriction of the metric dE to G(α, β). Lemma 3.1
tells us that (G, dG) is a non-empty complete metric space and so we may
apply Baire category methods. Our Baire category version of Theorem 2.2
runs as follows.

Theorem 3.2. Suppose that 1 ≥ α > β > 0. Quasi-all points (F, σ) in
the space (G, dG) have the property that, given ε > 0 and α > γ > β, we can
find intervals I1, . . . , IM with

M⋃
m=1

Im ⊇ F and |I1| = · · · = |IM | < εM−1/γ .

Proof of Theorem 2.2 from Theorem 3.2. If ε > 0, and α > γ > β are
given, Baire’s category theorem tells us that we can find (F, σ) ∈ G and
intervals I1, . . . , IM with

M⋃
m=1

Im ⊇ F and |I1| = · · · = |IM | < εM−1/γ

and
dG((T, 2τ), (F, σ)) < 1.

We note that ‖2τ − σ‖ < 1 and so ‖σ‖ > 1. If we set E = suppσ and
µ = ‖σ‖−1σ, the conditions of Theorem 2.2 can be read off directly. (Note
that we do not claim that E = F .)

Theorem 3.2 follows easily from the following simpler result.

Lemma 3.3. Suppose that 1 ≥ α > γ > β > 0 and ε > 0. The set Aγ,ε
consisting of all (F, σ) ∈ G such that we can find intervals I1, . . . , IM with

M⋃
m=1

Im ⊇ F and |I1| = · · · = |IM | < εM−1/γ

is dense in (G, dG).
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Proof of Theorem 3.2 from Lemma 3.3. Choose N sufficiently large that
α− β > 2/N . It is easy to see that Aγ,ε is open and so

C =
∞⋂
n=N

Aα−1/n,1/n ∩
∞⋂
n=N

Aβ+1/n,1/n

is the complement of a set of first category. Since every element of C satisfies
the conditions of Theorem 3.2, we are done.

The task of proving Lemma 3.3 is made easier by the following observa-
tion.

Lemma 3.4. Suppose that 1 ≥ α > β > 0. Given any η > 0 and any
(F, σ) ∈ G, we can find an (E,µ) ∈ G with dG((F, σ), (E,µ)) < η and a
δ > 0 such that dµ(t) = f(t) dt for some infinitely differentiable function
f : T→ R and

(C − δ)|I|α ≥ µ(I) for every interval I.

Proof. Set κ = (1 − η)σ. Provided that η > 0 is small enough we have
(F, κ) ∈ G and dG((F, κ), (F, σ)) < η/2. Further, provided we choose δ > 0
sufficiently small that (1− η)C > C − δ, we have

(C − δ)|I|α ≥ κ(I) for every interval I.

Now set E = F +[−N−1/4, N−1/4] and µ = κ∗KN . Automatically we have
(E,µ) ∈ G, dµ(t) = f(t) dt for some infinitely differentiable function f , and

(C − δ)|I|α ≥ µ(I) for every interval I.

Finally, provided we take N sufficiently large, dG((F, κ), (E,µ)) < η/2 so
that dG((F, σ), (E,µ)) < η and we are done.

Our task thus reduces to proving the following lemmas.

Lemma 3.5. Let α > γ > β. If (E,µ) ∈ G is such that dµ(t) = f(t) dt
for some infinitely differentiable f and there exists a δ > 0 such that

(C − δ)|I|α ≥ µ(I) for every interval I,

then, given any ε > 0, we can find an (F, σ) ∈ G with dG((E,µ), (F, σ)) < ε
and intervals I1, . . . , IM with

M⋃
m=1

Im ⊇ F and |I1| = · · · = |IM | < εM−1/γ .

4. Kaufman’s non-probabilistic method. The standard method of
producing measures of the type used in this paper is probabilistic and has
been beautifully exploited by Kaufman [Kau1]. His paper [Kau2] gives a
non-probabilistic method which we follow in this section.
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We write P(N) for the set of primes p with N + 1 ≤ p ≤ 2N and cardX
for the number of elements in a finite set X. The prime number theorem
tells us that (N−1 logN) cardP(N)→ 1 as n→∞, but we shall only need
the simpler result of Chebyshev.

Lemma 4.1. There exist constants A1 > 1 > A2 > 0 such that

A1
N

logN
≥ cardP(N) ≥ A2

N

logN
for all N ≥ 2.

We combine this with a simple observation.

Lemma 4.2. If m ≥ 2 and

σm =
m−1∑
j=1

δj/m,

then σm is a positive measure of mass m− 1 and

σ̂m(r) =
{
m− 1 if r ≡ 0 (modm),
−1 otherwise.

Proof. Observe that

σ̂m(r) =
m−1∑
j=1

δ̂j/m(r) =
m−1∑
j=1

exp(2πij/m) = −1 +
m−1∑
j=0

exp(2πij/m).

If N ≥ 2, we set

q(N) =
∑

p∈P(N)

(p− 1) and τN = q(N)−1
∑

p∈P(N)

σp.

The next lemma gives the key properties of τN .

Lemma 4.3.

(i) If p, q ∈ P(N) and p 6= q then

{u/p : 1 ≤ u ≤ p− 1} ∩ {v/q : 1 ≤ v ≤ q − 1} = ∅.

(ii) The measure τN is a probability measure of the form

τN =
1

cardE(N)

∑
e∈E(N)

δe

with E(N) a finite set with the property that

e, f ∈ E(N) and e 6= f ⇒ |e− f | ≥ N−2.

(iii) |τN (I)| ≤ |I|+ 3/N for all intervals I.
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(iv) 2A1N
2(logN)−1 ≥ cardE(N) ≥ A2N

2(logN)−1 for some con-
stants A1 > 1 > A2 > 0 independent of N .

(v) There exists a constant A3 > 0 such that

|τ̂N (r)| ≤ A3kN
−1 logN

for all 1 ≤ |r| ≤ Nk.

Proof. (i) & (ii) If p ∈ P(N) and u and v are integers such that u−v 6≡ 0
(mod p), then ∣∣∣∣up − v

q

∣∣∣∣ ≥ 1
p
>

1
N2

.

If p, q ∈ P(N), p 6= q and and u and v are integers such that uq − vp 6≡ 0
(mod pq), then ∣∣∣∣up − v

q

∣∣∣∣ ≥ 1
p
>

1
N2

.

(iii) Observe that

σp(I) = card{u/p ∈ I : 1 ≤ u ≤ p− 1} ≤ p|I|+ 2

and so

τN (I) = q(N)−1
∑

p∈P(N)

σp(I) ≤ q(N)−1
∑

p∈P(N)

p|I|+ 2

= q(N)−1
(
(q(N) + cardP(N))|I|+ 2 cardP(N)

)
≤ q(N)−1(q(N)|I|+ 3 cardP(N))

≤ q(N)−1(q(N)|I|+ 3q(N)N−1) = |I|+ 3/N.

(iv) Immediate from Lemma 4.1.
(v) Suppose that 1 ≤ |r| ≤ Nk. It follows that r is divisible by at most

k primes p ∈ P(N). Thus

|τ̂N (r)| =
∣∣∣q(N)−1

∑
p∈P(N)

σ̂p(r)
∣∣∣ ≤ q(N)−1

∑
p∈P(N)

|σ̂p(r)|

= q(N)−1
∑

p∈P(N), p|r

|σ̂p(r)|+ q(N)−1
∑

p∈P(N), p-r

|σ̂p(r)|

≤ q(N)−1(2Nk + cardP(N)) ≤ 2q(N)−1N(k + 1).

Using part (i) and the Chebyshev estimate of Lemma 4.1, we have

q(N) ≥ A2N(logN)−1 ·N = A2N
2(logN)−1

and so, choosing A3 appropriately,

|τ̂N (r)| ≤ A3kN
−1 logN

as required.
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5. Completion of the proof. We now smooth the measure τN .

Lemma 5.1. Suppose that 1 > α > γ > β > 0. Given η > 0, θ > 0 and
R we can find and M = M(α, β, γ, η,R), κ = κ(α, β, γ, η,R, θ) > 0 with
M ≥ R and κ < θ together with a positive infinitely differentiable function
gη : T→ R with

	
T gη(t) dt = 1 having the following properties:

(i) |ĝη(r)| ≤ η|r|−β/2 for r 6= 0.
(ii)

	
I gη(t) dt ≤ (1 + η)|I| for |I| ≥ κ/2.

(iii)
	
I gη(t) dt ≤ η|I|

α for |I| ≤ κ.
(iv) We can find intervals I1, . . . , IM with

M⋃
m=1

Im ⊇ supp gη and |I1| = · · · = |IM | < ηM−1/γ .

Proof. Consider τN as in Lemma 4.3. We choose M to be the number
of points in the support of τN . Provided that N is sufficiently large, we can
find an integer P with 1

4ηM
−1/γ ≤ P−1 ≤ 1

2ηM
−1/γ . We set

gη = τN ∗KP

where KP is defined as in Lemma 2.3. We claim that, provided only that N
is large enough, gη and M will have the required properties.

Observe that gη is automatically infinitely differentiable and positive. If
we take the Ij to be intervals of the form [u − ηM−1/γ , u + ηM−1/γ ] with
u ∈ supp τN , then condition (iii) of Lemma 2.3 tells us that

supp gη ⊆
M⋃
m=1

Im,

so condition (iv) follows.
We observe that conditions (ii) and (iv) of Lemma 4.3 tell us that, pro-

vided N is large enough,

[u− ηM−1/γ , u+ ηM−1/γ ] ∩ [v − ηM−1/γ , v + ηM−1/γ ] = ∅
and so

supp(δu ∗Kp) ∩ supp(δv ∗Kp) = ∅
whenever u, v ∈ supp τN and u 6= v.

We now set κ = 10N−1η and observe that, using Lemma 4.3(iii), we
have�

I

gη(t) dt ≤ τN (I) + 2M−1 ≤ |I|+ 3N−1 + 2M−1 ≤ |I|+ 5N−1 ≤ (1 + η)|I|

whenever I is an interval with |I| ≥ κ/2. Thus condition (ii) holds.
Our proof of condition (iii) splits into three parts depending on the length

of the interval I. First, suppose I is an interval with 4−1N−2 ≤ |I| ≤ κ.
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Lemma 4.3(ii) tells us that

card(I ∩ EN ) ≤ N2|I|
and so �

I

gη(t) dt ≤ (N2|I|+ 2)M−1 ≤ 20M−1N2|I|.

By Lemma 4.3(v), it follows that�

I

gη(t) dt ≤ 4A−1
2 (logN)|I|.

Since |I| ≥ 4N−2, it follows that�

I

gη(t) dt ≤ η|I|α,

provided only that N is large enough, independent of the I chosen.
If I is an interval with M−1/γ ≤ |I| ≤ 4−1N−2, then�

I

gη(t) dt ≤M−1 ≤ |I|γ .

Since α > γ, it follows that �

I

gη(t) dt ≤ η|I|α,

provided only that N is large enough, independent of the I chosen.
If I is an interval with |I| ≤ M−1/γ , we argue as follows. Using Lem-

ma 2.3, we see that

‖gη‖∞ = M−1‖Kp‖∞ ≤ Bη−1M−1+1/γ

for some constant B. In particular,�

I

gη(t) dt ≤ Bη−1M−1+1/γ |I| ≤ Bη−1|I|γ−1|I| = Bη−1|I|γ .

Since α > γ, it follows that �

I

gη(t) dt ≤ η|I|α,

provided only that N is large enough, independent of the I chosen. Together
with the previous two paragraphs, this shows that condition (iii) holds.

To obtain (i), take k to be the integer with 8β−1 + 1 ≥ k > 8β−1. By
Lemma 4.3(v),

|ĝη(r)| = |τ̂N (r)| |K̂P (r)| ≤ |τ̂N (r)| ≤ A3kN
−1 logN

for 0 6= |r| ≤ Nk. By Lemma 2.3,

|ĝη(r)| = |τ̂N (r)| |K̂P (r)| ≤ |K̂P (r)| ≤ ANr−2
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for all r 6= 0 and so, in particular, for Nk ≤ r. Using Lemma 4.3(iii), we see
that (i) holds, provided only that N is large enough.

We now prove Lemma 3.5 and so complete the proof of Theorem 1.4.

Proof of Lemma 3.5. Suppose, as stated, that (E,µ) ∈ G is such that
dµ(t) = f(t) dt for some infinitely differentiable f and there exists a δ > 0
such that

(C − δ)|I|α ≥ µ(I) for every interval I.

We shall show that if gη is defined as in Lemma 5.1 then, provided that η and
θ are small enough (with θ depending on η), taking dσ(t) = gη(t)dµ(t) and
F = E ∩ supp gM we have (F, σ) ∈ G with dG((E,µ), (F, σ)) < ε. Note that,
since F ⊆ supp gη, condition (iv) of Lemma 5.1 guarantees the existence of
intervals I1, . . . , IM with

M⋃
m=1

Im ⊇ F and |I1| = · · · = |IM | < εM−1/γ

whenever η ≤ ε.
Set ‖f‖∗ = ‖f‖∞ + ‖f ′′‖∞. Automatically |f̂(0)| ≤ ‖f‖∞ ≤ ‖f‖∗ and,

integrating by parts twice, we have

|f̂(u)| ≤ (2π)−2u−2 ≤ ‖f ′′‖∞u−2 ≤ ‖f‖∗u−2

for all u 6= 0. If r 6= 0, condition (i) of Lemma 5.1 yields

|µ̂(r)− σ̂(r)| = |ĝηf(r)− f̂(r)|

=
∣∣∣∑
u6=r

f̂(u)ĝη(r − u)
∣∣∣ ≤∑

u6=r
|f̂(u)| |ĝη(r − u)|

≤ η‖f‖∗
(
|r|−β/2 +

∑
u6=0,r

|r − u|−β/2

u2

)

= η‖f‖∗
(
|r|−β/2 +

∑
1≤|u|≤|r|/2

|r − u|−β/2

u2
+

∑
|u|>r/2, u 6=r

|r − u|−β/2

u2

)

≤ η‖f‖∗
(
|r|−β/2 +

∑
1≤|u|≤|r|/2

2|r|−β/2

u2
+

∑
|u|>|r|/2

1
u2

)

≤ η‖f‖∗
(

17|r|−β/2 +
8
|r|

)
≤ 25η‖f‖∗|r|−β/2 ≤

ε

4
|r|−β/2,

provided η is small enough (independent of r). A similar calculation shows
that |µ̂(0)− σ̂(0)| ≤ ε/4, provided that η is sufficiently small.

Condition (ii) of Lemma 5.1 tells us that

dE(E,F ) < ε/2
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provided only that η is sufficiently small and so

dE((E,µ), (F, σ)) < ε.

Our task thus reduces to showing that, if η is sufficiently small and M
sufficiently large, then

C|I|α ≥ σ(I) for all intervals I.

To this end, observe that, by choosing θ sufficiently small in Lemma 5.1,
we can ensure that |f(s)− f(t)| ≤ η whenever |s− t| ≤ κ. Any interval I of
length at least κ can be written as the union of a collection J of intervals J
with κ/2 ≤ |J | ≤ κ intersecting only at end points. Thus, using condition (ii)
of Lemma 5.1,

σ(I) =
�

I

f(t)gM (t) dt =
∑
J∈J

�

J

f(t)gM (t) dt

≤
∑
J∈J

�

J

(
1
|J |

�

J

f(s) ds+ η

)
gM (t) dt

≤
∑
J∈J

(1 + η)|J | ·
(

1
|J |

�

J

f(s) ds+ η

)
=
∑
J∈J

(1 + η)
(�
J

f(s) ds+ η|J |
)

= (1 + η)
�

I

f(s) ds+ η(1 + η)|I| = (1 + η)µ(I) + η(1 + η)|I|

≤ (1 + η)(C − δ)|I|α + η(1 + η)|I| ≤ C|I|α

provided only that η is small enough independent of the choice of I.
Finally, if I is an interval of length less than κ, condition (iii) of Lem-

ma 5.1 yields

σ(I) =
�

I

f(t)gM (t) dt ≤ ‖f‖∞
�

I

gM (t) dt ≤ η‖f‖∞|I|α ≤ C|I|α

provided only that η is small enough independent of the choice of I. We
have shown that (F, σ) ∈ G and this concludes the proof and the paper.

I take the opportunity of thanking the referee for some useful comments.
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