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Characterization of convex functions

by

Jacek Tabor (Kraków) and Józef Tabor (Rzeszów)

Abstract. There are many inequalities which in the class of continuous functions are
equivalent to convexity (for example the Jensen inequality and the Hermite–Hadamard
inequalities). We show that this is not a coincidence: every nontrivial linear inequality
which is valid for all convex functions is valid only for convex functions.

1. Introduction. There are many inequalities valid for convex func-
tions. Probably the most well-known ones are the Jensen inequality
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(
x+ y

2

)
≤ f(x) + f(y)

2
for x, y ∈ R,

and the Hermite–Hadamard inequalities

f

(
x+ y

2

)
≤ 1
y − x

y�

x

f(z) dz ≤ f(x) + f(y)
2

for x, y ∈ R, x < y.

In fact, in the class of continuous functions, each of the above inequalities is
equivalent to convexity (see [NP, Chapter 1]; the same concerns Popoviciu’s
inequality [NP, Th. 1.18]).

It is usually easy to check whether a given linear inequality holds for
all convex functions with domain in R. Namely, it is enough to verify that
inequality for the functions x 7→ |x − p| for all p ∈ R (see [NP, comments
after Theorem 1.5.7]). As a consequence one can prove an even more widely
applicable result, which is an easy corollary of Popoviciu’s Theorem [NP,
Th. 4.2.7].

Popoviciu’s Theorem. Let ν, µ be finite positive Borel measures on
[a, b]. Then

b�

a

f(x) dν(x) ≤
b�

a

f(x) dµ(x)
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for all continuous convex functions f : [a, b] → R, if and only if ν([a, b]) =
µ([a, b]) and

t�

a

(t− x) dν(x) ≤
t�

a

dµ(x),

b�

t

(x− t) dν(x) ≤
b�

t

(x− t) dµ(x) for t ∈ [a, b].

In this paper we deal with a problem, to some extent, opposite. Namely,
we prove that every nontrivial (linear-type) inequality which is valid for all
convex functions, gives in fact a characterization of convexity in the class of
continuous functions. In particular, as a direct consequence of Theorem 2
below we obtain the following result:

Theorem. Let K be a compact subset of Rn and let ν and µ be distinct
finite Borel measures on K. Assume that�

K

f(x) dν(x) ≤
�

K

f(x) dµ(x)

for every continuous convex real-valued function f such that K ⊂ dom(f)
(where dom denotes domain). Let W be a convex subset of a Banach space
E and let h ∈ C(W,R) be such that

�

K

h(a(x)) dν(x) ≤
�

K

h(a(x)) dµ(x)

for every affine function a : Rn → E such that a(K) ⊂ W . Then h is
convex.

For more information on convex functions we refer the reader to [Ku,
NP, Ro].

2. Approximation. Let K be a compact convex subset of Rn. We
denote by C(K,R) the Banach space of all continuous functions from K
into R with the supremum norm. For a Lipschitz function g ∈ C(K,R), we
denote by lip(g) the smallest Lipschitz constant of g. Let Aff(K) denote
the set of all affine functions from K into K, and Affε(K) the subset of
Aff(K) consisting of functions with Lipschitz constant less than or equal
to ε. Given a set B ⊂ C(K,R), we denote by wedge(B) the smallest wedge
containing B, where by wedge we understand a closed convex and positively
homogeneous set.

For f ∈ C(K,R), we say that f ∈ Ck if there exists an open neighbour-
hood U of K and fU ∈ Ck(U,R) such that fU |K = f .

Let Conv(K) ⊂ C(K,R) be the set of all convex functions on K.
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Given g ∈ C(K,R) and ε > 0 we put

Affε(g) := {g ◦ a : a ∈ Affε(K)}.

Our aim in this section is to show that an arbitrary function from
C(K,R) can be approximated in the supremum norm by a sum (with non-
negative coefficients) of a convex function and affine modifications of a fixed
nonconvex one.

Theorem 1. Let K ⊂ Rn be a compact convex set and let g : K → R
be a continuous function which is not convex. Let ε > 0. Then

C(K,R) = wedge(Conv(K) ∪Affε(g)).

We postpone the proof to the end of this section and precede it by a
few auxiliary lemmas. We use the following notation. Let η be a mollifier,
that is, a nonnegative function from C∞(Rn,R) with support in the unit
ball B(0, 1) and such that

	
η = 1. For δ > 0 we put ηδ(x) := η(x/δ)/δn.

Given a function f defined on a subset of Rn and x ∈ Rn, let Txf the
function Txf : y 7→ f(y − x). Given ε > 0 we define the homothety at x by

Hε
x(y) := x+ ε(y − x) for y ∈ Rn.

Lemma 1. Let W be a convex compact subset of Rn with nonempty in-
terior , let r > 0 and let g ∈ C(W + B(0, r),R). For δ ∈ (0, r) define
gδ : W → R by the formula

gδ(x) :=
�

B(0,δ)

ηδ(y)g(x− y) dy for x ∈W.

Then

(i) gδ ∈ C∞(W,R);
(ii) limδ→0+ gδ = g|W in C(W,R);
(iii) gδ ∈ wedge{(Tag)|W : a ∈ B(0, δ)}.

Proof. Since (i) and (ii) are well-known (see for example [Ev, Appendix
C.4]), we sketch the proof of (iii). Given ε > 0, by uniform continuity of g
on compact sets we find δ′ > 0 such that

|g(x− y)− g(x− y′)| ≤ ε whenever x ∈W, y, y′ ∈ B(0, δ), ‖y − y′‖ ≤ δ′.

Decompose B(0, δ) into a disjoint union of finitely many measurable subsets
{Yi} with diameter less than δ′. Choose points yi ∈ Yi arbitrarily and put

h :=
∑
i

�

Yi

ηδ(y) dy · (Tyig)|W .

Clearly, h ∈ wedge{(Tag)|W : a ∈ B(0, δ)}. We finish the proof by showing



32 Jacek Tabor and Józef Tabor

that h approximates gδ in the supremum norm. Indeed, for x ∈W ,

|gδ(x)− h(x)| =
∣∣∣∑
i

�

Yi

ηδ(y)g(x− y) dy −
∑
i

�

Yi

ηδ(y)g(x− yi) dy
∣∣∣

≤
∑
i

�

Yi

ηδ(y)|g(x− y)− g(x− yi)| dy

≤ ε
∑
i

�

Yi

ηδ(y) dy = ε
�

B(0,δ)

ηδ(y) dy = ε.

Lemma 2. Let K be a compact convex subset of Rn with nonempty
interior and let a ∈ K and r > 0 be such that B(a, r) ⊂ K. Let ε ∈ (0, 1)
and g ∈ C(K,R). Set

g := g ◦Hε
a.

Then
(Txg)|K ∈ Affε(g) for x ∈ B(0, (1− ε)r/ε).

Proof. By the convexity of K,

Hε
b (K) ⊂ K for b ∈ K.

Pick x ∈ B(0, (1− ε)r/ε). Then ‖εx/(1− ε)‖ < r and so

a+
ε

1− ε
x ∈ K.

Hence g ◦Ha+εx/(1−ε) is well-defined and the equality

Txg = g ◦Hε
a+εx/(1−ε)

completes the proof.

Lemma 3. Let K be a compact convex subset of Rn with nonempty in-
terior. Let ε ∈ (0, 1) and suppose g ∈ C(K,R) is not convex. Then there
exists a C∞ function h ∈ wedge(Affε(g)) and a ∈ intK such that the func-
tion K 3 x 7→ D2

ah[x] attains a negative value.

Proof. There exists a point a ∈ intK such that g is not convex on any
open convex neighbourhood of a. Let r > 0 be such that B(a, r) ⊂ K. We
define g by the formula

g := g ◦Hε
a.

Since Hε
a(B(a, r)) ⊂ B(a, r), g|K is not convex. By a similar reasoning to

that in the proof of Lemma 2 one can show that K + B(0, (1− ε)r/ε) ⊂
dom(g). In virtue of Lemma 2 we have

(Txg)|K ∈ Affε(g) for x ∈ B(0, (1− ε)r/ε).
Making use of Lemma 1(iii) we obtain

gδ|K ∈ wedge(Affε(g))

for sufficiently small δ.
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By Lemma 1(ii) we know that limδ→0+ ‖gδ|K − g|K‖sup = 0. Hence h :=
gδ|K is not convex for some small δ. Since h is a C∞ function, there exists
an a ∈ intK such that the mapping K 3 x 7→ D2

ah[x] is not nonnegative.

Now we are ready to prove the main result of this section.

Proof of Theorem 1. Without loss of generality we may assume that
ε < 1. Since every convex set has nonempty interior in the affine space
spanned by it, it is enough to consider the case when intK 6= ∅. We put

F := wedge(Conv(K) ∪Affε(g)).

We are going to show that

(1) f ◦ a ∈ F for f ∈ F , a ∈ Aff(K), lip(a) ≤ 1.

This follows from the fact that the above inclusion trivially holds for f ∈
Conv(K) and f ∈ Affε(g), and consequently also for functions belonging to
the wedge spanned over Conv(K)∪Affε(g). Let G denote the set of functions
of the form

f +
n∑
i=1

αifi,

where f ∈ C(K,R) is convex, fi ∈ Affε(g), αi ≥ 0 and n ∈ N. As one can
easily check, a version of (1) holds for G, and consequently also for F = clG.

By Lemma 3 there exists a function h ∈ F of class C∞ and p ∈ intK
such that the mapping A := x 7→ D2

ph[x] is not nonnegative. Clearly without
loss of generality (we can shift the origin of the coordinate system to p) we
may assume that p = 0. Then 0 ∈ intK.

Now the function h : K 3 x 7→ h(x) − h(0) −D0h[x] is also an element
of F , as h− h is affine. We have

h(x) = D2
0h[x] + o(‖x‖2) = A(x) + o(‖x‖2) for x ∈ K.

For M ≥ 1 we define the function hM : K → R by the formula

hM (x) := M2h(x/M) for x ∈ K.
Since 0 ∈ K and K is convex, hM is well-defined. Since we have hM (x) =
M2(h ◦ H1/M

0 )(x) and lip(H1/M
0 ) = 1/M , by (1) we see that hM ∈ F . As

hM tends uniformly (as M →∞) to A, we conclude that A ∈ F .
Because A attains a negative value, there exists an orthonormal basis

e1, . . . , en of Rn such that A(e1) < 0. From now on we change the canonical
base to the new one. Then for λ := A(e1) we have

A(x1, 0, . . . , 0) = λx2
1.

Consider the map

Pk(x1, . . . , xn) = (xk, 0, . . . , 0) for k = 1, . . . , n.
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Since 0 ∈ intK and K is bounded, there exists δ ∈ (0, 1] such that

δ · Pk|K ∈ Affε(K) for k = 1, . . . , n.

Consequently, by (1), pk := A ◦ (δ · Pk|K) ∈ F . Then

pk(x1, . . . , xn) = λδ2x2
k for (x1, . . . , xn) ∈ K.

Since λ < 0, we see that the function Pk : K ∈ x = (x1, . . . , xn) 7→ −x2
k is

also an element of F . Consequently, the function

x = (x1, . . . , xn) 7→ −(x2
1 + · · ·+ x2

n) = −‖x‖2

is an element of F .
Now we are ready to show that C(K,R) ⊂ F . First consider the case of

C∞ functions. Let f be a C∞ function on K (that is, a restriction to K of a
C∞ function on the neighbourhood of K). Clearly, there exists M > 0 such
that the function

F : K 3 x 7→ f(x) +M‖x‖2

is convex, which implies that F ∈ F . Since the function K 3 x 7→ −M‖x‖2
is also an element of F , we deduce that

K 3 x 7→ F (x) + (−M · ‖x‖2) = f(x)

is also an element of F .
By Lemma 1, the class of C∞ functions is dense in C(K,R). This com-

pletes the proof of Theorem 1.

Remark 1. The assertion of Theorem 1 can be reformulated in the
following way. Every continuous function h : K → R can be uniformly
approximated by functions of the form

f +
n∑
i=1

αifi,

where f is a continuous convex function, fi ∈ Affε(g), αi ≥ 0 and n ∈ N.

3. Convex inequalities. Now we are ready to proceed to our main
subject of interest, that is, to inequalities valid for convex functions.

Theorem 2. Let K be a compact convex subset of Rn. Let ν and µ be
distinct finite positive Borel measures in K. Assume that�

K

f dν ≤
�

K

f dµ

for every continuous convex function f : K → R. Let E be a Banach space.
Let ε > 0. Let W ⊂ E be a convex set and let h ∈ C(W,R) be such that

(2)
�

K

(h ◦ a) dν ≤
�

K

(h ◦ a) dµ
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for every one-dimensional affine function a : Rn → E such that a(K) ⊂ W
and lip(a) < ε. Then h is convex.

Proof. Suppose that h is not convex. Then there exist w0, w1 ∈W such
that h is not convex on the interval [w0, w1]. We define h : [0, 1]→ R by

h(t) = h(w0 + t(w1 − w0)) for t ∈ [0, 1].

Obviously h is a continuous function which is not convex, and therefore we
can find 0 < t1 < t2 < 1 such that h|[t1,t2] is not convex. Let

t := inf{t ∈ [t1, t2] : h|[t1,t] is not convex}.
Since h|[t1,t] is convex and h|[t1,t] is not convex for any t > t, it follows that
h is not convex on a neighbourhood of t.

Now we choose an affine map i : K → [0, 1] with t ∈ int(i(K)) and
lip(i) ≤ 1/‖w1 − w0‖ and define

a0(x) := w0 + i(x)(w1 − w0) for x ∈ K.
Obviously lip(a0) ≤ 1. Let

G :=
{
f ∈ C(K,R) :

�

K

f dν ≤
�

K

f dµ
}
.

Obviously G is a wedge which contains all convex functions.
We put

g := h ◦ a0 ∈ C(K,R).

Clearly g is not convex. Let a : K → K be an affine function with lip(a) ≤ ε.
Then

g ◦ a = h ◦ a0 ◦ a.
As a0 ◦a : K →W is affine with lip(a0 ◦a) ≤ ε, by (2) we see that g ◦a ∈ G.
This means that Affε(g) ⊂ G.

Now Theorem 1 shows that G = C(K,R), and consequently�

K

f dν ≤
�

K

f dµ

for every f ∈ C(K,R). Putting −f in place of f we obtain�

K

f dν =
�

K

f dµ for f ∈ C(K,R),

which trivially implies that the measures ν and µ are equal.

As a trivial consequence, the Jensen inequality and the Hermite–Hada-
mard inequalities in the class of continuous functions imply convexity. We
provide the proof for the Hermite inequality in R (other proofs are similar).

Let δa denote the unit atom measure concentrated at a.



36 Jacek Tabor and Józef Tabor

Corollary 1. Let W be a convex subset of a Banach space E and let
g : W → R be a continuous function such that

(3) g

(
x+ y

2

)
≤

1�

0

g(x+ t(y − x)) dt for x, y ∈W.

Then g is convex.

Proof. Let
K = [0, 1], ν = δ1/2, µ = λ1|K ,

where λ1|K denotes the one-dimensional Lebesgue measure restricted to K.
Obviously ν 6= µ.

By the Hermite inequality for every convex function f : K = [0, 1]→ R
we obtain

�

K

f dν = f(1/2) ≤
1�

0

f(s) ds =
�

K

f dµ.

Now, by (3), for every affine function a : K → W such that a(K) ⊂ W
we have

�

K

g ◦ a dν = g(a(1/2)) ≤
1�

0

g(a(0) + t(a(1)− a(0))) dt

=
1�

0

g(a(t)) dt =
�

K

g ◦ a dµ.

Consequently, by Theorem 2, g is convex.

In a similar manner one can prove that every continuous t-Wright convex
function is convex. Recall that a function f : V → R, where V is convex, is
called t-Wright convex (where t ∈ (0, 1)) if

f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y) for all x, y ∈ V.

Then we take ν = δt0 + δ1−t0 , µ = δ0 + δ1.
The above mentioned result is well-known [MNP]. We present it to point

out that Theorem 2 can be applied as a useful tool in the theory of convex
functions.

Remark 2. One can ask if the space of affine transformations in The-
orem 2 can be replaced by a smaller one. We show that the space of affine
similarities is not sufficient.

Consider the inequality

f(0) ≤ 1
2π

�

S(0,1)

f(x) dS(x),
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which is clearly satisfied for all subharmonic (and consequently also convex)
functions f on R2.

Let g(x1, x2) = x2
1−x2

2. One can easily check that g◦a satisfies the above
inequality (in fact even equality) for every affine similarity a (this is because
g is harmonic). However, clearly g is not convex.

Problem 1. Are Theorems 1 and 2 valid in infinite-dimensional Banach
spaces?
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