Weighted variable L^{p} integral inequalities for the maximal operator on non-increasing functions

by
C. J. Neugebauer (West Lafayette, IN)

Abstract

Let B_{p} be the Ariño-Muckenhoupt weight class which controls the weighted L^{p}-norm inequalities for the Hardy operator on non-increasing functions. We replace the constant p by a function $p(x)$ and examine the associated $L^{p(x)}$-norm inequalities of the Hardy operator.

1. Introduction. The weights $w: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$for which the Hardy operator

$$
H f(x)=\frac{1}{x} \int_{0}^{x} f(t) d t
$$

on non-negative non-increasing functions f (we write simply $f \downarrow$) is bounded:

$$
\begin{equation*}
\int_{0}^{\infty} H f(x)^{p} w(x) d x \leq c_{*} \int_{0}^{\infty} f(x)^{p} w(x) d x, \quad 1 \leq p<\infty \tag{1}
\end{equation*}
$$

have been characterized by Ariño and Muckenhoupt [1] by the condition

$$
\begin{equation*}
w \in B_{p}: \quad \int_{r}^{\infty}\left(\frac{r}{x}\right)^{p} w(x) d x \leq c \int_{0}^{r} w(x) d x \tag{2}
\end{equation*}
$$

A different proof of $(1) \Leftrightarrow(2)$ was given by me in [7] where it is also apparent that in the implication $(2) \Rightarrow(1)$ the constant c_{*} can be taken to be $(c+1)^{p}$. For $(1) \Rightarrow(2)$ one uses the test function $f=\chi_{[0, r]}$ and (2) follows with $c=c_{*}$. We also note that for $f \downarrow, H f(x)$ equals $M f(x)$, the Hardy-Littlewood maximal function.

In the past few years a great deal of attention has been paid to the problem of the boundedness of M on variable L^{p}-spaces. If $p: \mathbb{R}^{n} \rightarrow[1, \infty)$ and $w: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, let $L^{p(x)}(w)$ be the collection of all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

[^0]such that for some $\lambda>0$,
$$
\int_{\mathbb{R}^{n}}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} w(x) d x<\infty
$$
equipped with the Luxemburg norm
$$
\|f\|_{p(x), w}=\inf \left\{\lambda>0: \int_{\mathbb{R}^{n}}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} w(x) d x \leq 1\right\}
$$

This makes $L^{p(x)}(w)$ into a Banach space; for the properties of these spaces see [5]. Cruz-Uribe, Fiorenza, and myself have shown in [3] that for $w \equiv 1$,

$$
\begin{equation*}
\|M f\|_{p(x)} \leq c\|f\|_{p(x)} \tag{3}
\end{equation*}
$$

provided $1<p_{*} \leq p(x)<\infty$, and

$$
|p(x)-p(y)| \leq \begin{cases}\frac{c}{\log \frac{1}{|x-y|},}, & |x-y| \leq 1 / 2 \\ \frac{c}{\log (e+|x|)}, & |y| \geq|x|\end{cases}
$$

and that the condition on $p(x)$ is nearly sharp (see [3] for further details and additional references).

However, a characterization of the weights $w: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$so that

$$
\begin{equation*}
\|M f\|_{p(x), w} \leq c\|f\|_{p(x), w} \tag{B}
\end{equation*}
$$

is not known. Some necessary and some sufficient conditions are contained in a forthcoming paper [4]. We are therefore led to the "easier" problem of characterizing (B) for $f \downarrow$ since from (2) the natural condition appears to be

$$
\begin{equation*}
w \in B_{p(x)}: \quad \int_{r}^{\infty}\left(\frac{r}{x}\right)^{p(x)} w(x) d x \leq c \int_{0}^{r} w(x) d x \tag{C}
\end{equation*}
$$

The primary purpose of this paper is to establish for certain $p: \mathbb{R}_{+} \rightarrow[1, \infty)$ a connection between (B) and (C), and the related integral inequality

$$
\begin{equation*}
\int_{0}^{\infty} M f(x)^{p(x)} w(x) d x \leq c \int_{0}^{\infty} f(x)^{p(x)} w(x) d x, \quad f \downarrow . \tag{A}
\end{equation*}
$$

Remark. If the hypothesis $f \downarrow$ is omitted in (A) and $0<p(x)<p_{+}$ $<\infty$, then $p(x)$ is constant. This surprising result is due to A. K. Lerner [6] for $w \equiv 1$. The same proof, with only minor changes, works for positive $w(x)$. A related result is contained in [2] where a variable exponent $B_{p(x)}$ is introduced. It is the same as (C) except for an additional parameter $s>0$:

$$
\int_{r}^{\infty}\left(\frac{r}{s x}\right)^{p(x)} w(x) d x \leq c \int_{0}^{r} \frac{w(x)}{s^{p(x)}} d x
$$

The main result is that this condition is equivalent to (A) and to $p(x)=p_{0}$, a constant, if the oscillation of $p(x)$ at $x=0$ is zero, and then $w \in B_{p_{0}}$.

It turns out that there is a relationship between (A), (B), and (C) under some natural restrictions which are illustrated by the following examples.
(1) Let $p(x)=4 \chi_{[0,1]}(x)+2 \chi_{[1, \infty)}(x)$. Then $w(x) \equiv 1$ is in $B_{p(x)}$. Let $f_{\alpha}=\alpha \chi_{[0,1]}$. Then

$$
\int_{0}^{\infty} f_{\alpha}(x)^{p(x)} d x=\alpha^{4} \quad \text { and } \quad \int_{0}^{\infty} H f_{\alpha}(x)^{p(x)} d x=\alpha^{4}+\alpha^{2}
$$

and (A) cannot hold as $\alpha \rightarrow 0$. This explains the restriction that $p(x)$ be non-decreasing (written $p \uparrow$).
(2) Let now $p(x)=2 \chi_{[0,1]}(x)+4 \chi_{[1, \infty)}(x)$. Again $w(x) \equiv 1$ is in $B_{p(x)}$. If $f_{N}=N \chi_{[0,1]}$, then

$$
\int_{0}^{\infty} f(x)^{p(x)} d x=N^{2} \quad \text { and } \quad \int_{0}^{\infty} H f_{N}(x)^{p(x)} d x=N^{2}+N^{4} / 3
$$

and (A) cannot hold as $N \rightarrow \infty$. This shows that in addition to $f \downarrow$ we must assume that $0 \leq f(x) \leq 1$.
2. The inequality (A). Let w be a weight: $w \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}\right)$and nonnegative, and let $p: \mathbb{R}_{+} \rightarrow[1, \infty)$.

Lemma 1. $w \in B_{p(x)}$ if and only if there exists $0<c<\infty$ such that for every $r \downarrow$,

$$
\int_{0}^{\infty} \chi^{r(x)}(x)\left(\frac{r(x)}{x}\right)^{p(x)} w(x) d x \leq c \int_{0}^{\infty} \chi_{r(x)}(x) w(x) d x
$$

where for $a>0, \chi_{a}(x)=\chi_{[0, a]}(x)$ and $\chi^{a}(x)=\chi_{[a, \infty)}(x)$.
Proof. We only have to show that $w \in B_{p(x)}$ implies the condition with $r \downarrow$, since the reverse follows by taking $r(x)=r$.

Since $y=r(x)$ is non-increasing and $y=x$ is increasing there is a unique point i_{r} such that

$$
(r(x)-x)\left(i_{r}-x\right)>0, \quad x \neq i_{r} .
$$

In fact, $i_{r}=\sup \{x: r(x)>x\}=\inf \{x: r(x)<x\}$.
The right side is

$$
R=\int_{\{x: x<r(x)\}} w(x) d x=\int_{0}^{i_{r}} w(x) d x
$$

and the left side is

$$
L=\int_{\{x: r(x)<x\}}\left(\frac{r(x)}{x}\right)^{p(x)} w(x) d x \leq \int_{i_{r}}^{\infty}\left(\frac{i_{r}}{x}\right)^{p(x)} w(x) d x
$$

since for $x \geq t>i_{r}$ we have $r(x) \leq r(t) \leq t$ and thus $r(x) \leq i_{r}$.
Let \mathcal{D} be the collection of all $f \downarrow$ with $f(0+) \leq 1$, and let

$$
H f(x)=\frac{1}{x} \int_{0}^{x} f(t) d t=M f(x)
$$

be the Hardy operator for $f \in \mathcal{D}$. Then H maps \mathcal{D} into \mathcal{D}.
Theorem 2. Let $p: \mathbb{R}_{+} \rightarrow[1, \infty)$ and $p \uparrow$. Then there exists a constant $0<c<\infty$ such that

$$
\int_{0}^{\infty} H f(x)^{p(x)} w(x) d x \leq c \int_{0}^{\infty} f(x) H f(x)^{p(x)-1} w(x) d x
$$

for every $f \in \mathcal{D}$ if and only if $w \in B_{p(x)}$.
Proof. The choice $f=\chi_{r}$ gives one implication, and for the reverse direction we only need to prove the integral inequality for functions in \mathcal{D} supported in $[0, K]$, continuous and strictly decreasing on $[0, K]$, with a constant c depending only upon the $B_{p(x)}$-constant of w. An arbitrary $f \in \mathcal{D}$ can be approximated by such functions so that the integral inequality is obtained as a limit.

Let $r: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, t=r(x, y)$, be decreasing in x for each y and continuous and strictly decreasing in y for each x. For a fixed x we denote by $r^{-1}(x, t)$ the inverse of $t=r(x, y)$, i.e. $t=r\left(x, r^{-1}(x, t)\right)$. Then $r^{-1}(x, t)$ is decreasing in x for each t and continuous and strictly decreasing in t for each x. Later we will choose

$$
r^{-1}(x, t)=f(t) H f(t)^{p(x)-1}
$$

From Lemma 1 for each $r(x, y)$ as above we have

$$
\int_{0}^{\infty} \chi^{r(x, y)}(x)\left(\frac{r(x, y)}{x}\right)^{p(x)} w(x) d x \leq c \int_{0}^{\infty} \chi_{r(x, y)}(x) w(x) d x
$$

We integrate this in y and get

$$
\int_{0}^{\infty} \int_{0}^{\infty} \chi^{r(x, y)}(x)\left(\frac{r(x, y)}{x}\right)^{p(x)} w(x) d x d y \leq c \int_{0}^{\infty} \int_{0}^{\infty} \chi_{r(x, y)}(x) w(x) d x d y
$$

We interchange the order of integration and then the left side equals

$$
L=\int_{0}^{\infty} \int_{\{y: r(x, y) \leq x\}} r(x, y)^{p(x)} d y \frac{w(x)}{x^{p(x)}} d x
$$

If $r^{-1}(x, x)=i_{r}(x)$, then $\{y: r(x, y) \leq x\}=\left[i_{r}(x), \infty\right)$. Thus

$$
L=\int_{0}^{\infty} \int_{i_{r}(x)}^{\infty} r(x, y)^{p(x)} d y \frac{w(x)}{x^{p(x)}} d x
$$

The inner integral is

$$
\int_{i_{r}(x)}^{\infty} r(x, y)^{p(x)} d y=\int_{0}^{x^{p(x)}} r^{-1}\left(x, t^{1 / p(x)}\right) d t-x^{p(x)} i_{r}(x)
$$

The substitution $t=u^{p(x)}$ gives

$$
\int_{i_{r}(x)}^{\infty} r(x, y)^{p(x)} d y=\int_{0}^{x} r^{-1}(x, u) p(x) u^{p(x)-1} d u-x^{p(x)} i_{r}(x)
$$

Now we choose $r^{-1}(x, u)=f(u) H f(u)^{p(x)-1}$. Then

$$
\begin{aligned}
\int_{i_{r}(x)}^{\infty} r(x, y)^{p(x)} d y & =\int_{0}^{x} f(u)\left(\int_{0}^{u} f(\tau) d \tau\right)^{p(x)-1} p(x) d u-x^{p(x)} i_{r}(x) \\
& =\left(\int_{0}^{x} f(t) d t\right)^{p(x)}-x^{p(x)} i_{r}(x)
\end{aligned}
$$

Hence

$$
L=\int_{0}^{\infty} H f(x)^{p(x)} w(x) d x-\int_{0}^{\infty} i_{r}(x) w(x) d x
$$

The right side is

$$
R=c \int_{0}^{\infty} \int_{\{y: r(x, y) \geq x\}} w(x) d y d x=c \int_{0}^{\infty} i_{r}(x) w(x) d x
$$

We combine the above estimates and get

$$
\int_{0}^{\infty} H f(x)^{p(x)} w(x) d x \leq(c+1) \int_{0}^{\infty} i_{r}(x) w(x) d x
$$

The proof is completed now by noting that

$$
i_{r}(x)=r^{-1}(x, x)=f(x) H f(x)^{p(x)-1}
$$

Note moreover that, if c_{1} equals the $B_{p(x)}$-constant of w, then the constant c of the integral inequality is at most $c_{1}+1$.

Theorem 3. Let $p: \mathbb{R}_{+} \rightarrow[1, \infty), p \uparrow$, and $1 \leq p(x) \leq p^{*}<\infty$. Then there is a constant $0<c_{*}<\infty$ such that

$$
\int_{0}^{\infty} H f(x)^{p(x)} w(x) d x \leq c_{*} \int_{0}^{\infty} f(x)^{p(x)} w(x) d x, \quad f \in \mathcal{D}
$$

if and only if $w \in B_{p(x)}$.

Proof. The choice $f=\chi_{r}$ proves the necessity. For the sufficiency we first note that $w_{N}=w \chi_{N}$ is in $B_{p(x)}$ with the same constant and hence, by Theorem 2,

$$
\int_{0}^{\infty} H f(x)^{p(x)} w_{N}(x) d x \leq c_{0} \int_{0}^{\infty} f(x)^{p(x)} H f(x)^{p(x)-1} w_{N}(x) d x, \quad f \in \mathcal{D}
$$

where $c_{0}>1$ does not depend on N. (Below, we need the integrals to be finite and that is the reason for the restriction to w_{N}). We now fix $\lambda_{0}>c_{0}>1$. Then $f / \lambda_{0} \in \mathcal{D}$ if $f \in \mathcal{D}$. Replace f by f / λ_{0} in the above inequality and use Young's inequality to obtain

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\frac{H f(x)}{\lambda_{0}}\right)^{p(x)} w_{N}(x) d x \leq \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty} f(x) H\left(f / \lambda_{0}\right)(x)^{p(x)-1} w_{N}(x) d x \\
& \leq \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty}\left(\frac{f(x)^{p(x)}}{p(x)}+\frac{H\left(f / \lambda_{0}\right)(x)^{p(x)}}{q(x)}\right) w_{N}(x) d x \\
& \leq \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty} f(x)^{p(x)} w_{N}(x) d x+\frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty}\left(\frac{H f(x)}{\lambda_{0}}\right)^{p(x)} w_{N}(x) d x
\end{aligned}
$$

where $p(x)^{-1}+q(x)^{-1}=1$. From this we get

$$
\left(1-c_{0} / \lambda_{0}\right) \int_{0}^{\infty}\left(\frac{H f(x)}{\lambda_{0}}\right)^{p(x)} w_{N}(x) d x \leq \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty} f(x)^{p(x)} w_{N}(x) d x
$$

and the left side is

$$
\geq \frac{\lambda_{0}-c_{0}}{\lambda_{0}^{p^{*}+1}} \int_{0}^{\infty} H f(x)^{p(x)} w_{N}(x) d x
$$

Thus

$$
\int_{0}^{\infty} H f(x)^{p(x)} w_{N}(x) d x \leq c_{*} \int_{0}^{\infty} f(x)^{p(x)} w_{N}(x) d x
$$

where $c_{*}=\lambda_{0}^{p_{*}} c_{0} /\left(\lambda_{0}-c_{0}\right)$. Let $N \rightarrow \infty$ to complete the proof.
Remark. The constant c_{*} can be chosen to depend only on the $B_{p(x)^{-}}$ constant c of w : in fact, if $\lambda_{0}=2 c_{0}$, then $c_{*}=\left(2 c_{0}\right)^{p^{*}}=(2(c+1))^{p^{*}}$.

3. The inequality (B)

Theorem 4. Let $p: \mathbb{R}_{+} \rightarrow[1, \infty)$ and $w: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Assume there exists a constant $1 \leq c_{*}<\infty$ such that

$$
\begin{equation*}
\int_{0}^{\infty} H f(x)^{p(x)} w(x) d x \leq c_{*} \int_{0}^{\infty} f(x)^{p(x)} w(x) d x, \quad f \in \mathcal{D} \tag{A}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|H f\|_{p(x), w} \leq c_{*}\|f\|_{p(x), w} \tag{B}
\end{equation*}
$$

if either
(i) $f \in \mathcal{D}$ and $\|f\|_{p(x), w} \geq 1 / c_{*}$, or
(ii) f is non-increasing on \mathbb{R}_{+}and $f(x) /\|f\|_{p(x), w} \in \mathcal{D}$.

Proof. (i) Since $c_{*} \geq 1$ we have

$$
\begin{aligned}
\|H f\|_{p(x), w} & =\inf \left\{\lambda>0: \int_{0}^{\infty}\left(\frac{H f(x)}{\lambda}\right)^{p(x)} w(x) d x \leq 1\right\} \\
& \leq \inf \left\{\lambda \geq 1: \int_{0}^{\infty}\left(\frac{H f(x)}{\lambda}\right)^{p(x)} w(x) d x \leq 1\right\} \\
& \leq \inf \left\{\lambda \geq 1: c_{*} \int_{0}^{\infty}\left(\frac{f(x)}{\lambda}\right)^{p(x)} w(x) d x \leq 1\right\} \\
& \leq \inf \left\{\lambda \geq 1: \int_{0}^{\infty}\left(\frac{f(x)}{\lambda / c_{*}}\right)^{p(x)} w(x) d x \leq 1\right\} \\
& =\inf \left\{c_{*} \sigma \geq 1: \int_{0}^{\infty}\left(\frac{f(x)}{\sigma}\right)^{p(x)} w(x) d x \leq 1\right\} \\
& =c_{*} \inf \left\{\sigma \geq 1 / c_{*}: \int_{0}^{\infty}\left(\frac{f(x)}{\sigma}\right)^{p(x)} w(x) d x \leq 1\right\} \leq c_{*}\|f\|_{p(x), w} .
\end{aligned}
$$

(ii) Let $g(x)=f(x) /\|f\|_{p(x), w}$. By hypothesis $g \in \mathcal{D}$ and $\|g\|_{p(x), w}=1$. Hence

$$
\int_{0}^{\infty} H g(x)^{p(x)} w(x) d x \leq c_{*} \int_{0}^{\infty} g(x)^{p(x)} w(x) d x \leq c_{*} .
$$

This implies $\|H f\|_{p(x), w} \leq c_{*}\|f\|_{p(x), w}$.
Remark. By Theorem 3 the hypothesis of Theorem 4 is satisfied if $1 \leq p(x) \leq p^{*}<\infty, p \uparrow$ and $w \in B_{p(x)}$. The constant c_{*} depends only on the $B_{p(x) \text {-constant of } w \text {. }}$

Example. We will now show that (i) of Theorem 4 does not imply the norm inequality (B) with a constant depending on the $B_{p(x)}$-constant of w only if the $L^{p(x)}(w)$-norm of f is not bounded away from zero. Let $0<a<1$ and let $p_{a}(x)=2 \chi_{a}(x)+4 \chi^{a}(x)$. It is easily checked that $w(x) \equiv 1$ is in $B_{p_{a}(x)}$ with constant independent of a. Let $f=\chi_{a}$. Then

$$
\|f\|_{p_{a}(x), w}=\inf \left\{\lambda>0: \int_{0}^{a}\left(\frac{1}{\lambda}\right)^{2} d x \leq 1\right\}=a^{1 / 2}
$$

and

$$
\|H f\|_{p_{a}(x), w} \geq \inf \left\{\lambda>0: \int_{a}^{\infty}\left(\frac{a}{\lambda x}\right)^{4} d x \leq 1\right\}=\left(\frac{a}{3}\right)^{1 / 4}
$$

Hence the norm inequality of Theorem 4 cannot hold with a constant independent of a.
4. The equivalence $(\mathbf{A}) \Leftrightarrow(\mathbf{B}) \Leftrightarrow(\mathbf{C})$. We need the following lemma.

LEMMA 5. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\|f\|_{p(x), w}>0$, where $1 \leq p(x) \leq$ $p^{*}<\infty$, and let $0<a<\infty$. Then there exists $0<\sigma<\infty$ such that $\|f\|_{p(x), \sigma w}=a$.

Proof. For $\sigma \geq 1$,

$$
\int_{0}^{\infty}\left(\frac{f(x)}{\lambda}\right)^{p(x)} \sigma w(x) d x \geq \int_{0}^{\infty}\left(\frac{f(x)}{\lambda / \sigma^{1 / p^{*}}}\right)^{p(x)} w(x) d x
$$

which implies that $\|f\|_{p(x), \sigma w} \geq \sigma^{1 / p^{*}}\|f\|_{p(x), w}$. Hence the set $S_{a}=\{\sigma>0$: $\left.\|f\|_{p(x), \sigma w} \geq a\right\}$ is not empty. Let $\sigma_{0}=\inf \left\{\sigma: \sigma \in S_{a}\right\}$. Then a straightforward argument shows that $\|f\|_{p(x), \sigma_{0} w}=a$.

Since the conditions (A) and (C) remain unchanged when $w(x)$ is replaced by $\sigma w(x), 0<\sigma<\infty$, the condition (B) has to be modified to reflect this.

ThEOREM 6. The following statements are equivalent for $1 \leq p(x) \leq$ $p^{*}<\infty, p \uparrow$, and $w: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- There exists $1 \leq c_{*}<\infty$ such that

$$
\begin{equation*}
\int_{0}^{\infty} H f(x)^{p(x)} w(x) d x \leq c_{*} \int_{0}^{\infty} f(x)^{p(x)} w(x) d x, \quad f \in \mathcal{D} . \tag{A}
\end{equation*}
$$

- For each $0<\gamma \leq 1$ there is $1 \leq c_{\gamma}<\infty$ such that

$$
\begin{equation*}
\|H f\|_{p(x), \sigma w} \leq c_{\gamma}\|f\|_{p(x), \sigma w} \tag{B}
\end{equation*}
$$

for every $f \in \mathcal{D}$ and every $0<\sigma<\infty$ for which $\|f\|_{p(x), \sigma w} \geq \gamma$.

- We have

$$
\begin{equation*}
w \in B_{p(x)} \tag{C}
\end{equation*}
$$

Proof. (A) $\Rightarrow(\mathrm{B})$. Let $0<\gamma \leq 1$ and let $c_{\gamma}=\max \left(c_{*}, 1 / \gamma\right)$. Then (A) holds with c_{*} replaced by c_{γ} and $w(x)$ replaced by $\sigma w(x)$. Theorem 4 gives (B).
$(\mathrm{B}) \Rightarrow(\mathrm{C})$. We have to show that

$$
\int_{r}^{\infty}\left(\frac{r}{x}\right)^{p(x)} w(x) d x \leq c \int_{0}^{r} w(x) d x .
$$

Let $f=\chi_{r}$. Then $f \in \mathcal{D}$. Fix $0<\gamma<1$ and then by Lemma 5 we can choose $0<\sigma<\infty$ such that

$$
\gamma \leq\|f\|_{p(x), \sigma w} \equiv \lambda_{0} \leq 1
$$

Then

$$
\int_{0}^{r} \frac{\sigma w(x)}{\lambda_{0}^{p(x)}} d x=1
$$

which implies, since $\lambda_{0} \leq 1$, that

$$
\int_{0}^{r} \sigma w(x) d x \geq \lambda_{0}^{p^{*}}
$$

Let $c=\max \left(c_{\gamma}, 1 / \gamma\right)$. Since $\|H f\|_{p(x), \sigma w} \leq c \lambda_{0}$, we have

$$
\int_{0}^{\infty}\left(\frac{H f(x)}{c \lambda_{0}}\right)^{p(x)} \sigma w(x) d x \leq 1
$$

Because $c \lambda_{0} \geq 1$, the left side is

$$
\geq \frac{1}{\left(c \lambda_{0}\right)^{p^{*}}} \int_{r}^{\infty}\left(\frac{r}{x}\right)^{p(x)} \sigma w(x) d x
$$

and consequently

$$
\frac{1}{\left(c \lambda_{0}\right)^{p^{*}}} \int_{r}^{\infty}\left(\frac{r}{x}\right)^{p(x)} \sigma w(x) d x \leq 1 \leq \frac{1}{\lambda_{0}^{p^{*}}} \int_{0}^{r} \sigma w(x) d x
$$

Hence $w \in B_{p(x)}$ with constant $c^{p^{*}}$.
$(\mathrm{C}) \Rightarrow(\mathrm{A})$. This is contained in Theorem 3.

References

[1] M. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735.
[2] S. Boza and J. Soria, Weighted Hardy modular inequalities in variable L^{p} spaces for decreasing functions, J. Math. Anal. Appl. 348 (2008), 383-388.
[3] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238.
[4] —, 一, 一, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, to appear.
[5] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
[6] A. K. Lerner, On modular inequalities in variable L^{p} spaces, Arch. Math. (Basel) 85 (2005), 538-543.
[7] C. J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ. Mat. 35 (1991), 429-447.

Department of Mathematics
Purdue University
West Lafayette, IN 47907-1395, U.S.A.
E-mail: neug@math.purdue.edu

Received July 11, 2008
Revised version December 17, 2008

[^0]: 2000 Mathematics Subject Classification: Primary 42B25.
 Key words and phrases: weights, Hardy operator, variable L^{p}.

