STUDIA MATHEMATICA 192 (1) (2009)

Weighted variable L^p integral inequalities for the maximal operator on non-increasing functions

by

C. J. NEUGEBAUER (West Lafayette, IN)

Abstract. Let B_p be the Ariño-Muckenhoupt weight class which controls the weighted L^p -norm inequalities for the Hardy operator on non-increasing functions. We replace the constant p by a function p(x) and examine the associated $L^{p(x)}$ -norm inequalities of the Hardy operator.

1. Introduction. The weights $w : \mathbb{R}_+ \to \mathbb{R}_+$ for which the Hardy operator

$$Hf(x) = \frac{1}{x} \int_{0}^{x} f(t) dt$$

on non-negative non-increasing functions f (we write simply $f \downarrow$) is bounded:

(1)
$$\int_{0}^{\infty} Hf(x)^{p}w(x) \, dx \le c_* \int_{0}^{\infty} f(x)^{p}w(x) \, dx, \quad 1 \le p < \infty,$$

have been characterized by Ariño and Muckenhoupt [1] by the condition

(2)
$$w \in B_p: \quad \int_r^\infty \left(\frac{r}{x}\right)^p w(x) \, dx \le c \int_0^r w(x) \, dx.$$

A different proof of $(1) \Leftrightarrow (2)$ was given by me in [7] where it is also apparent that in the implication $(2) \Rightarrow (1)$ the constant c_* can be taken to be $(c+1)^p$. For $(1) \Rightarrow (2)$ one uses the test function $f = \chi_{[0,r]}$ and (2) follows with $c = c_*$. We also note that for $f \downarrow$, Hf(x) equals Mf(x), the Hardy–Littlewood maximal function.

In the past few years a great deal of attention has been paid to the problem of the boundedness of M on variable L^p -spaces. If $p : \mathbb{R}^n \to [1, \infty)$ and $w : \mathbb{R}^n \to \mathbb{R}_+$, let $L^{p(x)}(w)$ be the collection of all functions $f : \mathbb{R}^n \to \mathbb{R}$

2000 Mathematics Subject Classification: Primary 42B25.

Key words and phrases: weights, Hardy operator, variable L^p .

DOI: 10.4064/sm192-1-5

such that for some $\lambda > 0$,

$$\int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} w(x) \, dx < \infty,$$

equipped with the Luxemburg norm

$$||f||_{p(x),w} = \inf\left\{\lambda > 0: \int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} w(x) \, dx \le 1\right\}.$$

This makes $L^{p(x)}(w)$ into a Banach space; for the properties of these spaces see [5]. Cruz-Uribe, Fiorenza, and myself have shown in [3] that for $w \equiv 1$,

(3)
$$||Mf||_{p(x)} \le c ||f||_{p(x)}$$

provided $1 < p_* \le p(x) < \infty$, and

$$|p(x) - p(y)| \le \begin{cases} \frac{c}{\log \frac{1}{|x-y|}}, & |x-y| \le 1/2, \\ \frac{c}{\log(e+|x|)}, & |y| \ge |x|, \end{cases}$$

and that the condition on p(x) is nearly sharp (see [3] for further details and additional references).

However, a characterization of the weights $w : \mathbb{R}^n \to \mathbb{R}_+$ so that

(B)
$$||Mf||_{p(x),w} \le c||f||_{p(x),w}$$

is not known. Some necessary and some sufficient conditions are contained in a forthcoming paper [4]. We are therefore led to the "easier" problem of characterizing (B) for $f \downarrow$ since from (2) the natural condition appears to be

(C)
$$w \in B_{p(x)}: \quad \int_{r}^{\infty} \left(\frac{r}{x}\right)^{p(x)} w(x) \, dx \le c \int_{0}^{r} w(x) \, dx.$$

The primary purpose of this paper is to establish for certain $p : \mathbb{R}_+ \to [1, \infty)$ a connection between (B) and (C), and the related integral inequality

(A)
$$\int_{0}^{\infty} Mf(x)^{p(x)}w(x) \, dx \le c \int_{0}^{\infty} f(x)^{p(x)}w(x) \, dx, \quad f \downarrow$$

REMARK. If the hypothesis $f \downarrow$ is omitted in (A) and $0 < p(x) < p_+ < \infty$, then p(x) is constant. This surprising result is due to A. K. Lerner [6] for $w \equiv 1$. The same proof, with only minor changes, works for positive w(x). A related result is contained in [2] where a variable exponent $B_{p(x)}$ is introduced. It is the same as (C) except for an additional parameter s > 0:

$$\int_{r}^{\infty} \left(\frac{r}{sx}\right)^{p(x)} w(x) \, dx \le c \int_{0}^{r} \frac{w(x)}{s^{p(x)}} \, dx.$$

The main result is that this condition is equivalent to (A) and to $p(x) = p_0$, a constant, if the oscillation of p(x) at x = 0 is zero, and then $w \in B_{p_0}$.

It turns out that there is a relationship between (A), (B), and (C) under some natural restrictions which are illustrated by the following examples.

(1) Let $p(x) = 4\chi_{[0,1]}(x) + 2\chi_{[1,\infty)}(x)$. Then $w(x) \equiv 1$ is in $B_{p(x)}$. Let $f_{\alpha} = \alpha \chi_{[0,1]}$. Then

$$\int_{0}^{\infty} f_{\alpha}(x)^{p(x)} dx = \alpha^{4} \quad \text{and} \quad \int_{0}^{\infty} H f_{\alpha}(x)^{p(x)} dx = \alpha^{4} + \alpha^{2},$$

and (A) cannot hold as $\alpha \to 0$. This explains the restriction that p(x) be non-decreasing (written $p\uparrow$).

(2) Let now $p(x) = 2\chi_{[0,1]}(x) + 4\chi_{[1,\infty)}(x)$. Again $w(x) \equiv 1$ is in $B_{p(x)}$. If $f_N = N\chi_{[0,1]}$, then

$$\int_{0}^{\infty} f(x)^{p(x)} dx = N^2 \quad \text{and} \quad \int_{0}^{\infty} Hf_N(x)^{p(x)} dx = N^2 + N^4/3,$$

and (A) cannot hold as $N \to \infty$. This shows that in addition to $f \downarrow$ we must assume that $0 \leq f(x) \leq 1$.

2. The inequality (A). Let w be a weight: $w \in L^1_{loc}(\mathbb{R}_+)$ and non-negative, and let $p: \mathbb{R}_+ \to [1, \infty)$.

LEMMA 1. $w \in B_{p(x)}$ if and only if there exists $0 < c < \infty$ such that for every $r \downarrow$,

$$\int_{0}^{\infty} \chi^{r(x)}(x) \left(\frac{r(x)}{x}\right)^{p(x)} w(x) \, dx \le c \int_{0}^{\infty} \chi_{r(x)}(x) w(x) \, dx$$

where for a > 0, $\chi_a(x) = \chi_{[0,a]}(x)$ and $\chi^a(x) = \chi_{[a,\infty)}(x)$.

Proof. We only have to show that $w \in B_{p(x)}$ implies the condition with $r \downarrow$, since the reverse follows by taking r(x) = r.

Since y = r(x) is non-increasing and y = x is increasing there is a unique point i_r such that

$$(r(x) - x)(i_r - x) > 0, \quad x \neq i_r.$$

In fact, $i_r = \sup\{x : r(x) > x\} = \inf\{x : r(x) < x\}.$

The right side is

$$R = \int_{\{x: x < r(x)\}} w(x) \, dx = \int_{0}^{i_{r}} w(x) \, dx,$$

and the left side is

$$L = \int_{\{x: r(x) < x\}} \left(\frac{r(x)}{x}\right)^{p(x)} w(x) \, dx \le \int_{i_r}^{\infty} \left(\frac{i_r}{x}\right)^{p(x)} w(x) \, dx,$$

since for $x \ge t > i_r$ we have $r(x) \le r(t) \le t$ and thus $r(x) \le i_r$.

Let \mathcal{D} be the collection of all $f \downarrow$ with $f(0+) \leq 1$, and let

$$Hf(x) = \frac{1}{x} \int_{0}^{x} f(t) dt = Mf(x)$$

be the Hardy operator for $f \in \mathcal{D}$. Then H maps \mathcal{D} into \mathcal{D} .

THEOREM 2. Let $p : \mathbb{R}_+ \to [1, \infty)$ and $p\uparrow$. Then there exists a constant $0 < c < \infty$ such that

$$\int_{0}^{\infty} Hf(x)^{p(x)} w(x) \, dx \le c \int_{0}^{\infty} f(x) Hf(x)^{p(x)-1} w(x) \, dx$$

for every $f \in \mathcal{D}$ if and only if $w \in B_{p(x)}$.

Proof. The choice $f = \chi_r$ gives one implication, and for the reverse direction we only need to prove the integral inequality for functions in \mathcal{D} supported in [0, K], continuous and strictly decreasing on [0, K], with a constant c depending only upon the $B_{p(x)}$ -constant of w. An arbitrary $f \in \mathcal{D}$ can be approximated by such functions so that the integral inequality is obtained as a limit.

Let $r : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, t = r(x, y), be decreasing in x for each y and continuous and strictly decreasing in y for each x. For a fixed x we denote by $r^{-1}(x,t)$ the inverse of t = r(x,y), i.e. $t = r(x,r^{-1}(x,t))$. Then $r^{-1}(x,t)$ is decreasing in x for each t and continuous and strictly decreasing in t for each x. Later we will choose

$$r^{-1}(x,t) = f(t)Hf(t)^{p(x)-1}$$

From Lemma 1 for each r(x, y) as above we have

$$\int_{0}^{\infty} \chi^{r(x,y)}(x) \left(\frac{r(x,y)}{x}\right)^{p(x)} w(x) \, dx \le c \int_{0}^{\infty} \chi_{r(x,y)}(x) w(x) \, dx$$

We integrate this in y and get

$$\int_{0}^{\infty} \int_{0}^{\infty} \chi^{r(x,y)}(x) \left(\frac{r(x,y)}{x}\right)^{p(x)} w(x) \, dx \, dy \le c \int_{0}^{\infty} \int_{0}^{\infty} \chi_{r(x,y)}(x) w(x) \, dx \, dy.$$

We interchange the order of integration and then the left side equals

$$L = \int_{0}^{\infty} \int_{\{y: r(x,y) \le x\}} r(x,y)^{p(x)} \, dy \, \frac{w(x)}{x^{p(x)}} \, dx.$$

If
$$r^{-1}(x,x) = i_r(x)$$
, then $\{y : r(x,y) \le x\} = [i_r(x), \infty)$. Thus

$$L = \int_0^\infty \int_{i_r(x)}^\infty r(x,y)^{p(x)} dy \frac{w(x)}{x^{p(x)}} dx.$$

The inner integral is

$$\int_{i_r(x)}^{\infty} r(x,y)^{p(x)} \, dy = \int_{0}^{x^{p(x)}} r^{-1}(x,t^{1/p(x)}) \, dt - x^{p(x)} i_r(x).$$

The substitution $t = u^{p(x)}$ gives

$$\int_{i_r(x)}^{\infty} r(x,y)^{p(x)} \, dy = \int_{0}^{x} r^{-1}(x,u) p(x) u^{p(x)-1} \, du - x^{p(x)} i_r(x).$$

Now we choose $r^{-1}(x, u) = f(u)Hf(u)^{p(x)-1}$. Then

$$\int_{i_r(x)}^{\infty} r(x,y)^{p(x)} dy = \int_{0}^{x} f(u) \left(\int_{0}^{u} f(\tau) d\tau \right)^{p(x)-1} p(x) du - x^{p(x)} i_r(x)$$
$$= \left(\int_{0}^{x} f(t) dt \right)^{p(x)} - x^{p(x)} i_r(x).$$

Hence

$$L = \int_{0}^{\infty} Hf(x)^{p(x)} w(x) \, dx - \int_{0}^{\infty} i_r(x) w(x) \, dx.$$

The right side is

$$R = c \int_0^\infty \int_{\{y: r(x,y) \ge x\}} w(x) \, dy \, dx = c \int_0^\infty i_r(x) w(x) \, dx$$

We combine the above estimates and get

$$\int_{0}^{\infty} Hf(x)^{p(x)} w(x) \, dx \le (c+1) \int_{0}^{\infty} i_r(x) w(x) \, dx$$

The proof is completed now by noting that

$$i_r(x) = r^{-1}(x, x) = f(x)Hf(x)^{p(x)-1}.$$

Note moreover that, if c_1 equals the $B_{p(x)}$ -constant of w, then the constant c of the integral inequality is at most $c_1 + 1$.

THEOREM 3. Let $p : \mathbb{R}_+ \to [1, \infty)$, $p\uparrow$, and $1 \le p(x) \le p^* < \infty$. Then there is a constant $0 < c_* < \infty$ such that

$$\int_{0}^{\infty} Hf(x)^{p(x)}w(x)\,dx \le c_* \int_{0}^{\infty} f(x)^{p(x)}w(x)\,dx, \quad f \in \mathcal{D},$$

if and only if $w \in B_{p(x)}$.

C. J. Neugebauer

Proof. The choice $f = \chi_r$ proves the necessity. For the sufficiency we first note that $w_N = w\chi_N$ is in $B_{p(x)}$ with the same constant and hence, by Theorem 2,

$$\int_{0}^{\infty} Hf(x)^{p(x)} w_N(x) \, dx \le c_0 \int_{0}^{\infty} f(x)^{p(x)} Hf(x)^{p(x)-1} w_N(x) \, dx, \quad f \in \mathcal{D},$$

where $c_0 > 1$ does not depend on N. (Below, we need the integrals to be finite and that is the reason for the restriction to w_N). We now fix $\lambda_0 > c_0 > 1$. Then $f/\lambda_0 \in \mathcal{D}$ if $f \in \mathcal{D}$. Replace f by f/λ_0 in the above inequality and use Young's inequality to obtain

$$\int_{0}^{\infty} \left(\frac{Hf(x)}{\lambda_{0}}\right)^{p(x)} w_{N}(x) dx \leq \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty} f(x)H(f/\lambda_{0})(x)^{p(x)-1} w_{N}(x) dx$$
$$\leq \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty} \left(\frac{f(x)^{p(x)}}{p(x)} + \frac{H(f/\lambda_{0})(x)^{p(x)}}{q(x)}\right) w_{N}(x) dx$$
$$\leq \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty} f(x)^{p(x)} w_{N}(x) dx + \frac{c_{0}}{\lambda_{0}} \int_{0}^{\infty} \left(\frac{Hf(x)}{\lambda_{0}}\right)^{p(x)} w_{N}(x) dx.$$

where $p(x)^{-1} + q(x)^{-1} = 1$. From this we get

$$(1 - c_0/\lambda_0) \int_0^\infty \left(\frac{Hf(x)}{\lambda_0}\right)^{p(x)} w_N(x) \, dx \le \frac{c_0}{\lambda_0} \int_0^\infty f(x)^{p(x)} w_N(x) \, dx,$$

and the left side is

$$\geq \frac{\lambda_0 - c_0}{\lambda_0^{p^* + 1}} \int_0^\infty Hf(x)^{p(x)} w_N(x) \, dx.$$

Thus

$$\int_{0}^{\infty} Hf(x)^{p(x)} w_N(x) \, dx \le c_* \int_{0}^{\infty} f(x)^{p(x)} w_N(x) \, dx$$

where $c_* = \lambda_0^{p_*} c_0 / (\lambda_0 - c_0)$. Let $N \to \infty$ to complete the proof.

REMARK. The constant c_* can be chosen to depend only on the $B_{p(x)}$ constant c of w: in fact, if $\lambda_0 = 2c_0$, then $c_* = (2c_0)^{p^*} = (2(c+1))^{p^*}$.

3. The inequality (B)

THEOREM 4. Let $p : \mathbb{R}_+ \to [1, \infty)$ and $w : \mathbb{R}_+ \to \mathbb{R}_+$. Assume there exists a constant $1 \leq c_* < \infty$ such that

(A)
$$\int_{0}^{\infty} Hf(x)^{p(x)}w(x) \, dx \le c_* \int_{0}^{\infty} f(x)^{p(x)}w(x) \, dx, \quad f \in \mathcal{D}.$$

Then

(B)
$$||Hf||_{p(x),w} \le c_* ||f||_{p(x),w}$$

 $if \ either$

(i) $f \in \mathcal{D}$ and $||f||_{p(x),w} \ge 1/c_*$, or (ii) f is non-increasing on \mathbb{R}_+ and $f(x)/||f||_{p(x),w} \in \mathcal{D}$.

Proof. (i) Since $c_* \ge 1$ we have

$$\begin{aligned} \|Hf\|_{p(x),w} &= \inf\left\{\lambda > 0: \int_{0}^{\infty} \left(\frac{Hf(x)}{\lambda}\right)^{p(x)} w(x) \, dx \le 1\right\} \\ &\leq \inf\left\{\lambda \ge 1: \int_{0}^{\infty} \left(\frac{Hf(x)}{\lambda}\right)^{p(x)} w(x) \, dx \le 1\right\} \\ &\leq \inf\left\{\lambda \ge 1: c_* \int_{0}^{\infty} \left(\frac{f(x)}{\lambda}\right)^{p(x)} w(x) \, dx \le 1\right\} \\ &\leq \inf\left\{\lambda \ge 1: \int_{0}^{\infty} \left(\frac{f(x)}{\lambda/c_*}\right)^{p(x)} w(x) \, dx \le 1\right\} \\ &= \inf\left\{c_*\sigma \ge 1: \int_{0}^{\infty} \left(\frac{f(x)}{\sigma}\right)^{p(x)} w(x) \, dx \le 1\right\} \\ &= c_* \inf\left\{\sigma \ge 1/c_*: \int_{0}^{\infty} \left(\frac{f(x)}{\sigma}\right)^{p(x)} w(x) \, dx \le 1\right\} \le c_* \|f\|_{p(x),w}. \end{aligned}$$
(ii) Let $q(x) = f(x)/\|f\|$ we have there is $a \in \mathcal{D}$ and $\|a\| < \infty = 1$

(ii) Let $g(x) = f(x)/||f||_{p(x),w}$. By hypothesis $g \in \mathcal{D}$ and $||g||_{p(x),w} = 1$. Hence

$$\int_{0}^{\infty} Hg(x)^{p(x)}w(x) \, dx \le c_* \int_{0}^{\infty} g(x)^{p(x)}w(x) \, dx \le c_*.$$

This implies $||Hf||_{p(x),w} \le c_* ||f||_{p(x),w}$.

REMARK. By Theorem 3 the hypothesis of Theorem 4 is satisfied if $1 \leq p(x) \leq p^* < \infty$, $p\uparrow$ and $w \in B_{p(x)}$. The constant c_* depends only on the $B_{p(x)}$ -constant of w.

EXAMPLE. We will now show that (i) of Theorem 4 does not imply the norm inequality (B) with a constant depending on the $B_{p(x)}$ -constant of wonly if the $L^{p(x)}(w)$ -norm of f is not bounded away from zero. Let 0 < a < 1and let $p_a(x) = 2\chi_a(x) + 4\chi^a(x)$. It is easily checked that $w(x) \equiv 1$ is in $B_{p_a(x)}$ with constant independent of a. Let $f = \chi_a$. Then

$$||f||_{p_a(x),w} = \inf\left\{\lambda > 0: \int_0^a \left(\frac{1}{\lambda}\right)^2 dx \le 1\right\} = a^{1/2},$$

and

$$||Hf||_{p_a(x),w} \ge \inf\left\{\lambda > 0: \int_a^\infty \left(\frac{a}{\lambda x}\right)^4 dx \le 1\right\} = \left(\frac{a}{3}\right)^{1/4}$$

Hence the norm inequality of Theorem 4 cannot hold with a constant independent of a.

4. The equivalence $(A) \Leftrightarrow (B) \Leftrightarrow (C)$. We need the following lemma.

LEMMA 5. Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ with $||f||_{p(x),w} > 0$, where $1 \le p(x) \le p^* < \infty$, and let $0 < a < \infty$. Then there exists $0 < \sigma < \infty$ such that $||f||_{p(x),\sigma w} = a$.

Proof. For $\sigma \geq 1$,

$$\int_{0}^{\infty} \left(\frac{f(x)}{\lambda}\right)^{p(x)} \sigma w(x) \, dx \ge \int_{0}^{\infty} \left(\frac{f(x)}{\lambda/\sigma^{1/p^*}}\right)^{p(x)} w(x) \, dx$$

which implies that $||f||_{p(x),\sigma w} \ge \sigma^{1/p^*} ||f||_{p(x),w}$. Hence the set $S_a = \{\sigma > 0 : ||f||_{p(x),\sigma w} \ge a\}$ is not empty. Let $\sigma_0 = \inf\{\sigma : \sigma \in S_a\}$. Then a straightforward argument shows that $||f||_{p(x),\sigma_0 w} = a$.

Since the conditions (A) and (C) remain unchanged when w(x) is replaced by $\sigma w(x)$, $0 < \sigma < \infty$, the condition (B) has to be modified to reflect this.

THEOREM 6. The following statements are equivalent for $1 \le p(x) \le p^* < \infty$, $p\uparrow$, and $w : \mathbb{R}_+ \to \mathbb{R}_+$.

• There exists $1 \le c_* < \infty$ such that

(A)
$$\int_{0}^{\infty} Hf(x)^{p(x)}w(x) \, dx \le c_* \int_{0}^{\infty} f(x)^{p(x)}w(x) \, dx, \quad f \in \mathcal{D}.$$

• For each $0 < \gamma \leq 1$ there is $1 \leq c_{\gamma} < \infty$ such that

(B)
$$\|Hf\|_{p(x),\sigma w} \le c_{\gamma} \|f\|_{p(x),\sigma w}$$

for every $f \in \mathcal{D}$ and every $0 < \sigma < \infty$ for which $||f||_{p(x),\sigma w} \ge \gamma$.

• We have

(C)
$$w \in B_{p(x)}$$

Proof. (A) \Rightarrow (B). Let $0 < \gamma \leq 1$ and let $c_{\gamma} = \max(c_*, 1/\gamma)$. Then (A) holds with c_* replaced by c_{γ} and w(x) replaced by $\sigma w(x)$. Theorem 4 gives (B).

 $(B) \Rightarrow (C)$. We have to show that

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p(x)} w(x) \, dx \le c \int_{0}^{r} w(x) \, dx.$$

Let $f = \chi_r$. Then $f \in \mathcal{D}$. Fix $0 < \gamma < 1$ and then by Lemma 5 we can choose $0 < \sigma < \infty$ such that

$$\gamma \le \|f\|_{p(x),\sigma w} \equiv \lambda_0 \le 1$$

Then

$$\int_{0}^{r} \frac{\sigma w(x)}{\lambda_0^{p(x)}} \, dx = 1,$$

which implies, since $\lambda_0 \leq 1$, that

$$\int_{0}^{r} \sigma w(x) \, dx \ge \lambda_0^{p^*}.$$

Let $c = \max(c_{\gamma}, 1/\gamma)$. Since $||Hf||_{p(x),\sigma w} \leq c\lambda_0$, we have

$$\int_{0}^{\infty} \left(\frac{Hf(x)}{c\lambda_0}\right)^{p(x)} \sigma w(x) \, dx \le 1.$$

Because $c\lambda_0 \geq 1$, the left side is

$$\geq \frac{1}{(c\lambda_0)^{p^*}} \int_r^\infty \left(\frac{r}{x}\right)^{p(x)} \sigma w(x) \, dx,$$

and consequently

$$\frac{1}{(c\lambda_0)^{p^*}} \int\limits_r^\infty \left(\frac{r}{x}\right)^{p(x)} \sigma w(x) \, dx \le 1 \le \frac{1}{\lambda_0^{p^*}} \int\limits_0^r \sigma w(x) \, dx.$$

Hence $w \in B_{p(x)}$ with constant c^{p^*} .

(C) \Rightarrow (A). This is contained in Theorem 3.

References

- M. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735.
- [2] S. Boza and J. Soria, Weighted Hardy modular inequalities in variable L^p spaces for decreasing functions, J. Math. Anal. Appl. 348 (2008), 383–388.
- [3] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable L^p spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238.
- [4] —, —, —, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, to appear.
- [5] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), 592–618.

C. J. Neugebauer

- [6] A. K. Lerner, On modular inequalities in variable L^p spaces, Arch. Math. (Basel) 85 (2005), 538–543.
- [7] C. J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ. Mat. 35 (1991), 429–447.

Department of Mathematics Purdue University West Lafayette, IN 47907-1395, U.S.A. E-mail: neug@math.purdue.edu

> Received July 11, 2008 Revised version December 17, 2008 (6383)

60