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Invertibility in tensor products of Q-algebras

by

Seán Dineen (Dublin) and Pablo Sevilla-Peris (Valencia)

Abstract. We consider, using various tensor norms, the completed tensor product of
two unital lmc algebras one of which is commutative. Our main result shows that when
the tensor product of two Q-algebras is an lmc algebra, then it is a Q-algebra if and only
if pointwise invertibility implies invertibility (as in the Gelfand theory). This is always the
case for Fréchet algebras.

In 1973 L. Waelbroeck [26] introduced the concept of Banach-valued
spectrum for commutative unital Banach algebras using the projective ten-
sor product. This concept has been extended by various authors in the last
twenty five years and more recently in a systematic fashion by S. Dineen,
R. E. Harte and C. Taylor [9]–[11]. These authors considered arbitrary
tensor norms and arbitrary unital Banach algebras. In this article we ex-
tend the scope of this investigation to wider collections of algebras. Initially
we considered arbitrary locally multiplicatively convex (lmc) algebras, but
as our investigations proceeded we found that the main results centered
around Fréchet and Q-algebras. For these overlapping collections we prove
{pointwise invertibility} ⇒ {invertibility} results using different methods.
In the Fréchet algebra case we use techniques due to R. Arens [3], and
for the Q-algebra case we develop and apply a vector-valued spectral the-
ory following [9]–[11]. By combining the two cases we obtain necessary and
sufficient conditions under which certain tensor products of Q-algebras are
Q-algebras.

In §1 we define uniform tensor norms and topologies, lmc algebras and
Q-algebras and give a number of examples. In §2 we define a number of
vector-valued spectra and discuss their basic properties. We specialize to
algebra-valued spectra in §3 and prove invertibility results. In §4 we use the
Gelfand transform to obtain further criteria for invertibility.
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1. Uniform tensor norms and Q-algebras

Definition 1.1. A method τ of assigning a norm ‖ ‖τ on E⊗F to every
pair of normed linear spaces is called a uniform tensor norm if the following
hold:

(1) for normed linear spaces E, F , ‖x ⊗ y‖τ = ‖x‖ · ‖y‖ for x ∈ E and
y ∈ F ,

(2) for normed linear spaces Ei, Fi, i = 1, 2, and Ti ∈ L(Ei;Fi) (con-
tinuous linear mappings from Ei to Fi), i = 1, 2, we have T1 ⊗ T2 ∈
L(E1 ⊗τ E2;F1 ⊗τ F2) and

‖T1 ⊗ T2‖ ≤ ‖T1‖ · ‖T2‖.
A uniform tensor norm satisfies the projective limit condition if for any

set of projective limits

lim←−
i

Ei = lim←−
j

Fj , lim←−
α

Gα = lim←−
β

Hβ

of normed linear spaces we have

lim←−
i,α

(Ei ⊗τ Gα) = lim←−
j,β

(Fj ⊗τ Hβ).

When the projective limit condition is satisfied we let

(lim←−
i

Ei)⊗τ (lim←−
α

Gα) = lim←−
i,α

(Ei ⊗τ Gα).

For locally convex spaces we let E ⊗̂τ F denote the completion of
E ⊗τ F . The projective (π) and injective (ε) norms are uniform tensor norms
which satisfy the projective limit condition. Further examples are given by
the Lapresté tensor norms [7, §12.5 and §12.7].

If τ is a uniform tensor norm which satisfies the projective limit condition
then

(1) for any pair of locally convex spaces the canonical bilinear mapping
E × F → E ⊗τ F is separately continuous,

(2) if Ei, Fi, i = 1, 2, are locally convex spaces and Mi ⊆ L(Ei;Fi),
i = 1, 2, are equicontinuous sets, then M1 ⊗M2 ⊆ L(E1 ⊗τ E2;F1 ⊗τ F2) is
an equicontinuous set.

All algebras considered are over the field of complex numbers. An algebra
A which is also a locally convex space is a locally multiplicatively convex
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(lmc) algebra if its topology is generated by a family (pα)α∈Γ of continuous
seminorms such that

pα(x · y) ≤ pα(x) · pα(y)(1)

for all α ∈ Γ and all x, y ∈ A.
If A is a complete lmc algebra then there exists a collection (Aα)α of

Banach algebras and continuous homomorphisms πα : A → Aα such that
πα(A) is dense in Aα and A = lim←−α(Aα, πα) (a projective limit representa-
tion such that πα(A) is dense in Aα for all α is called reduced).

An algebra with identity 1A is called a unital algebra. We shall also
use 1A to denote the identity operator on A, i.e. 1A(x) = x for all x ∈ A.
A complete unital lmc algebra is a Q-algebra if the set Ainv of invertible
elements in A is open (a more general definition of Q-algebra is given in
[20] but we have used the above for convenience). This is the case if and
only if the identity has a neighbourhood consisting of invertible elements.
The spectrum of A, M(A) (the set of all continuous non-zero C-valued
homomorphisms on A), is a weak∗-compact subset of A′ when A is a Q-
algebra ([27, Proposition 10]). All unital Banach algebras are Q-algebras. An
important classical example of a Q-algebra which is not a Banach algebra
is the space C∞[0, 1] endowed with the topology of uniform convergence of
functions and all their derivatives over [0, 1].

We now connect the concepts of tensor product and lmc algebra. If A
and B are algebras then universal properties of the tensor product show that
the product

(a1 ⊗ b1) · (a2 ⊗ b2) := a1a2 ⊗ b1b2
for ai ∈ A and bi ∈ B extends to define a product on the algebra A ⊗ B
([9, 20]).

Definition 1.2. IfA and B are complete lmc algebras and τ is a uniform
tensor norm which satisfies the projective limit condition, then we say that
A ⊗̂τ B is representable if there exist reduced projective Banach algebra
representationsA = lim←−α(Aα, πα) and B = lim←−β(Bβ, %β) such thatAα ⊗̂τ Bβ
is a Banach algebra for all α and β.

If A ⊗̂τ B is representable then, by the projective limit condition,
A ⊗̂τ B = lim←−α,β(Aα ⊗̂τ Bβ, πα ⊗ %β) is a complete lmc algebra.

Results in [9] show that A ⊗̂π B is representable for any pair of lmc
algebras A and B, and A ⊗̂ε B is representable if there exists a reduced
projective limit representationA = lim←−α(Aα, πα) where eachAα is a uniform
Banach algebra and B is an lmc algebra. Further examples can be obtained
using Lapresté’s tensor norms [7, §12.5 and §12.7].

We call a complete lmc algebra whose topology is generated by a count-
able set of seminorms a Fréchet algebra; a more general definition is given
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in [20]. Thus every Fréchet algebra has a countable reduced projective repre-
sentation by Banach algebras and continuous homomorphisms. An element a
in a unital algebra is left invertible if there exists b ∈ A such that b ·a = 1A.
The following result for unital lmc algebras is due to M. Fragoulopoulou
([13, Lemma 6.8] and [14, Proposition 4. 13]). For the sake of completeness
we include a proof for Fréchet algebras, a case that we require later.

Proposition 1.3. If A and B are unital Fréchet algebras with A com-
mutative, τ is a uniform tensor norm that satisfies the projective limit con-
dition and A ⊗̂τ B is representable then the following are equivalent for
a ∈ A ⊗̂τ B:

(1) a is left invertible in A ⊗̂τ B.
(2) (h⊗ IB)(a) is left invertible for all h ∈M(A).

Proof. Since algebra homomorphisms map left invertibles to left invert-
ibles we clearly have (1)⇒(2).

Now suppose that (2) is satisfied. By our hypothesis we have A =
lim←−n(An, πn), B = lim←−n(Bn, %n) and A ⊗̂τ B = lim←−n(An ⊗̂τ Bn, πn ⊗ %n)
where each An ⊗̂τ Bn is a Banach algebra and πn ⊗ %n(A ⊗̂τ B) is dense in
An ⊗̂τ Bn.

If hn ∈M(An) then hn ◦ πn ∈M(A) and, by (2), ((hn ◦ πn)⊗ IB)(a) is
left invertible in B. Hence %n((hn ◦ πn) ⊗ IB(a)) is left invertible in Bn. By
first considering elements of A⊗ B and then using continuity we see that

%n((hn ◦ πn)⊗ IB(a)) = (hn ⊗ IB)(πn ⊗ %n(a)).

By [9, Proposition 20], πn ⊗ %n(a) is left invertible in An ⊗̂τ Bn, and by [3,
Theorem 4.2], a is left invertible in A ⊗̂τ B.

Example 1.4. Let X be a completely regular hemicompact kR-space
(see [16, Chapter 3], [20, Theorem 1.2, p. 223]). Then C(X), the complex-
valued functions on X endowed with the compact open topology, is a unital
Fréchet algebra and M(C(X)) can be identified with point evaluations at
points of X ([16, 4.1.7]). If B is unital Fréchet algebra then C(X,B) ∼=
C(X) ⊗̂ε B ([18, 16.6.3]). If δx is point evaluation at x ∈ X then, by the above
identification δx ⊗ IB(f) = f(x) for all f ∈ C(X,B). By Proposition 1.3,
f ∈ C(X,B) is left invertible if and only if f(x) is left invertible in B for all
x ∈ X. This result is a special case of [8, Proposition 1] due to S. Dierolf
and K. Aye Aye.

We remark that the left inverse of an element of an algebra is not nec-
essarily unique and thus this result says that we may make a continuous
selection of left inverses. The same result is true for right inverses and com-
bining these two cases we obtain the result for inverses. However, the result
for inverses is trivial since f−1(x) := (f(x))−1 defines a continuous inverse.
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Example 1.5. Let U denote a connected pseudo-convex Riemann do-
main over E ∼= F ′c, where F ′c is endowed with the compact open topol-
ogy and F is a Fréchet space with the approximation property. Results by
J. Mujica [23] and M. Schottenloher [24] show that (H(U), τ0) is a Fréchet
space and M(H(U), τ0) = U (via point evaluations). Note that if F is sepa-
rable then U is a hemicompact topological space but, in general, U will not
be hemicompact. We have

(H(U,B), τ0) ∼= (H(U), τ0) ⊗̂ε B
for any unital Banach algebra B ([12]). Using the method of the previous
example and Proposition 1.3 we see that if f ∈ H(U,B) is left invertible at
each point, i.e. if f(z) ∈ B is left invertible for all z ∈ U , then there exists
g ∈ H(U,B) such that g(z)f(z) = 1B (identity on B) for all z ∈ U . This
result is due to G. Allan [1], [2] when E is finite-dimensional. An example in
[6] shows that the pseudo-convexity condition is necessary. Connectedness
can be removed by considering each connected component separately.

2. Vector-valued spectra. We require three different left spectra in
this article. For the reader’s convenience we collect here the notation that
we shall subsequently use. If A is a unital lmc algebra, E is a locally convex
space and τ is a uniform tensor norm we let:

• σleft
H (a) denote the left joint Harte spectrum of a collection a := (ai)i∈I

⊆ A,
• σleft(a) denote the vector-valued left spectrum of a ∈ A ⊗̂τ E, and
• σleft
A (a) denote the (usual) left spectrum of a ∈ A.

In this section we develop a theory of vector-valued spectra similar to
that developed for Banach algebras in [9]–[11]. We use this theory to extend
Proposition 1.3 to Q-algebras in §3.

Definition 2.1. For a family a = (ai)i∈I ⊆ A, a unital lmc algebra, the
left joint Harte spectrum σleft

H (a) of a is the set of all (λi)i∈I ∈ CI such that

1A 6∈
{ ∑

i∈F⊆I
F finite

bi(ai − λi1A) : bi ∈ A
}
.

Note that the set of all finite sums above is the left ideal generated by
(ai)i∈I . When the family consists of just one element, the joint left spectrum
is the scalar left spectrum. If λ := (λi)i∈I ∈ CI then λ ∈ σleft

H (a) if and only
if (λj)j∈J ∈ σleft

H ((aj)j∈J) for each finite subset J of I. If the indexing set I is
a locally convex space E, then we can interpret a := (ax)x∈E as a mapping
a : E → A by letting a(x) = ax, and λ = (λx)x∈E as a mapping λ : E → C
by letting λ(x) = λx. Under certain conditions, properties of a as a mapping
are inherited by elements of the spectrum.
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Lemma 2.2. If A is a Q-algebra, a ∈ L(E;A) and λ ∈ σleft
H (a), then

λ ∈ E′. If E = B is an lmc algebra and a is a non-zero algebra homomor-
phism, then so also is λ ∈ σleft

H (a).

Proof. The algebraic properties follow from the proof of [9, Lemma 3].
It remains to show that λ is continuous. Let (xα)α ⊆ E and suppose xα → x
as α → ∞. If λ ∈ σleft

H (a) and λ(xα) 6→ λ(x) as α → ∞ then we can find
δ > 0 such that (on taking a subnet if necessary) |λ(xα) − λ(x)| ≥ δ for
all α. We have

(a(xα)−λ(xα)1A)− (a(x)−λ(x)1A) = (λ(x)−λ(xα))
(

a(xα)− a(x)
λ(x)− λ(xα)

+ 1A

)

for all α. Since A is a Q-algebra there exists a neighbourhood U of 0 such
that 1A + U ⊆ Ainv. For α sufficiently large

axα − ax
λ(x)− λ(xα)

∈ U

and hence (a(xα)−λ(xα)1A)−(a(x)−λ(x)1A) is invertible. This contradicts
the fact that λ ∈ σleft

H (a). Hence λ is continuous.
If a is an algebra homomorphism then so also is λ by [9, Lemma 3]. If

a 6= 0 then a(1B) = 1A and

1A ∈
{ ∑

i∈F⊆B
F finite

bia(i) : bi ∈ A
}

and λ ≡ 0 does not belong to σleft
H (a). This contradicts the fact that λ ∈

σleft
H (a) and completes the proof.

Definition 2.3. Let A be a unital lmc algebra, E a locally convex space
and let τ be a uniform tensor norm on A⊗ E. If a ∈ A ⊗̂τ E we define the
left vector spectrum σleft(a) of a to be σleft

H ({[1A ⊗ x′](a)}x′∈E′).
By Lemma 2.2,

σleft(a) =
{
x′′ ∈ E′′ :

1A 6=
∑

i∈F
F finite

bi([1A ⊗ x′i](a)− x′′(x′i)1A), bi ∈ A, x′i ∈ E′
}
.

We now prove results which allow us to rewrite σleft(a) in a more convenient
fashion. Let JE denote the canonical mapping from a locally convex space
into its bidual. The following result extends [9, Proposition 6] from unital
Banach algebras to Q-algebras.

Proposition 2.4. Let A be a Q-algebra, E a complete locally convex
space and τ a uniform tensor topology. If a ∈ A ⊗̂τ E and x′′ ∈ σleft(a)
then x′′ = JE(x) for some x ∈ E.
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Proof. If a ∈ A⊗ E then the mapping

x′ ∈ (E′, σ(E′, E)) 7→ [1A ⊗ x′](a) ∈ A
is easily seen to be continuous.

Let M denote a closed equicontinuous subset of E ′ and suppose (x′α)α ⊆
M converges in the σ(E′, E) topology to x′ ∈ M as α → ∞. Let p denote
a continuous seminorm on A and let ε > 0 be arbitrary. Since {1A} ⊗M ⊆
L(A ⊗̂τ E;A) is equicontinuous there exists a continuous seminorm q on
A ⊗̂τ E such that

sup
x′∈M

p([1A ⊗ x′](b)) ≤ q(b)(2)

for all b ∈ A ⊗̂τ E. Now choose b ∈ A ⊗ E such that q(a− b) < ε. Since b
is a finite tensor there exists α0 such that

p([1A ⊗ x′α](b)− [1A ⊗ x′](b)) < ε(3)

for all α ≥ α0. By (2) and (3),

p([1A⊗x′α](a)− [1A⊗x′](a)) ≤ p([1A⊗x′α](b)− [1A⊗x′](b))+2q(a−b) ≤ 3ε

for all α ≥ α0. Hence the mapping x′ ∈ E′ 7→ [1A ⊗ x′](a) is σ(E′, E)-
continuous on equicontinuous subsets of E ′.

Let x′′ ∈ σleft(a). Suppose (x′α)α is an equicontinuous net in E ′ which
converges to x′ ∈ E′ in the σ(E′, E) topology as α→∞. If x′′(x′α) does not
converge to x′′(x′), then, by taking a subnet if necessary, we can suppose
there exists δ > 0 such that |x′′(x′α) − x′′(x′)| > δ for all α. Since A is
a Q-algebra we can choose a convex balanced neighbourhood U of 0 such
that 1A + U ⊆ Ainv. Since x′ 7→ [1A ⊗ x′](a) is σ(E′, E)-continuous on
equicontinuous sets, there exists α0 such that

−[1A ⊗ (x′α − x′)](a) ∈ δU
for all α ≥ α0. Hence

[1A ⊗ (x′α − x′)](a)− x′′(x′α − x′)1A
= −x′′(x′α − x′)

(
1A−

[1A ⊗ (x′α − x′)](a)
x′′(x′α − x′)

)
∈ Ainv.

This contradicts the fact that x′′ ∈ σleft(a). Hence x′′ is σ(E′, E)-continuous
on equicontinuous sets of E ′, and Grothendieck’s completeness criterion [17,
Chapter 4, Section 11, Corollary 3] implies x′′ ∈ JE(x) for some x ∈ E.

Because of Proposition 2.4 we identify σleft(a) with a subset of E for any
a ∈ A ⊗̂τ E.

By first considering elements of A⊗ E and then using density and con-
tinuity we see that
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b([1A ⊗ x′](a)− x′(x)1A) = b([1A ⊗ x′](a)− [1A ⊗ x′](1A ⊗ x))

= b([1A ⊗ x′](a− 1A ⊗ x))

= [b⊗ x′](a− 1A ⊗ x)

for b ∈ A, x′ ∈ E′, x ∈ E and a ∈ A ⊗̂τ E. This allows us to rewrite σleft(a),
a ∈ A ⊗̂τ E for A a Q-algebra, E a complete locally convex space and τ a
uniform tensor norm, as follows:

(4) σleft(a)

=
{
x ∈ E : 1A 6∈

{ ∑

i∈F
F finite

ai([1A ⊗ x′i](a− 1A ⊗ x)) : ai ∈ A, xi ∈ E′
}}

= {x ∈ E : 1A 6= b · (a− 1A ⊗ x) for any b ∈ A⊗ E′}.
In (4), A ⊗ E′ acts on A ⊗ E by a linear extension of the action (a ⊗ x′) ·
(b ⊗ x) := x′(x)ab. This final description is similar in form to the classical
one.

In the commutative case we recover the definition of Waelbroeck [26].
This extends the Banach algebra result in [9, Proposition 7].

Proposition 2.5. Let A be a commutative Q-algebra, E a complete lo-
cally convex space and τ a uniform tensor norm. If a ∈ A ⊗̂τ E, then

σleft(a) = {[h⊗ IE ](a) : h ∈M(A)}.
Proof. Suppose x 6∈ σleft(a). Then there exists b ∈ A ⊗ E ′ such that

b · (a − 1A ⊗ x) = 1A. If h ∈ M(A) then by first considering elements in
A⊗E and a density argument we see that

h(b · a− 1A ⊗ x) = 1 = (h⊗ IE′(b))(h⊗ IE(a)− x).

Hence x 6= h⊗ IE(a) for any h ∈M(A) and h⊗ IE(a) ∈ σleft(a).
Conversely, if x ∈ σleft(a) then, as A is a Q-algebra and so all its maximal

ideals are closed ([22, p. 80]), there is h∈M(A) such that h(b · (a−1A⊗ x))
= 0 for all b ∈ A⊗ E′. In particular taking b = 1A ⊗ x′ we obtain

0 = h(1A ⊗ x′ · a− 1A ⊗ x) = x′(h⊗ IE(a)− x).

Since x′ was arbitrary the Hahn–Banach theorem implies [h ⊗ IE ](a) = x
and this completes the proof.

The following result generalizes [5, Proposition 2.3] to the non-commut-
ative setting.

Proposition 2.6. Let A = lim←−i(Ai, πi) be a reduced projective limit rep-
resentation of the Q-algebra A by complete unital lmc algebras Ai where each
πi is an algebra homomorphism, let E be a locally convex space and suppose
τ is a uniform tensor norm which satisfies the projective limit condition. If



Invertibility in tensor products of Q-algebras 277

a ∈ A ⊗̂τ E and ai = πi ⊗ IE(a) for all i ∈ I then

σleft(a) =
⋃

i∈I
σleft(ai).

Proof. If x 6∈ σleft(a) then there is b ∈ A⊗E ′ such that b · (a− 1A ⊗ x)
= 1A. By first considering elements of A ⊗ E and then using density and
continuity and the fact that the projective limit is reduced we obtain

1Ai = πi(1A) = πi(b · (a− 1A ⊗ x))

= (πi ⊗ IE′)(b) · (πi ⊗ IE(a)− πi(1A)⊗ x)

= (πi ⊗ IE′)(b) · (ai − 1Ai ⊗ x).

Since (πi ⊗ IE′)(b) ∈ Ai ⊗ E′ this implies x 6∈ σleft(ai) and
⋃

i∈I
σleft(ai) ⊆ σleft(a).

Now suppose x ∈ σleft(a). Let I denote the left ideal in A generated by
{(1A ⊗ x′) · (a − 1A ⊗ x)}x′∈E′ . Since A is a Q-algebra and x ∈ σleft(a) we
have 1A 6∈ I. By the Hahn–Banach theorem we can choose ψ ∈ A′ such
that ψ(1A) = 1 and ψ(I) = 0. By the projective limit representation there
exist i ∈ I and ψi ∈ A′i such that ψ = ψi ◦ πi. Since πi is an algebra
homomorphism,

ψi(1Ai) = ψi(πi(1A)) = ψ(1A) = 1.

Let Ii denote the left ideal in Ai generated by

{(1Ai ⊗ x′) · (ai − 1Ai ⊗ x)}x′∈E′ .
Since πi((1A ⊗ x′) · (a − 1A ⊗ x)) = (1Ai ⊗ x′) · (ai − 1Ai ⊗ x) we have
πi(I) ⊆ Ii and πi(I) ⊆ Ii. Since the projective limit representation of A
is reduced πi(A) is dense in Ai. Let bi ∈ Ai and suppose (bα)α ⊆ A and
πi(bα)→ bi as α→∞. If x′ ∈ E′ then

(bi ⊗ x′) · (ai − 1Ai ⊗ x) = lim
α

(πi(bα)⊗ x′) · (ai − 1Ai ⊗ x)

= lim
α
πi(bα ⊗ x′) · (ai − 1Ai ⊗ x)

and Ii ⊆ πi(I). Hence Ii = πi(I).
If w ∈ Ii then there exists (wβ)β ⊆ I such that w = limβ πi(wβ). Hence

ψi(w) = ψi(lim
β
πi(wβ)) = lim

β
ψi ◦ πi(wβ) = lim

β
ψ(wβ) = 0.

On the other hand ψi(1Ai) = 1. Hence Ii is a proper closed ideal in Ai. This
implies x ∈ σleft(ai) and completes the proof.

Our next example generalizes [3, Theorem 4.2] concerning invertibility
in a projective limit of algebras.
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Example 2.7. If A = lim←−iAi is a Q-algebra then A ⊗̂τ C ∼= A. There-
fore, λ 6∈ σleft(a ⊗ 1C) if and only if there is a finite sum, with ai ∈ A and
µi ∈ C, such that

1A =
n∑

j=1

aj([1A ⊗ µj](a⊗ 1C)− λµj1A)

=
n∑

j=1

aj(µja− µjλ1A) =
n∑

j=1

ajµj(a− λ1A)

= b(a− λ1A)

and this is equivalent to λ 6∈ σleft
A (a). Then σleft(a⊗ 1C) = σleft

A (a). If πi(a)
= ai then Proposition 2.6 implies

σleft
A (a) =

⋃

i∈I
σleft
Ai (ai).

Since a ∈ A is left invertible if and only if 0 6∈ σleft(a) =
⋃
i∈I σ

left
Ai (ai), this

is equivalent to 0 6∈ σleft
Ai (ai) for all i. Hence, a ∈ A is left invertible if and

only if every ai is left invertible in Ai.

3. Algebra-valued spectra. In this section we use the results in §2
with E an lmc algebra to obtain invertibility results. We consider a ∈ A ⊗̂τ B
where τ is a uniform tensor norm and we suppose that A ⊗̂τ B itself is an
lmc algebra.

To obtain our results we need to extend a number of Banach algebra
results in [9] to Q-algebras. The extensions are fairly straightforward, except
for the following lemma, which is used to extend [9, Proposition 11]. We
include the other results without proof. In the following lemma ∂A denotes
the boundary of the set A.

Lemma 3.1. Let A be a Q-algebra and let z ∈ ∂Ainv. Then there exists
a continuous multiplicative seminorm p on A and a net (zα)α ⊆ A such
that p(zα) = 1 for all α and

lim
α
p(zαz) = 0 = lim

α
p(zzα).

Proof. Since z ∈ ∂Ainv, there exists a net (rα)α ⊆ Ainv such that
limα rα = z. Since A is a Q-algebra there exist ε > 0 and a continuous
multiplicative seminorm p such that {a ∈ A : p(a − 1A) < ε} ⊆ Ainv.
Suppose (p(r−1

α ))α is bounded. Then

p(r−1
α (z − rα)) ≤ p(r−1

α )p(z − rα)→ 0.

Since r−1
α (z − rα) = r−1

α z − 1A we have r−1
α z ∈ Ainv for α sufficiently

large. Hence z = rα(r−1
α z) ∈ Ainv. Since A is a Q-algebra, Ainv is open
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and Ainv ∩ ∂Ainv = ∅. This is a contradiction and, by taking a subnet if
necessary, we may suppose limα p(r−1

α ) =∞.
If zα := r−1

α /p(r−1
α ) then p(zα) = 1 for all α. Moreover

zzα =
zr−1
α

p(r−1
α )

=
1A + zr−1

α − rαr−1
α

p(r−1
α )

=
1A

p(r−1
α )

+ (z − rα)zα

for all α. Hence

p(zzα) ≤ 1

p(r−1
α )

+ p(z − rα)p(zα)→ 0

as α→∞. In the same way p(zαz)→ 0 as α→∞.

We now state the remaining results we require (the proof of (1) requires
Lemma 3.1). The references are to the proofs for the Banach algebra cases.

[9, Proposition 11] Let (ai)i∈I and (bj)j∈J denote subsets of the Q-
algebra A. If aiak = akai and aibj = bjai for all i, k ∈ I and j ∈ J then

(1) πJ(σleft
H ((ai)i∈I , (bj)j∈J)) = σleft

H ((bj)j∈J)

(πJ denotes the usual projection).

[9, Proposition 13, Lemma 14] Let A be a unital commutative lmc alge-
bra, B a unital lmc algebra and τ a uniform tensor norm such that A ⊗̂τ B
is an lmc algebra. If a ∈ A ⊗̂τ B, µ ∈ C and h ∈ M(A) then the ideals
generated by

(2) {[(a− h(a)1A)⊗ 1B]a∈A, a− µ(1A ⊗ 1B)}
and

{[(a− h(a)1A)⊗ 1B]a∈A, 1A ⊗ ([h⊗ IB](a)− µ1B)}
coincide.

If (ai)i∈I ⊆ A, (bj)j∈J ⊆ B then

(3) σleft
H ((ai ⊗ 1B)i∈I , (1A ⊗ bj)j∈J) = σleft

H ((ai)i∈I)× σleft
H ((bj)j∈J).

Proposition 3.2. Let A be a commutative unital lmc algebra, B a uni-
tal lmc algebra and τ a uniform tensor norm such that A ⊗̂τ B is a Q-
algebra. If a ∈ A ⊗̂τ B then

σleft
A⊗̂τB(a) =

⋃

h∈M(A)

σleft
B ([h⊗ IB](a)).

Proof. Since h⊗IB is a non-zero algebra homomorphism for all h ∈M(A)
we have [h⊗ IB](1A ⊗ 1B) = 1B and

σleft
B ([h⊗ IB](a)) ⊆ σleft

A⊗̂τB(a).

Hence ⋃

h∈M(A)

σleft
B ([h⊗ IB](a)) ⊆ σleft

A⊗̂τB(a).
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Now suppose µ ∈ σleft
A⊗̂τB(a). Since the mapping A → A ⊗̂τ B given by

a 7→ a ⊗ 1B is a non-zero continuous algebra homomorphism Lemma 2.2
implies that each element of σleft

H ((a⊗ 1B)a∈A) belongs to M(A). Since A is
commutative, the system {(a⊗ 1B)a∈A, a} ⊆ A ⊗̂τ B satisfies the commuta-
tivity relations in (1). Hence by (1) there exists h ∈M(A) such that

((h(a))a∈A, µ) ∈ σleft
H ((a⊗ 1B)a∈A, a).

By (2) and (3),

((h(a))a∈A, µ) ∈ σleft
H ((a⊗ 1B)a∈A, 1A ⊗ ([h⊗ IB](a)))

= σleft
H ((a)a∈A)× σleft

B ([h⊗ IB](a)).

Hence µ ∈ σleft
B ([h⊗ IB](a)).

Proposition 3.2 generalizes part of [9, Proposition 20] from unital Banach
algebras to Q-algebras, and the remaining part is generalized in Proposition
4.5 below. Clearly Proposition 3.2 also holds for right spectra. Combining the
results for right and left spectra we obtain an analogous result for the usual
spectrum and recover a special case of results due to M. Fragoulopoulou [13,
Proposition 6.9] and [14, Proposition 4.13].

Remark 3.3. If A ⊗̂τ B is a Q-algebra then, since τ is a uniform tensor
norm, there exists a continuous multiplicative seminorm p on A such that
a ⊗ 1B ∈ (A ⊗̂τ B)inv for all a such that p(a − 1A) < 1. If b ∈ A ⊗̂τ B
satisfies

(a⊗ 1B)b = b(a⊗ 1B) = 1A ⊗ 1B

and ϕ ∈ B′ is chosen so that ϕ(1B) = 1 then, by density and continuity,

(1A ⊗ ϕ)((a⊗ 1B)b) = a(1A ⊗ ϕ)(b) = (1A ⊗ ϕ)(b)a = 1A

and {a ∈ A : p(a− 1A) < 1} ⊆ Ainv. On interchanging the roles of A and B
we thus see that if A ⊗̂τ B is a Q-algebra then so also are A and B. Our next
result shows that the converse is true if and only if pointwise invertibility
implies invertibility.

Theorem 3.4. If A is a commutative Q-algebra, B is a Q-algebra and
τ is a uniform tensor norm such that A ⊗̂τ B is an lmc algebra then the
following are equivalent :

(1) A ⊗̂τ B is a Q-algebra.
(2) If a ∈ A ⊗̂τ B then

σleft
A⊗̂τB(a) =

⋃

h∈M(A)

σleft
B ([h⊗ IB](a)).

Proof. We have (1)⇒(2) by Proposition 3.2. Suppose (2) holds. Since
A is a Q-algebra, M(A) is an equicontinuous subset of A′ [20, p. 187].
Hence there exists a continuous multiplicative seminorm p on A such that
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|h(a)| ≤ p(a) for all h ∈M(A) and all a ∈ A. Since B is a Q-algebra there
exists a continuous multiplicative seminorm q on B such that {1B + y :
q(y) < 1} ⊆ Binv.

Now suppose a ∈ A ⊗̂τ B and p⊗τ q(a) < 1. If h ∈M(A) then

[h⊗ IB](1A ⊗ 1B + a) = 1B + [h⊗ IB](a).

Next,

q([h⊗ IB](a)) = sup
ϕ∈B′
ϕ∈B◦q

|ϕ([h⊗ IB](a))| = sup
ϕ∈B′
ϕ∈B◦q

|[h⊗ ϕ](a)| ≤ p⊗τ q(a) < 1.

Hence 1B + [h⊗ IB](a) ∈ Binv and, by (2), a ∈ (A ⊗̂τ B)inv. Hence A ⊗̂τ B
is a Q-algebra.

The following result for the projective tensor product is due to H. A.
Smith [25, Theorem 3] and to A. Mallios [19, Proposition 4.2] and [20,
Lemma, p. 412] for more general tensor norms when A and B are both
commutative. Special cases whenA = C(K),K compact Hausdorff, andA =
C∞(X),X a finite-dimensional compact manifold, and B is non-commutative
are considered in [19, Lemma 2.1] and [15, Example 3.4].

Theorem 3.5. If A is a commutative Fréchet Q-algebra, B is a Fréchet
Q-algebra, and τ is a uniform tensor norm that satisfies the projective limit
condition and such that A ⊗̂τ B is a representable lmc algebra, then A ⊗̂τ B
is a Q-algebra.

Proof. By Proposition 1.3, condition (2) of Theorem 3.4 is satisfied.
Hence A ⊗̂τ B is a Q-algebra.

Examples can now be obtained by looking at our remarks after Definition
1.2. For instance A ⊗̂π B is a Q-algebra whenever A is a commutative
Fréchet Q-algebra and B is an arbitrary Fréchet Q-algebra.

4. The Gelfand transform

Definition 4.1. Let A be an lmc algebra, E a complete locally convex
space and τ a uniform tensor norm. For each a ∈ A ⊗̂τ E we define its
Gelfand transform:

â : M(A)→ E, â(h) = [h⊗ IE ](a).

We endow M(A) with the topology induced by σ(A′,A).

Proposition 4.2. Let A be a Q-algebra, E a complete locally convex
space and τ a uniform tensor norm. If a ∈ A ⊗̂τ E, then â ∈ C(M(A), E).

Proof. Suppose (hα)α ⊆ M(A) and hα → h as α → ∞. Let q be any
continuous seminorm on E and ε > 0 be arbitrary. Since A is a Q-algebra,
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M(A) ⊗ {IE} is an equicontinuous subset of L(A ⊗̂τ E;E). Hence we can
find a continuous seminorm p on A ⊗̂τ E such that

q([g ⊗ IE ](b)) ≤ p(b)(5)

for all b ∈ A ⊗̂τ E and all g ∈ M(A). If a :=
∑n

i=1 ai ⊗ xi ∈ A ⊗ E then
â(h) =

∑n
i=1 h(ai)xi is clearly continuous. If a is arbitrary we can choose

b ∈ A⊗ E such that p(a− b) < ε. Now choose α0 such that

q([hα ⊗ IE ](b)− [h⊗ IE ](b)) < ε

for all α ≥ α0. Then

q([hα ⊗ IE ](a)− [h⊗ IE ](a)) ≤ q([hα ⊗ IE ](b)− [h⊗ IE ](b))

+ q([(hα − h)⊗ IE ](b− a))

≤ ε+ 2p(a− b) ≤ 3ε.

Hence â ∈ C(M(A), E).

Definition 4.3. If A is a Q-algebra, E is a complete locally convex
space and τ is a uniform tensor norm, the Gelfand mapping ̂ : A ⊗̂τ E →
C(M(A), E) is defined by â(h) = [h⊗ IE ](a).

Proposition 4.4. If A is a Q-algebra, E is a complete locally convex
space and τ is a uniform tensor norm then the Gelfand mapping is a con-
tinuous linear mapping from A ⊗̂τ E into C(M(A), E). If B is a complete
lmc algebra and A ⊗̂τ B is an lmc algebra, then the Gelfand mapping is an
algebra homomorphism.

Proof. The Gelfand mapping is easily seen that to be linear. The esti-
mate (5) in the previous proposition shows that it is continuous. When B is
an algebra and A ⊗̂τ B is an lmc algebra then the Gelfand mapping is easily
seen to be a homomorphism from A ⊗ E into C(M(A), E). Continuity and
density can be applied to complete the proof.

Proposition 4.5. If A is a commutative unital lmc algebra, B is a
unital lmc algebra and τ is a uniform tensor norm such that A ⊗̂τ B is a
Q-algebra then for a ∈ A ⊗̂τ B the following are equivalent :

(1) a is left invertible in A ⊗̂τ B.
(2) â(h) is left invertible in B for every h ∈M(A).
(3) â is left invertible in C(M(A),B).

Proof. By Proposition 3.2, (1)⇔(2). By Proposition 4.4, a 7→ â is an
algebra homomorphism and ̂1A ⊗ 1B(h) = IB for all h ∈ M(A). Hence the
Gelfand transform maps left invertible elements to left invertible elements
and (1)⇒(3). Since we always have (3)⇒(2) this completes the proof.

Example 4.6. Let E be Fréchet–Schwartz space whose topology is gen-
erated by an increasing sequence (pn)n∈N of seminorms such that each Ên,
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which is a Banach space, has the approximation property. Take K ⊆ E com-
pact, balanced and polynomially convex and B a unital Banach algebra. Let
H(K,B) denote the space of B-valued holomorphic germs on K. We have
the following representation (see [4]):

(H(K,B), τω) ∼= (H(K), τω) ⊗̂ε B.
Moreover, since K is polynomially convex, M(H(K)) ∼= K by means of the
identification h(f) = f(k). Both H(K) and H(K,B) are Q-algebras, since
they are inductive limits of Banach algebras.

As in Example 1.4, [hk⊗IB](a) = a(k) for all a ∈ H(K) ⊗̂ε B and k ∈ K.
By Proposition 3.2, F ∈ H(K,B) is left invertible if and only if F (k) is left
invertible in B for all k ∈ K.

Since the Gelfand mapping ̂ : H(K,B) → C(K,B) is the inclusion
mapping, Proposition 4.5 implies that F is left invertible in H(K,B) if and
only if it is left invertible in C(K,B).
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