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Essential norms of weighted composition operators
on the space H*> of Dirichlet series

by

PAascAL LEFEVRE (Lens)

Abstract. We estimate the essential norm of a weighted composition operator rela-
tive to the class of Dunford—Pettis operators or the class of weakly compact operators, on
the space H™ of Dirichlet series. As particular cases, we obtain the precise value of the
generalized essential norm of a composition operator and of a multiplication operator.

0. Introduction. The aim of this paper is to investigate the complete
continuity and weak compactness of weighted composition operators on the
space H™> of Dirichlet series. Composition operators have been investigated
in many papers. The monographs [CmC] and [S] bring very good surveys
of this topic. These operators are very often investigated on H? spaces (1 <
p < 00), where their weak compactness and complete continuity are trivial
problems (because of reflexivity). Investigations in the setting of Dirichlet
series are more recent: see, for example, [B2], [GH] and [Q2].

Let us recall some terminology. We are going to work on half-planes
Cop={s€C;Re(s) >0}, 6>0.

In particular, H(Cp) denotes the space of analytic functions on Cy.
The space of Dirichlet series is

H™® = {f € H(Cp); f bounded,
f(s) = Z ann”® on some half-plane C, with ¢ > 0}.
n>1

(In fact, a result of Bohr [Bo] implies that any ¢ > 0 works.) The space H*
is the version of the classical Hardy space H* in the setting of Dirichlet
series.
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It is natural to introduce the counterpart of the disk algebra,
A= {f € H*; f continuous on Cp}.

Both H*® and A are normed by || f|lecc = sup{|f(s)]; s € Co}.

Before taking up some special properties of composition operators on H,
we have to know when they are defined. Actually, the case H* is less compli-
cated than the case of general HP spaces: An analytic function ¢ : Co — Cy
defines a bounded composition operator Cy : f +— f oy on H™ if and only
if o(s) = aps + >~ ann~° with ag € N (see [B1, after Cor. 2, p. 217], or
[B2, p. 65]). We shall always assume that ¢ satisfies this condition. We then
have [|Cy|| = 1.

A characterization of compact composition operators on H is due to
Bayart [B1, Th. 18]. Actually, Bayart estimates the (classical) essential norm
of a composition operator on H*°. Let us recall his result:

THEOREM ([B1], [B2]). Let C, be a composition operator on H*. Then
Cy, is compact if and only if o(Cy) C C. for some € > 0.

The compactness of weighted composition operators was studied in the
classical frame of the disk algebra in [K]. Some extensions are studied in [L],
where generalized essential norms are computed.

We are going to use rather elementary techniques, adapted from [L], to
estimate the essential norm, relative to Dunford—Pettis operators and weakly
compact operators, of weighted composition operators on H.

We first specify some terminology:

DEFINITION 0.1. Let X, Y be Banach spaces and Z a closed subspace of
the space B(X,Y) of bounded operators from X to Y. The essential norm
of T € B(X,Y) relative to T is the distance from 7" to Z:

| T|lez = inf{||T + S|); S € T}.

This is the canonical norm on the quotient space B(X,Y)/Z.
If moreover Z is an ideal of B(X) then B(X)/Z is an algebra.

The classical case is that of compact operators, Z = K(X,Y) (in this
case, the preceding quotient space is the Calkin algebra). Below, we are
interested in the case of weakly compact operators: Z = W(X,Y), and in
the case of completely continuous operators (= Dunford—Pettis operators):
7 =DP(X,Y). Compact operators are both weakly compact and completely
continuous.

Recall that a Banach space X has the Dunford—Pettis property if, for
every Banach space Y and every operator 7' : X — Y which is weakly
compact, T maps any weakly Cauchy sequence in X into a norm Cauchy
sequence. A good survey on the subject (until the early eighties) is the paper
of Diestel [D]. A Banach space X has the property (V') of Pelczyriski if, for
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every Banach space Y and every operator T : X — Y which is not weakly
compact, there exists a subspace Xy of X isomorphic to ¢o such that T,
is an isomorphic embedding.

If the space H* of Dirichlet series had both property (V) and the
Dunford—Pettis property, then the ideals W(H*°,Y) and DP(H>,Y") would
coincide for every Banach space Y. It turns out that H* does not have prop-
erty (V) and it is unknown whether it has the Dunford—Pettis property.

CLAIM. H™ does not have property (V') (we have no reference for this
remark).

This is a consequence of the Bohr inequality (see [Q1]):

> lapl < | fllo  for every f € H*,
peEP

where P stands for the set of prime numbers. The inequality implies that
{f € H>®; f(s) = X ,epapp°} is a complemented subspace of H®>, iso-
morphic to ¢!. Thus, the corresponding projection can neither be weakly
compact, nor fix a copy of c¢g. This proves the claim.

Let us point out too that the same argument implies that the space H*
does not satisfy the Grothendieck theorem: the projection (given by the
Bohr inequality) from H* to ¢! is bounded and cannot be 2-summing.

Given u € H* and an analytic function ¢ from Cy to Cy defining a
composition operator, we shall study the (generalized) essential norm of the
weighted composition operator T, ,:

Tuo(f) =u-(fop) where f e H™.

Of course, when v = 1, this operator is the classical composition operator,
simply denoted by C,. When ¢ = Idc,, it is the multiplication operator M,
by wu.

Observe that Ty, is always bounded from H> to H*>, with ||T, | =
||tt]| oo, Where ||u]lo = sup{|u(s)]; s € Co}.

The following quantity plays a crucial role in the estimate of the essential
norm:

nolu) = lim sup{|u(s)l; s € Co, Re(p(s)) < 1},

which is finite since u is bounded.
If inf Re(¢) > 0 then n,(u) = 0 (i.e. the supremum over the empty set
is taken as 0).

1. Characterization of weak compactness and complete conti-
nuity. We first need the following lemma.
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LEMMA 1.1. Let (hy)n>0 be a sequence in the disk algebra A(D), to which
we associate the sequence in A defined by Hp(s) = hn(27%). If (hn)n>0 is
weakly Cauchy in A(D), then (Hp)n>0 is weakly Cauchy in A. Moreover,

(1) (Hp)n>o0 is weakly null if and only if Hy,(ix) — 0 for every x € R.
(ii) (Hp)n>o0 is weakly Cauchy if and only if (Hy(iz)) is convergent for
every x € R.

Proof. First notice that in (i) and (ii) the “only if” part is obvious since
H — H(iz) clearly defines a linear functional on A for each = € R.

Observe that, for every h € A(D), H(s) = h(27*) defines a function in A.
Indeed, if h(z) = Y ¢;2 for z in the open unit disk D, then H(s) = ¢;277¢
is convergent for s € Cy. Moreover, H is continuous on iR.

Now, let £ be a linear functional on A. We can define a linear functional
on A(D) in the following way: x(h) = £(H), with H(s) = h(27°). The first
part of the lemma easily follows: £(H,,) converges.

Thus, there is a Borel measure 1 on T such that {(H) = {; hdu. We
can deduce the “if” part in (i) and (ii) because H,(iz) = hy,(27%) and the
dominated convergence theorem applies. m

Now, we can establish the following characterization, which is a gener-
alization of [B1, Th. §].

THEOREM 1.2. With the previous notations, the following assertions are
equivalent:

(1) Typ : A — H™> is completely continuous.
(2) Tuyp : A — H™ is weakly compact.

(3) nplu) = 0.

(4) Ty, : H® — H™ is compact.

Proof. Obviously (4) implies (1) and (2).

(1)=(3). Assume that inf Re(y) = 0 and ny,(u) > g9 > 0.

Choose any sequence s; € Cp such that Re(¢(s;)) converges to 0 and
lu(sj)| > eo. Extracting a subsequence if necessary, we may suppose that
27¢(5) converges to some a belonging to the unit circle. We shall write
a = 27" where a € R.

Now, we consider the sequence of functions F,(s) = f,(27°) where
fn(2) = 27™(az+1)™ lies in the unit ball of the disk algebra. (F},) is clearly a
weakly Cauchy sequence in A thanks to Lemma 1.1(ii). Actually F,,(s) — 0
for every s € Cy \ {ia} and F,(ia) = 1.

The operator T, being a Dunford-Pettis operator, the sequence
(u - Fy, 0 p)nen is norm-Cauchy, hence converging to some o € H*>. But
for every fixed s € Cy, u(s) - Fy, o ¢(s) converges both to 0 and o(s), so that
o=0.
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For any fixed € > 0, there exists ng such that supgec, [u(s)Fnoop(s)| < e.
Choosing s = s, with jg so large that |Fy,, o ¢(s;,)| > 1 — €, we have

e > fu(sjo)|(1 =) = (1 = e)eo.

As ¢ is arbitrary, this gives a contradiction.

(2)=(3). Assume that inf Re(¢) = 0 and ny,(u) > €9 > 0. As above,
choose any sequence s; € Cy such that Re(¢(s;j)) — 0 and |u(s;)| > €o. We
may assume that 27 90(7 ) converges to some a = 27 € T and we consider
the same sequence of functions F;,. The operator T, , being weakly compact,
there exists a sequence (ny) of integers such that (u - F,, o ¢)ren is weakly
convergent to some o € H™>. Testing the weak convergence on the point
evaluation d5 € (H>)*, for each s € Cp, we conclude that o = 0.

By the Mazur theorem, there exists a sequence of convex combinations
of these functions which is norm convergent to 0:

Zc (Fp,op) —0

k€lm

where cgc ™ > 0 and > kel c(m) = 1. Now, fixing ¢ € (0,e0/2), we have, for
a suitable my,

sup’ Z cmo . nk(go(s))‘ <e.

s€Co'ycr,

So, for every j,

fof 30 e Pl < | 20 el usy) - Fu(o(s)] <

kEIm,, k€I,

Letting j tend to infinity, we have F,, (¢(sj)) — Fy,(ia) = 1, for each

k € Ip,,, so that
o0 = 50‘ Z C(mo)

k€Im,

This gives a contradiction.

(3)=(4). Note that T, , = M, o C,.

If inf Re(yp) > 0 then ¢(Cy) C C, for some € > 0 and C, is compact
thanks to Bayart’s theorem, recalled in the introduction.

If inf Re(p) = 0 and lim, o+ sup{|u(s)|; s € Cop, Re(p(s)) < r} =
then T, , is compact. Indeed, given a sequence in the unit ball of H*, we
can extract a subsequence (f,), uniformly converging on every half-plane
Cy with 8 > 0. This is due to a version for Dirichlet series of the classical
Montel theorem, proved by Bayart (see [B1, Lemma 18] or [B2, Lemme 5.2]).
Hence, given € > 0, we choose § > 0 such that |u(s)| < e when Re(p(s)) < 6.
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Then we have
[ (fn = fm) © plloo <max{[ulloc sup [(fn = fm) o ¢(s)], 2¢},
©(s)€Cq
which is less than 2e when n, m are large enough. =

COROLLARY 1.3. Let Cy, be a composition operator on H*. The follow-
ing assertions are equivalent:

(i) C, is completely continuous.
(i) Cy is weakly compact.
(iii) Cy, is compact.
(iv) inf Re(p) > 0.
Proof. If inf Re(y) > 0, then C,, is indeed compact. If C, is completely
continuous (resp. weakly compact) on H then its restriction to A is as
well. The result follows from the preceding theorem in the case u = 1. =

REMARK. We have the same results when the operators act from A into
itself (under the extra assumption that ¢ € A).

From Theorem 1.2, we can deduce
COROLLARY 1.4. Let u € H™.

(1) Assume that E = {y € R; inf,~oRe(p(x + iy)) = 0} has positive
Lebesgue measure. Then T, , is weakly compact or completely con-
tinuous if and only if u = 0.

(2) My, : A — H™> is weakly compact or completely continuous if and
only if u = 0.

REMARK. Actually, the hypothesis on F means that the (nontangential)
boundary values of ¢, defined almost everywhere on the imaginary axis,
vanish on a set of positive Lebesgue measure.

Proof. Under the hypothesis of weak compactness or complete continuity
of Ty, we have ny(u) = 0, due to Theorem 1.2. Let us fix € > 0 and take
r > 0 such that for every s € Cy,

Re(p(s)) <r = u(s)| <e.

The hypothesis on ¢ implies that, for every y € E, there is a sequence (x,, ),
in (0, 00) with
Re(p(sn)) — 0

where s,, = x, + iy. Moreover, we may suppose that z, — 0%, since for
every a > 0, p(C,) C Cp for some b > 0 (see [GH, Prop. 4.2]). Actually, we
could replace s, by any sequence in Cy nontangentially converging to iy.

But for almost every y € E (say for y € Ey where Ey C E has positive
Lebesgue measure), u(sy,) — u*(iy), the boundary value of u, defined almost
everywhere on the imaginary axis.
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Therefore, for every y € Ey and n large enough, we have Re(p(sy)) < r,
hence |u*(iy)| < e. Since € > 0 is arbitrary the boundary value of u vanishes
on a set of positive Lebesgue measure, so u = 0 everywhere on Cg.

The second point is an immediate consequence of the first one. m

2. Essential norms. In the following, X denotes either A or H*. We
shall adapt techniques of Section 1 to compute essential norms. We get a
generalization of the theorem of Bayart in several directions. We first need
the following lower estimate:

LEMMA 2.1. Let u € H™® and ¢ : Cog — Cy defining a composition
operator. Assume that T C W(X, H*) @ DP(X,H*). Then

no(w) < | Tugpller

Proof. The proof combines the one of Theorem 1.2 with that of [Bl]
(relying on an idea due to Zheng [Z]) and is very similar to the one given in
[L] in the framework of classical Hardy spaces. For completeness, we give the
details. We already know that ||Ty,e[lez = 0 if and only if T, ;, is completely
continuous if and only if n,(u) = 0 if and only if T}, , is compact. We now
assume that 7T, ., is not compact; this implies that inf Re(y) = 0.

We choose a sequence s; € Cp such that Re(¢(s;)) — 0 and |u(s;)| —
ne(u). We may assume that 2-¢(55) converges to some a = 27,

We introduce the sequence of functions (where n > 2)

na2=° — (n—1)
n—(n—1)a2-s’

H,(s) =

which lies in the unit ball of A.

Obviously, Hy,(s) = h,(27%) where h, lies in the unit ball of the disk
algebra, with hy(2) — —1 for every z € D\ {a} and h,(a) = 1. So, H,(s) —
—1 for every s € Cy \ {ia} and H,(ia) = 1.

Now, let S € 7. Write S = D + W, where W is weakly compact and D
is Dunford—Pettis.

As D € DP(X,H*) and (Hy)y is a weakly Cauchy sequence by Lem-
ma 1.1, (D(H,,)), is a Cauchy sequence, hence convergent to some A € H*>.

As W € W(X,H), up to extracting a subsequence, (W (H,,)),, is weakly
convergent to some w € H*°. By the Mazur theorem, we can find some
c,(ﬁm) >0 with > o/ c,gm) =1, where I, CN, and >, ;| c,gm)W(Hk) — w.
Moreover, we can assume that sup I, < inf I,,,41.

Introducing ﬁm:ZkeIm c,gm)Hk, we have fIm(s) — —1 for every se Cy,

and fIm(@(sj)) — 1 for every m. Clearly, (D(H,)), is norm convergent

to A, so (S(Hy,))y is norm convergent to o = A + w.
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For every integer n,
(T = S)(Hu)lloo = | Top (i) = 0lloo = 1S(Hn) = ol
and we already know that ||S(H,) — o||ec — 0.

For every s € Co \ {ia}, we have |u(s)- H, op(s) —o(s)| — |o(s)+u(s)|.
If |o(s0) + u(so)| > ny(u) for some sy € Co, then

| T = S|l = T [|[(Tup — ) (Ha) oo > Tmfu(so) - Hy 0 p(s0) — o (s0)]

= |o(s0) +u(so)| = ny(u).
If not, then [|o + ul|oc < ny(u) and |o(s) —u(s)| > 2|u(s)| — ny(u) for every
s € Cy. Then, for every n > 2 and every integer j,
T = S|l = [uls;) - Ha o ¢(s5) = o(s;)| = [S(Hn) = 0]los
> 2[u(s;)| = np(u) = u(s;)] - [Hn 0 o(s5) = 1] = [|S(Hn) = 0||oo-

Letting first j tend to infinity, we obtain ||y, —S|| > n,(u)— 1S (Hp) =0 ||so.
Finally, letting n — oo yields [Ty, — S|| > ne(u), and the conclusion
follows. m

For the upper estimate, we have

LEMMA 2.2. Let u € H® and ¢ : Co — Cy defining a composition
operator. Then
[Tuplle < inf{2ny(u), |lullo}
Proof. Fix € > 0. There exists r € (0,1) such that for every s € Cy,
Re(p(s)) <r = |u(s)] < ny(u) +e.
Now, fixing ¢ > 0 for a while, we introduce the operator defined for s € Cgy
by
S(f)(s) = u(s) - fle(s) + o).
In other words, S =T, ,, with ¢, = ¢ + 0. By the theorem of Bayart, S is
compact since ¢,(Cp) C C,. We have
[Tue =Sl = sup  sup |u(s)[-|fop(s)— fo(els)+ o)
fFEH™ Re(p(s))>0
llfllo<1
First observe that
sup  sup  |u(s)| - [f o p(s) = fo(p(s) + o) < 2(ne(u) +¢).
FEH™ Re(p(s))<r
I Fllo<1
On the other hand, we claim that

~>O+
sup  sup |fop(s) = fo(e(s) + o) “——0.
FEH™ Re(p(s))>r

I fllo<1
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Indeed,

sup  sup [fop(s)—fo(p(s)+o)l < sup  sup [f(w)—f(w+o)
fEH™ Re(p(s))>r fEH™ Re(w)>r
[ flleo<1 [ flleo<1

and using the analogue for Dirichlet series of the Montel theorem (cited
above), it is easy to see that

lim sup sup |f(w)— f(w+ )| =0.
0—0% Re(w)>r feH™
[ fllo<1
So we can choose ¢ > 0 such that
sup  sup  [fop(s) = fo(p(s)+ o) <e
fEH™ Re(e(s))>r
I fllo<1
Finally,
[T — S| < max{elul|oo, 2(np(u) +€)}.
As € > 0 is arbitrary, we conclude that ||T, slle < 2n,(u). This gives the
result. m
We summarize our results in the following theorem.

THEOREM 2.3. Let u € H*® and ¢ : Co — Cq defining a composition
operator. Assume that (X, H>®) CZ C W(X,H*®) @ DP(X,H*). Then

1T

e,z A n ().
More precisely,
np(u) < || Tupller < inf{2ny(w), [ufloo}-

As a particular case, when ny(u) = ||u||o, we have the equality ||Ty ,llez =
1 Tulle = llulloc-

We specify two particular cases.

COROLLARY 2.4. Let u € H* and ¢ : Co — Cy defining a composition
operator. Assume that (X, H>®) CZ C W(X,H*®) @ DP(X,H*). Then

(1) [ Myllez = [Mulle = [lul|oc-

(2) [|Cyllez =1 if infRe(p) =0, and ||Cyllez = 0 if inf Re(yp) > 0.
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