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Duality, reflexivity and atomic decompositions
in Banach spaces

by

Daniel Carando and Silvia Lassalle (Buenos Aires)

Abstract. We study atomic decompositions and their relationship with duality and
reflexivity of Banach spaces. To this end, we extend the concepts of “shrinking” and
“boundedly complete” Schauder basis to the atomic decomposition framework. This allows
us to answer a basic duality question: when an atomic decomposition for a Banach space
generates, by duality, an atomic decomposition for its dual space. We also characterize
the reflexivity of a Banach space in terms of properties of its atomic decompositions.

Introduction. The concept of Schauder basis for a Banach space X is
a natural way to introduce a coordinate system in the Banach space set-
ting. This notion corresponds to orthogonal basis in Hilbert spaces. The bi-
orthogonal dual sequence, in X ′, recovers the coordinates of the expansion of
the elements of X in terms of the basis. In general, this dual sequence is not
necessarily a basis for the whole space X ′, but only for the closed subspace
the sequence spans. In the context of nonharmonic Fourier series, Duffin and
Schaeffer [9] introduced frames for Hilbert spaces. These are sequences that
allow reconstruction formulae that need not be unique, as opposed to what
happens with bases. This redundancy makes frames useful in different ap-
plications such as sampling theory and noise reduction in image and signal
processing (see, for instance, [1, 7, 16]).

In the eighties, Gröchenig [12] introduced atomic decompositions as an
extension of the notion of frames from Hilbert space theory to a Banach
space setting. Another concept extending the notion of Hilbert space frames
is that of Banach frames. Both new concepts have much in common and
in many situations are equivalent. Loosely speaking, atomic decompositions
involve the existence of a reconstruction formula as a series expansion, while
Banach frames give rise to a reconstruction operator.

We concentrate on some mathematical aspects of atomic decompositions
from a functional analytic point of view, within the framework of abstract
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approximation theory in Banach spaces. The results obtained can be applied
to the study of approximation of functions on Banach spaces admitting this
type of structure (see, for example, [2]).

In this article, we relate duality and reflexivity with atomic decomposi-
tions. In the Schauder basis setting, properties of a basis of a Banach space
X allow us to determine if its dual basic sequence is actually a basis of X ′.
Also, the reflexivity of X can be characterized in terms of attributes of the
basis [13, 14].

The study of duality for atomic decompositions has a natural approach.
Indeed, if ((x′i), (xi)) is an atomic decomposition for X, we investigate con-
ditions ensuring that ((xi), (x′i)) is an atomic decomposition for X ′. In or-
der to deal with this question we introduce the concept of shrinking and
strongly shrinking atomic decomposition, which extend the notion of shrink-
ing Schauder basis. We show that an atomic decomposition forX is shrinking
if and only if the dual pair is an atomic decomposition for the dual space X ′.
Examples are presented in order to clarify the situation and to compare it
with the Schauder basis context.

A Banach space X with Schauder basis is reflexive if and only if the basis
is shrinking and boundedly complete. We introduce the notion of boundedly
complete atomic decomposition and discuss the connection between these
two properties of an atomic decomposition and the reflexivity of X.

For further information on atomic decompositions and Banach frames
see, for example, [5, 6, 12] and the references therein. We refer to [8, 15] for
background in Banach space theory.

1. Duality for atomic decompositions. By a Banach sequence space
we mean a Banach space of scalar sequences for which the coordinate func-
tionals are continuous. We say that the space is a Schauder sequence space
if, in addition, the unit vectors {ei} given by (ei)j = δi,j form a basis for it.
In this case, a sequence a = (ai) can be written as a =

∑
i aiei.

Definition 1.1. Let X be a Banach space and Z be a Banach sequence
space. Let (x′i) and (xi) be sequences in X ′ and X respectively. We say that
((x′i), (xi)) is an atomic decomposition ofX with respect to Z if for all x ∈ X:

(a) (〈x′i, x〉) ∈ Z,
(b) A‖x‖ ≤ ‖(〈x′i, x〉)‖Z ≤ B‖x‖, with A and B positive constants,
(c) x =

∑
i〈x′i, x〉xi.

We will often refer to property (c) in the above definition as the recon-
struction formula associated to the atomic decomposition.

A separable Banach space admits an atomic decomposition if and only
if it has the bounded approximation property (this result is contained in
[17]). Moreover, if ((x′i), (xi)) is an atomic decomposition of X with respect
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to some Banach sequence space Z, we can always find a Schauder sequence
space Xd and an operator S : Xd → X such that Sei = xi and ((x′i), (xi)) is
also an atomic decomposition of X with respect to Xd [17, 4]. In the follow-
ing, we consider atomic decompositions of the form ((x′i), (Sei)) associated
to a Schauder sequence space Xd. See [3] for a complete treatment of the
approximation property.

Whenever a sequence (x′i) ⊂ X ′ satisfies conditions (a) and (b) of Defini-
tion 1.1 and there exists a linear operator S : Xd→X satisfying S(〈x′i, x〉)=x
for all x ∈ X, the pair ((x′i), S) is said to be a Banach frame for X with
respect to Xd [4, 5]. Note that any atomic decomposition associated to an
operator S defines a Banach frame, with the additional property of the re-
construction formula given by property (c) (which is stronger than having
the identity S(〈x′i, x〉) = x). In the case where Xd is a Schauder sequence
space, ((x′i), (Sei)) is an atomic decomposition if and only if ((x′i), S) is a Ba-
nach frame. Therefore, all the results stated below for atomic decompositions
can be reformulated for Banach frames with respect to Schauder sequence
spaces.

If ((x′i), (Sei)) is an atomic decomposition of X with respect to Xd, we
define the natural inclusion J : X → Xd by

(1.1) J(x) = (〈x′i, x〉) =
∑
i

〈x′i, x〉ei.

If (e′i) is the dual basic sequence of (ei), then x′i = J ′e′i. Note that SJ = IX
and so X is isomorphic to a complemented subspace of Xd. Conversely, we
have the following

Remark 1.2. Let X be a Banach space and Xd be a Schauder sequence
space. Suppose there exist continuous operators J : X → Xd and S : Xd → X
such that SJ = IX . Then, if (e′i) is the dual basic sequence of (ei), the pair
((J ′e′i), (Sei)) is an atomic decomposition for X with respect to Xd.

Indeed, condition (a) in the definition is satisfied since Jx belongs to Xd

for all x ∈ X. Condition (c) holds by the continuity of S, and the constants
A and B of condition (b) may be chosen to be ‖S‖−1 and ‖J‖ respectively.

A natural question arises: if ((x′i), (Sei)) is an atomic decomposition
for X, is ((Sei), (x′i)) an atomic decomposition for X ′?

The notion of shrinking basis gives an answer to this question in the case
of Schauder bases instead of atomic decompositions. Indeed, for a Schauder
basis (xi) of X, its dual sequence (x′i) is a Schauder basis of X ′ if and only
if (xi) is shrinking. Recall that (xi) is said to be shrinking if for all x′ ∈ X ′,

lim
N→∞

‖x′|[xi : i≥N ]‖ = 0,

where [xi : i ≥ N ] is the subspace spanned by {xi}i≥N .
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Our goal is then to extend the notion of shrinking basis to shrinking
atomic decompositions. A proper definition for a shrinking atomic decompo-
sition should satisfy the following: an atomic decomposition ((x′i), (Sei)) of
X with respect to Xd is shrinking if and only if ((Sei), (x′i)) is an atomic de-
composition of X ′ with respect to some sequence space. In order to establish
the correct definition, we believe the following discussion is necessary.

First, note that if Xd is a Schauder sequence space, then the dual (Xd)′

is a Banach sequence space, provided we identify each linear functional b′ ∈
(Xd)′ with the sequence (〈b′, ei〉).

One way to ensure that ((Sei), (x′i)) is an atomic decomposition of X ′ is
to require that (ei) be a shrinking basis of Xd (see Proposition 1.9). In this
case, (e′i) turns out to be a basis of (Xd)′ and this last space is therefore a
Schauder sequence space.

Another natural attempt is to impose that

(1.2) lim
N→∞

‖x′|[Sei : i≥N ]‖ = 0 for all x′ ∈ X ′.

As we will see, condition (1.2) implies that ((Sei), (x′i)) is an atomic decom-
position of X ′. This condition is the most direct extension of a shrinking
basis. However, it does not take into account the linear functionals (x′i).
Although for a basis the dual linear functionals are uniquely determined,
the sequence (Sei) by itself does not characterize the atomic decomposition.
Therefore, one should not expect (1.2) to be the appropriate definition for a
shrinking atomic decomposition.

In fact, none of the previous two conditions is equivalent to ((Sei), (x′i))
being an atomic decomposition of X ′. Moreover, we will see that both con-
ditions are strictly stronger than desired (see Proposition 1.9 and Exam-
ples 1.10, 1.11).

Although we state our results for atomic decompositions which are equiv-
alent to Banach frames, we want to give the definition of shrinking atomic
decompositions for the general case. Let, then, ((x′i), (xi)) be an atomic de-
composition of X with respect to a Banach sequence space Z. For each
N ∈ N, define the linear operator TN : X → X by

(1.3) TN (x) =
∑
i≥N
〈x′i, x〉xi.

Each TN is a bounded linear operator as a consequence of the Banach–
Steinhaus theorem. Also, again by that theorem, they are uniformly bounded.
Now we define:

Definition 1.3. Let X be a Banach space, Z be a Banach sequence
space and ((x′i), (xi)) be an atomic decomposition of X with respect to Z.
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We say that ((x′i), (xi)) is shrinking if for all x′ ∈ X ′,

(1.4) ‖x′ ◦ TN‖ −−−→
N→∞

0,

where TN is defined by (1.3).

Theorem 1.4. Let X be a Banach space and Xd be a Schauder sequence
space. Let S : Xd → X be a continuous operator and (x′i) ⊂ X ′ be a sequence
so that ((x′i), (Sei)) is an atomic decomposition for X with respect to Xd.
Then ((Sei), (x′i)) is an atomic decomposition for X ′ with respect to (Xd)′ if
and only if ((x′i), (Sei)) is shrinking.

Proof. Assume that ((x′i), (Sei)) is a shrinking atomic decomposition for
X with respect to Xd. Since 〈x′, Sei〉 = 〈S′x′, ei〉 for all i, the sequence
(〈x′, Sei〉) belongs to (Xd)′ considered as a Banach sequence space, and con-
dition (a) is satisfied.

To show that the norms ‖x′‖ and ‖(〈x′, Sei〉)‖ are equivalent, note that
S is surjective, therefore S′ is an isomorphism onto its image.

Finally, we have to show the validity of the reconstruction formula, i.e.,
x′ =

∑
i〈x′, xi〉x′i, where xi = Sei. It is clear that 〈x′, x〉 =

∑
i〈x′, xi〉〈x′i, x〉

for all x ∈ X, so it only remains to show that the series
∑

i〈x′, xi〉x′i con-
verges. Let us see that it is a Cauchy series:

sup
‖x‖≤1

∣∣∣M−1∑
i=N

〈x′, xi〉〈x′i, x〉
∣∣∣ = sup

‖x‖≤1
|〈x′, (TM − TN )x〉|

≤ ‖x′ ◦ TM‖+ ‖x′ ◦ TN‖ −−−−−→
N,M→∞

0.

Therefore, we have shown that ((Sei), (x′i)) is an atomic decomposition
for X ′ with respect to (Xd)′.

The converse follows immediately from

‖x′ ◦ TN‖ = sup
‖x‖≤1

|〈x′, TNx〉| =
∥∥∥∑
i≥N
〈x′, Sei〉x′i

∥∥∥
and the fact that ((Sei), (x′i)) is an atomic decomposition for X ′ with respect
to (Xd)′.

IfXd is a Schauder sequence space, it is easy to see that the pair ((Sei), J ′)
defines a Banach frame for X ′ with respect to (Xd)′, even if the atomic de-
composition ((x′i), (Sei)) is not shrinking. Indeed, since J ′S′ = IdX′ and
S′x′ = (〈x′, Sei〉)i, we have J ′(〈x′, Sei〉) = x′. The continuity of S and J
gives the frame bounds. However, in this case the reconstruction formula
does not necessarily hold.

On the other hand, if ((x′i), (Sei)) is shrinking and the range of S′ is con-
tained in the closed subspace of (Xd)′ spanned by the dual sequence (e′i), then
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we can obtain an atomic decomposition for X ′ with respect to a Schauder se-
quence space. This fact motivates the definition of strongly shrinking atomic
decompositions. First we state the following corollary, which is an immedi-
ate consequence of the relationship between atomic decompositions and the
bounded approximation property:

Corollary 1.5. Suppose that X admits a shrinking atomic decomposi-
tion ((x′i), (Sei)). Then X ′ is separable and has the bounded approximation
property.

The existence of the operator S provides us with a sequence (SN ) of
continuous operators which is useful to avoid the obstacle arising from the
fact that we work with nonunique representations.

Fix N , and consider the operator SN : Xd → X defined by

SN (a) =
∑
i≥N

aixi.

Then (SN ) is bounded by 2K‖S‖, where K is the basis constant of (ei).

Definition 1.6. Let X be a Banach space, Xd be a Schauder sequence
space, and S : Xd → X be a continuous operator such that ((x′i), (Sei)) is
an atomic decomposition of X with respect to Xd. We say that ((x′i), (Sei))
is strongly shrinking if for all x′ ∈ X ′,

‖x′ ◦ SN‖ → 0 as N →∞,
where SN : Xd → X is given by SN (a) =

∑
i≥N aixi.

It is clear that any strongly shrinking atomic decomposition is shrinking,
since TN = SN ◦ J . On the other hand, at the end of this section we present
examples showing that the converse is not true.

Before stating the duality property of strongly shrinking atomic decom-
positions we need the following:

Lemma 1.7. Let X be a Banach space and Xd be a Schauder sequence
space. Let S : Xd → X be a continuous operator. If ((x′i), (Sei)) is a strongly
shrinking atomic decomposition then S′(X ′) is contained in the closure of
[e′i : i ≥ 1] in (Xd)′ and S′x′ =

∑
i〈x′, Sei〉e′i for all x′ ∈ X ′.

Proof. Put xi = Sei. Since 〈S′x′, ei〉 = 〈x′, xi〉, it is enough to see that∑M
i=1〈x′, xi〉e′i is a Cauchy sequence in (Xd)′. Now∥∥∥M−1∑

i=N

〈x′, xi〉e′i
∥∥∥ = sup

‖a‖≤1

∣∣∣M−1∑
i=N

〈x′, xi〉〈e′i, a〉
∣∣∣ = sup

‖a‖≤1

∣∣∣〈x′,M−1∑
i=N

aixi

〉∣∣∣
= sup
‖a‖≤1

|〈x′, (SN − SM )a〉| ≤ ‖x′ ◦ SN‖+ ‖x′ ◦ SM‖.

Since ((x′i), (Sei)) is strongly shrinking, the result follows.
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If X is a Banach space and Xd is an associated Schauder sequence space
with basis (ei), we denote by X ′d the closed subspace spanned by (e′i) in
(Xd)′, where (e′i) is the dual sequence of (ei). Since (e′i) is a basic sequence,
X ′d is a Schauder sequence space.

Now we can establish:

Theorem 1.8. Let X be a Banach space and Xd be a Schauder sequence
space. Let S : Xd → X be a continuous operator and (x′i) ⊂ X ′ be a sequence
such that ((x′i), (Sei)) is an atomic decomposition for X with respect to Xd.
Then ((Sei), (x′i)) is an atomic decomposition for X ′ with respect to X ′d if
and only if ((x′i), (Sei)) is strongly shrinking.

Proof. If ((x′i), (Sei)) is a strongly shrinking atomic decomposition for X
with respect to Xd, it is shrinking. Then a combination of Lemma 1.7 and
Theorem 1.4 shows that ((Sei), (x′i)) is an atomic decomposition for X ′ with
respect to X ′d. The converse follows as in the proof of Theorem 1.4.

Now we see that our first two candidates for the definition of shrinking
atomic decomposition are strictly stronger than the proper definition. More-
over, they are even stronger than the definition of strongly shrinking atomic
decomposition. First we have

Proposition 1.9. Let X be a Banach space, Xd be a sequence space and
S : Xd → X be a continuous operator such that ((x′i), (Sei)) is an atomic
decomposition of X with respect to Xd. Consider the following statements:

(a) the basis (ei) of Xd is shrinking ,
(b) (Sei) satisfies condition (1.2), i.e. limN→∞ ‖x′|[Sei : i≥N ]‖ = 0 for all

x′ ∈ X ′.
Then either (a) or (b) implies that ((x′i), (Sei)) is a strongly shrinking atomic
decomposition.

Proof. If (a) holds, let K be the basis constant of the shrinking basis (ei)
and FN = [ei : i ≥ N ]. We have

‖x′ ◦ SN‖ = sup
‖a‖≤1

∣∣∣〈S′x′,∑
i≥N

aiei

〉∣∣∣ ≤ sup
a∈FN
‖a‖≤1+K

∣∣∣〈S′x′,∑
i≥N

aiei

〉∣∣∣
= (1 +K)‖S′x′|FN

‖,
which goes to zero since (ei) is shrinking. The proof for (b) is straightfor-
ward.

Now, we present counterexamples for the converses.

Example 1.10 (A strongly shrinking atomic decomposition for which
statement (a) of Proposition 1.9 does not hold). Take X = `2, Xd = `1⊕ `2
with the basis (fk) that alternates (ei, 0) and (0, ei). Consider the projection
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S : Xd → X on the second coordinate. If we define x′2j−1 = 0 and x′2j = e′j
on X for j = 1, 2, . . . , then ((x′k), (Sfk)) is a strongly shrinking atomic
decomposition of X with respect to Xd, since condition (b) of Proposition
1.9 is satisfied. However, the basis for Xd is not shrinking. Indeed, a′ =
(1, 1, . . .)× (0, 0, . . .) ∈ `∞ × `2 satisfies ‖a′|[fk : k≥N ]‖ = 1 for all N .

Example 1.11 (A strongly shrinking atomic decomposition for which
statement (b) of Proposition 1.9 does not hold). We show a family of exam-
ples of strongly shrinking atomic decompositions not satisfying condition (b).
Take X = Xd = `2, fix b ∈ `2 with bj 6= 0 for all j and b1 = 1 and consider
the operator S : Xd → X given by the infinite matrix

b1 b2 0 b3 0 0 b4 0 0 0 b5 0 0 0 0 b6 · · ·
0 0 b1 0 b2 0 0 b3 0 0 0 b4 0 0 0 0 · · ·
0 0 0 0 0 b1 0 0 b2 0 0 0 b3 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 b1 0 0 0 b2 0 0 · · ·
...

...
...

. . .


Note that each column of the matrix has a unique nonzero coefficient. Then
consider the subsequences

Ni = {j ∈ N : the element in column j and row i is nonzero}
obtaining the disjoint partition N =

⋃
iNi. If we write Ni = {(nij)j}, for

any a ∈ `2 we obtain

Sa =
∞∑
i=1

( ∞∑
j=1

bjanij

)
ei.

Also, note that for each i, the element in row i and column i(i+ 1)/2 is
b1 = 1. This means that Sei(i+1)/2 = ei for all i.

Hölder’s inequality gives the continuity of S:

‖Sa‖2 =
∞∑
i=1

∣∣∣ ∞∑
j=1

bjanij

∣∣∣2 ≤ ∞∑
i=1

( ∞∑
j=1

|bj |2
)( ∞∑

j=1

|anij |2
)

= ‖b‖2‖a‖2.

Let x′k = e′i if k = i(i+ 1)/2 and x′k = 0 otherwise. It is clear that
(〈x′k, x〉)k ∈ Xd for all x ∈ `2. Also,

∞∑
k=1

〈x′k, x〉Sek =
∞∑
i=1

〈x′i(i+1)/2, x〉Sei(i+1)/2 =
∞∑
i=1

〈e′i, x〉ei = x.

If J : X → Xd is the canonical inclusion, ‖Jx‖ ≤ ‖x‖ and ‖x‖ = ‖SJx‖ ≤
‖b‖ ‖(〈x′i, x〉)‖, and then ((x′i), (Sei)) is an atomic decomposition.

To see it is strongly shrinking, it is enough to observe that condition
(a) of Proposition 1.9 holds. On the other hand, for any N , the subspace
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[Sei : i ≥ N ] is in fact all `2. Therefore, condition (b) of Proposition 1.9 is
not satisfied.

It is clear that different examples can be obtained for any disjoint parti-
tion N =

⋃
iNi.

Note that in Example 1.10 the atomic decomposition satisfies condition
(b) but not (a) while in Example 1.11 condition (a) is satisfied but (b) is not.
A direct combination of both examples provides a strongly shrinking atomic
decomposition for which neither (a) nor (b) of Remark 1.9 is satisfied.

The following examples show that shrinking and strongly shrinking are
not equivalent notions for atomic decompositions. Note that these two con-
cepts coincide for Schauder bases. Also, a Schauder basis of a reflexive Ba-
nach space is always shrinking, and consequently strongly shrinking. The
examples show that a reflexive space can admit an atomic decomposition
that is not strongly shrinking. The first example is a modification of Ex-
ample 1.10. We thank the referee for kindly suggesting it to us.

Example 1.12 (An atomic decomposition for a reflexive Banach space
X which is shrinking but not strongly shrinking). Take X = `2, Xd = `1⊕`2
with the basis (fk) that alternates (ei, 0) and (0, ei). We define S : Xd → X
by S(ei, 0) = e1, S(0, ei) = ei, and x′2j−1 = 0 and x′2j = e′j on X for
j = 1, 2, . . . . Since ‖(e′1, 0) ◦ SN‖ = 1 for all N , we see that ((x′k), (Sfk)) is
not strongly shrinking. By a direct calculation or using Theorem 1.4 we see
that it is shrinking.

Example 1.13 (Another atomic decomposition for a reflexive Banach
space X which is shrinking but not strongly shrinking). Let X = `2 and
let Xd be the full 3-fold projective tensor product Xd =

⊗3
π `2. This is a

sequence space with basis (eα)α∈N3 , where eα = eα1 ⊗ eα2 ⊗ eα3 and N3 is
considered with the square ordering [10] (see also [11]). Let Φ be the bilinear
form on `2 × `2 given by Φ(y, z) =

∑
k≥1 ykzk. Consider the continuous

operators S : Xd → X, S(x⊗y⊗z) = Φ(y, z)x, and J : X → Xd, J(x) = x⊗
e1⊗e1, and set x′α = J ′(e′α1

⊗e′α2
⊗e′α3

). Note that S(eα1⊗eα2⊗eα3) = eα1 . We
claim that the pair ((x′α)α∈N3 , (eα1)α∈N3) is a shrinking atomic decomposition
for `2 with respect to

⊗3
π `2 which is not strongly shrinking. By Remark 1.2,

to see that it is an atomic decomposition we only need to show that SJ = I`2 ,
which is clear since Φ(e1, e1) = 1.

To see that ((x′α), (eα1)) is shrinking, by Theorem 1.4, it is enough to
check the reconstruction formula for each x′ ∈ (`2)′ = `2 with respect to the
dual atomic decomposition ((eα1), (x

′
α)). Since x′α = δα2,1 ·δα3,1 ·e′α1

, we have

x′ =
∑
α1∈N
〈x′, eα1〉e′α1

=
∑
α∈N3

〈x′, eα1〉δα2,1 · δα3,1 · e′α1
=
∑
α∈N3

〈x′, eα1〉x′α.
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Now, suppose it is a strongly shrinking atomic decomposition. By Lem-
ma 1.7, S′(X ′) should be contained in X ′d = [(eα)′]. Identifying (

⊗3
π `2)

′

with the space of 3-linear forms on `2, we conclude that S′(X ′) must consist
of trilinear forms which are separately weakly continuous on bounded sets.

Given x′ ∈ X ′ choose a unit vector x ∈ `2 so that 〈x′, x〉 = ‖x′‖. Then,
as a trilinear form,

S′(x′)(x, y, z) = 〈x′, S(x⊗ y ⊗ z)〉 = Φ(y, z)〈x′, x〉.
Now, (eN )N is a weakly null sequence in `2 but S′(x′)(x, eN , eN ) = ‖x′‖.
Therefore, S′(x′) does not belong to X ′d for any nonzero x′ ∈ X ′ and the
atomic decomposition is not strongly shrinking.

2. Atomic decompositions and reflexivity. Banach spaces with
Schauder basis admit a characterization of reflexivity in terms of the prop-
erties of the basis. To be precise, a Banach space X with Schauder basis (ei)
is reflexive if and only if (ei) is shrinking and boundedly complete.

Recall that a Schauder basis (ei) of X is said to be boundedly complete
if for each scalar sequence (ai) such that

sup
N

∥∥∥ N∑
i=1

aiei

∥∥∥ <∞,
the series

∑∞
i=1 aiei converges in X. The following proposition establishes

an equivalent formulation of this definition. This result can be found, for
instance, in [18, Theorem II.6.2]. Nevertheless, we prefer to include a proof
for the sake of completeness.

Proposition 2.1. Let X be a Schauder sequence space with basis (ei).
Then (ei) is boundedly complete if and only if for all x′′ ∈ X ′′, the series∑∞

i=1〈x′′, e′i〉ei converges.
Proof. Suppose (ei) is boundedly complete with basis constant K. Take

x′′ ∈ X ′′. To show that
∑N

i=1〈x′′, e′i〉ei is uniformly bounded we consider its
norm as the supremum over x′ ∈ BX′ ; then∣∣∣〈x′, N∑

i=1

〈x′′, e′i〉ei
〉∣∣∣ = ∣∣∣〈x′′, N∑

i=1

〈x′, ei〉e′i
〉∣∣∣ ≤ ‖x′′‖ ∥∥∥ N∑

i=1

〈x′, ei〉e′i
∥∥∥.

Since ∥∥∥ N∑
i=1

〈x′, ei〉e′i
∥∥∥ = sup

‖x‖≤1

∣∣∣〈x′, N∑
i=1

〈e′i, x〉ei
〉∣∣∣ ≤ K‖x′‖,

we see that K‖x′′‖ is a bound for ‖
∑N

i=1〈x′′, e′i〉ei‖, for all N ∈ N.
For the converse, take a scalar sequence (ai) such that supN ‖

∑N
i=1 aiei‖

is bounded and consider ϕN =
∑N

i=1 aiei ∈ X ′′. Then there exists a subnet
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(ϕn(α)) of (ϕN ) and x′′ ∈ X ′′ so that x′′ = w∗-limϕn(α). Then 〈x′′, e′k〉 = ak
for each k ∈ N, and therefore

∑∞
i=1 aiei =

∑∞
i=1〈x′′, e′i〉ei converges.

Note that the equivalent condition involves both the basis (ei)i and its
dual basic sequence (e′i)i. Therefore, this formulation is more suitable for
extension to atomic decompositions:

Definition 2.2. Let X be a Banach space and let Z be a Banach se-
quence space. Let ((x′i), (xi)) be an atomic decomposition of X with respect
to Z. The atomic decomposition is said to be boundedly complete if for each
x′′ ∈ X ′′, the series

∑∞
i=1〈x′′, x′i〉xi converges in X.

It is immediate that whenever X is reflexive, any atomic decomposition
is boundedly complete. Moreover, we have:

Proposition 2.3. Let X be a Banach space and Xd be a Schauder se-
quence space. Let S : Xd → X be a continuous operator and (x′i) ⊂ X ′ be a
sequence such that ((x′i), (Sei)) is a shrinking atomic decomposition for X
with respect to Xd. Then ((Sei), (x′i)) is a boundedly complete atomic decom-
position for X ′ with respect to (Xd)′.

Proof. Let % : X ′′′ → X ′ be the restriction mapping. Since ((x′i), (Sei))
is shrinking, ((Sei), (x′i)) is an atomic decomposition for X ′ with respect
to (Xd)′. For any x′′′ in X ′′′, we can apply the reconstruction formula to
x′ = ρ(x′′′) to deduce that

∑N
i=1〈x′′′, Sei〉x′i is convergent. Then ((Sei), (x′i))

is boundedly complete.
The analogous proposition for Schauder bases has a dual result: if a Ba-

nach space X has a boundedly complete basis (ei), then X is isomorphic to
the dual of a Banach space with shrinking basis (namely, the closed subspace
of X ′ spanned by the dual basic sequence (e′i)). The fact that the biorthog-
onal sequence (e′i) is always a basic sequence in X ′ is crucial for the proof of
this result.

For an atomic decomposition ((x′i), (xi)), we do not know if ((xi), (x′i))
is in general an atomic decomposition of the closed subspace of X ′ spanned
by (x′i)i. If this is the case and ((x′i), (xi)) is boundedly complete, it is not
difficult to see that X is isomorphic to the dual of Y = [(x′i)i], and that
((xi), (x′i)) is a shrinking atomic decomposition of Y .

Also, not knowing if ((xi), (x′i)) is an atomic decomposition (of the closure
of [(x′i)i]) prevents us from giving, with full generality, a characterization of
reflexivity in terms of properties of the atomic decomposition of X.

We have:

Proposition 2.4. Let X be a Banach space admitting an atomic decom-
position ((x′i), (xi)) (with respect to some sequence space Z). If ((x′i), (xi)) is
shrinking and boundedly complete, then X is reflexive.
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Proof. Since ((x′i), (xi)) is boundedly complete, for each x′′ ∈ X ′′ there
exists x ∈ X such that x =

∑∞
i=1〈x′′, x′i〉xi is convergent. As the decompo-

sition is shrinking, for every x′ ∈ X ′ we have the reconstruction formula

x′ =
∞∑
i=1

〈x′, xi〉x′i.

Then

〈x′, x〉 =
∞∑
i=1

〈x′′, x′i〉〈x′, xi〉 = 〈x′′, x′〉.

Therefore, x′′ = x ∈ X, which shows that X is reflexive.

We do not know if the converse of the above proposition holds in general.
However, we do have a characterization of reflexivity analogous to the one
for Schauder bases if we impose some unconditionality assumptions on the
atomic decomposition. Let us say that an atomic decomposition ((x′i), (xi)) is
unconditional if for any x ∈ X, its series expansion

∑∞
i=1〈x′i, x〉xi converges

unconditionally. Note that this happens, for example, when the atomic de-
composition is associated to an operator S : Xd → X and the canonical basis
of Xd is unconditional. With this definition, we have:

Theorem 2.5. Let X be a Banach space and Xd be a Schauder sequence
space. Let S : Xd → X be a continuous operator and (x′i) ⊂ X ′ be a sequence
such that ((x′i), (Sei)) is an unconditional atomic decomposition for X with
respect to Xd. Then X is reflexive if and only if ((x′i), (Sei)) is shrinking and
boundedly complete.

Proof. One implication is given by Proposition 2.4, so suppose thatX is a
reflexive space. Since any atomic decomposition for X is boundedly complete
we only have to show that ((x′i), (Sei)) is shrinking. By Theorem 1.4, this is
equivalent to ((Sei), (x′i)) being an atomic decomposition for X ′ with respect
to (Xd)′. Since 〈x′, Sei〉 = 〈S′x′, ei〉 and SJ = IX , it only remains to show
that the reconstruction formula holds for any x′ ∈ X ′, which means that

x′ =
∑
i

〈x′, Sei〉x′i

holds for all x′ ∈ X ′. Moreover, since the series weakly converges to x′, we
only need to show that it is norm convergent.

The Orlicz–Pettis theorem states that weak subseries convergence im-
plies norm subseries convergence. Select an increasing sequence (ik) of posi-
tive integers and check that

∑
〈x′, Seik〉x′ik is weakly convergent. Since X is

reflexive, it is enough to show that, for any x ∈ X, the sequence

(2.1)
(〈 N∑

k=1

〈x′, Seik〉x
′
ik
, x
〉)

N
=
(〈
x′,

N∑
k=1

〈x′ik , x〉Seik
〉)

N
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is Cauchy. Since
∑

i〈x′i, x〉Sei is unconditionally convergent in X, any sub-
series is convergent and, in particular,

∑N
k=1〈x′ik , x〉Seik converges. As a

result, the sequence in (2.1) is a Cauchy sequence.
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