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A theorem of Gel’fand—Mazur type
by

Hunc LE PHAM (Edmonton)

Abstract. Denote by ¢ any set of cardinality continuum. It is proved that a Banach
algebra A with the property that for every collection {an : @ € ¢} C A there exist
a # 3 € ¢ such that an € agA# is isomorphic to

T

Pexy/x“cix) e E,

i=1

where di, . ..,d, €N, and E is either XC[X]/X*C[X] for some dy € N or a 1-dimensional
@®;_, C[X]/X*C[X]-bimodule with trivial right module action. In particular, C is the
unique non-zero prime Banach algebra satisfying the above condition.

The classical Gel’fand-Mazur theorem states that C is the unique (com-
plex) normed division ring. A division ring has only {0} and itself as the
right [left] principal ideals, and thus, it is a special case of unital domains
whose set of right [left] principal ideals forms a chain. It is obvious that the
set of right principal ideals of a unital algebra A forms a chain if and only
if, for any a,b € A, either a € bA or b € aA. In the commutative case, a
valuation ring is defined as a unital integral domain whose set of principal
ideals forms a chain.

In [3], J. Esterle proved that C is the unique commutative Banach algebra
which is a valuation ring. This was then extended in [4] as follows.

THEOREM (Esterle). Let A be a commutative unital Banach algebra

whose set of principal ideals forms a chain. Then A is isomorphic to the
quotient C[X]/XC[X] for some d € N.

In this paper, we shall remove the commutativity hypothesis from this
result. Thus, in particular, C is the unique unital prime Banach algebra
whose set of right principal ideals forms a chain. For this purpose, we only
need to prove that a unital Fréchet algebra whose set of right principal ideals
forms a chain must be commutative; the above theorems of Esterle can then
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be applied. This will also remove the commutativity assumption from the
following theorem of Bouloussa [1]; here, a Fréchet algebra A is an algebra of
power series if there exists a continuous monomorphism from A into C[[X]]
whose image contains C[X].

THEOREM (Bouloussa). A commutative unital Fréchet algebra A of di-
mension at least 2 which is a valuation ring must be an algebra of power
series. If, in addition, A has mo continuous norm then A is topologically
isomorphic to C[[X]].

In fact, we shall consider Banach algebras A having a weaker property
that for every collection {ay : A € ¢} C A there exist a # [ € ¢ such that
G € aﬁA#; where A% is the conditional unitization of A. A consequence
of Theorem 3.4 is that an infinite-dimensional unital Banach algebra must
contain right [left] principal ideals Iy (X € ¢) such that I, ¢ Ig (o # B € ¢).

Note that there are infinite-dimensional prime Banach algebras A where
A and {0} are the only two-sided ideals, for example A = B(¢?)/K(¢?).

1. Preliminaries. More details of most of the following can be found,
for example, in [2].

Let A be an algebra. We denote by either e4 or e the identity of the
conditional unitization A% of A.

An algebra A is prime if {0} is a prime ideal in A, i.e. if either a = 0 or
b = 0 whenever a,b € A and aAb = {0}. A domain is obviously prime.

Let E be a left A-module. Denote by A - E the set {az:a € A, x € E}.
Let (an) C A. Define

limay - a, - £ = {x € E: there exists a sequence (z,) in E such that
x=x1 and z, = apTp+1 (n € N)}.
Let E be an A-bimodule. Then A® F becomes an algebra with pointwise
addition and the following standard multiplication:
(adx)bdy) =ab® (ay+2b) (adz,bdDyc ADE).

A Fréchet algebra is a topological algebra A whose topology is determined
by a sequence (p,,) of algebra seminorms such that

[e.e]

d(a,b) =S min{pn(; —O G pea

n=1
is a complete metric.
We shall need the following result, which is [4, Corollary 3.5]; it was
proved for Banach algebras, but the proof works for Fréchet algebras.

THEOREM 1.1 (Esterle). Let R be a radical Fréchet algebra. Then the
following conditions are equivalent:
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(i) There exists a non-zero element a € R such that a € Ra.
(ii) There exists a sequence (ay) in R such that limay - --ap - R # {0}.
(iii) There exists a strictly increasing sequence of left principal ideals
in R,

2. Right principal submodules. In this section, we shall prove a re-
sult for modules similar to results in [1], [3], and [4] (and without the com-
mutativity assumption). The proof follows the same ideas of using Baire’s
category theorem and Liouville’s theorem.

LEMMA 2.1. Let R be a radical Fréchet algebra. Let E be a topological
vector space and a left R-module such that a — ax, R — E, is continuous
forallz € E, and E = R-E. Then, for each ¢ : E — RT and each non-zero
continuous seminorm q on E, the set

U={(z,y) € ExE:¢(vz) < qlvy) for some v € R*}

is dense in £ x E.

Proof. First, let (z,y) be arbitrary in F'x F with z € R-FE and ¢(y) # 0.
Let 2’ € E and ¢ € R be such that ¢z’ = z. We see that, for each r € N,
there exists A\, € C such that

0<|A\|<1/r and q((A\ + c)fly) > ¢(a');

for otherwise the Hahn-Banach and Liouville theorems imply g((\+ ¢)~ty)
=0 (A€ C) (cf. [1, Lemme 1.1]), and so

g(y) = lim g(A(A+¢)"'y) = 0.
A—00
Set v, = A\r + ¢ € R¥ and z, = v,2’ € E. Then

o(v, ' w) = (z') < q(v;'y),

so that (z,,y) € U (r € N). We have limz, = z, so (z,y) € U. The set
{y € E : q(y) # 0} is dense in E. Therefore, U is dense in E x E as
claimed. =

PROPOSITION 2.2. Let R be a radical Fréchet algebra. Let E be a Fréchet
left R-module having a non-zero element x € E such that v € R-x. Then
there exists a sequence (xy) in R-x with the properties that xj & x; - A
(1 # 5 € N) for each algebra A such that A acts continuously on the right
on E and E € R-mod-A.

Proof. Set FF'= R -x. We see that 0 # x € F and F' = R - F. Denote by
2 the product space F: its topology is defined by a complete metric. Let

(gr) be an increasing sequence of non-zero seminorms defining the topology
of E.
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For each triple s = (1,4, j) of natural numbers with i # j, set
Us = {(x,) € 2: q(vz;) < q1(vz;) for some v € R¥}.

By Lemma 2.1, this is a dense (open) subset of 2. By the Baire category
theorem, there exists a sequence (x,) contained in all Us.
Let i # j € N. We need to show that

Indeed, assume the contrary that z; = x;c for some ¢ € A. The previous
paragraph shows that there exist (v;) in R# such that
q(nz;) <1/l and ¢ (yz;) >1 (I €N).

This shows that lim;_.. vjz;c = 0; however, (vjz; : | € N) can never con-
verge, a contradiction. m

3. Main results

LEMMA 3.1. Let R be an algebra and let a € R. Suppose that lima™ - R
= {0} and R = aR?. Then R is commutative.

Proof. Denote by e the identity of R#. We also set [z,b,y] = xby — ybx
and [z,y] = [z,e,y] = zy — yx (b, 2,y € R¥).

Let 2,y € R be arbitrary. Then R = aR* implies that there exist se-
quences (ay,), (Bn) in C and (zy,), (yn) in R such that x = zg, y = yo, and
Tp—1 = a(ane + x,) and yp—1 = a(Bre + yn) (n € N). Then we see that

[l‘n*l’ an—l’ ynfl] = a(an[ana yn] + ﬂn{xny an] + [l‘nv a", yn]) (TL € N),

0

our convention here is ¢ = e. For each n € N, set

n n
Wy, = [Zakakayn} + |:xn7Z/8ka/k:| + [l‘man,yn].
k=1 k=1

Then [z,y] = aw; and, for n > 1,

n—1 n—1
Wp—1 = [Zakakaynfl} + [%—hZﬁkak} + [Tn1,0" " Y]
k=1 k=1

n—1 n—1
= [Z ara®, Bra + ayn} + [ana + axp, Z ﬂkak]
k=1 k=1

+ (I(Oén [an’ yn] + Bn [xn’ an] + [xru an’ yn])

= awy,.
Thus, we see that [z,y] € lima” - R = {0}. Hence, R is commutative. =

Recall that a local algebra is a unital algebra whose radical has codimen-
sion 1.
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LEMMA 3.2. Let A be a local Fréchet algebra with the property that for
every collection {an € rad A : o € ¢} there exist a # [ € ¢ such that
aqn € agA. Then A is either an algebra of power series or isomorphic to
C[X]/X4C[X] for some d € N. If, in addition, A is a Banach algebra, it
must be of the latter form.

Proof. We have A = R# where R is the radical of A. Suppose that
R # {0}. Let a,b € R. We claim that either a € bR” or b € aR*. Indeed,
set ao, = aa + b (o € C). The assumption implies that there exist o # [
such that aa+b € (Ba+b)R?; say aa+b = (Ba+b)(Ne+x) for some A € C
and x € R. Then we see that

al(o — AB)e — Ba] = b\ — 1)e + 1],

and that o — A8 and A — 1 cannot be 0 simultaneously. The claim then
follows since R” \ R = Inv R¥.

Proposition 2.2 implies that R does not satisfy any of the conditions
in Theorem 1.1. In particular, Theorem 1.1(ii) shows that there exists a €
R\ R-R. Let z € R be arbitrary. Then we have shown that either z € aR"
or a € xR¥. The latter implies that a € z- (R¥ \ R), and so = € a- (R \ R).
Thus in both cases we have & € aR?. Hence, R and a satisfy the hypothesis
of Lemma 3.1, and so R is commutative.

Since for any x € R\{0} we have x = a"u for some n € Nand u € R*\R,
either R is an integral domain or a is nilpotent. In the former case, by [1,
Théoreme 2.5], A is an algebra of power series. In the latter case, it can
be proved as in the last part of the proof of [4, Theorem 8.4] that A is
isomorphic to C[X]/X?C[X] for some d € N. The last assertion also follows
from [4, Theorem 8.4]. =

The above is sufficient to remove the commutativity assumption from
the above mentioned results.

THEOREM 3.3. Let A be a unital Fréchet algebra A whose set of right
principal ideals forms a chain. Then:

(i) A is either an algebra of power series or isomorphic to C[X]/ X C[X]
for some d € N.
(ii) If A is a Banach algebra then A is isomorphic to C[X]/X?C[X].
(iii) If A has no continuous norm then A is topologically isomorphic to
Cl(x]).

Proof. The assumption implies that the set of right ideals in A forms a
chain. Let R be the unique maximal right ideal. Then R is the radical of A,
and it can be seen that R is closed. We claim that A/R = C. Let p be any
seminorm on A and set N = kerp. Then N C R, by the maximality of R.
Now, A/N is a normed algebra and R/N is the unique maximal right ideal
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for A/N. We can then deduce from Rickart—Jacobson’s density theorem for
A/N that A/R = (A/N)/(R/N) must be of dimension 1. Thus A = R¥.
Lemma 3.2 then completes the proof; (iii) follows from the last assertion of
[1, Théoréme 2.5]. m

For the class of Banach algebras, it is possible to weaken the hypothesis
further.

THEOREM 3.4. Let A be a Banach algebra with the property that for
every collection {ay : o € ¢} C A there exist a« # 3 € ¢ such that a, € agA¥.
Then there exist dy,...,d, € N such that A is isomorphic to either

P (CIX]/ X CIX]) & (XT[X]/XPC[X))
i=1

for some dy € N, or
'

Pcix)/x“CciX)) o E

i=1
where E is a 1-dimensional @)_, C[X]/X%C[X]-bimodule with trivial right
module action. If, in addition, A is unital, then A is isomorphic to

@c ]/ X%C[X].

Proof. Assume toward a contradiction that o(a) is uncountable for some
a € A. Then we see that the boundary do(a) of o(a) is uncountable (and
compact) and hence has cardinality ¢. Set S = do(a) \ {0}. The hypothesis
then implies that there exist o # 3 € S such that

(a—B)a € (a—a)aA® andso a€ (a—a)aA? C (a —a)A¥.

It follows that o € (a—a)A#, and thus a —a cannot be a topological divisor
of zero, contradicting the fact that a € do(a).

Assume toward a contradiction that o(a) is infinitely countable for some
a € A. Then there exists an infinite sequence of disjoint subsets of o(a)\ {0}
which are both open and closed in o(a). The functional calculus for a then
implies the existence of an orthogonal sequence (e,,) of non-zero idempotents
in A. For each subset F of N, define

1
w=D, 2k leg]|

keE

Then we see that ap ¢ apA?* whenever E ¢ F. Combining this with
Sierpinski’s family {E, : a € c¢} of infinite subsets of N with the prop-
erty that E, N Ej is finite for each o # ( € ¢ (for more details see [5]) will
give us a contradiction to the assumption.
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We have shown that o(a) is finite for all a € A. A theorem due to
Kaplansky (see, for example, [2, 2.6.29]) then shows that A/rad A has finite
dimension. Now, let P be any primitive ideal of A. Then P is the kernel
of a homomorphism 7 from A onto M,;(C) for some d € N. Assume toward
a contradiction that d > 2. For each A € C, define Ny to be the right
ideal of M4(C) consisting of those matrices whose first row is A times the
second row. It is obvious that we can find a) € A such that w(ay) € N
but 7(ay) ¢ N, for a # \. This again gives us a contradiction. Thus, we
have A/rad A = C" for some r € N. It then follows from a Wedderburn
decomposition theorem due to Feldman that there exists an orthogonal set
{e1,...,er} of idempotents of A such that A = @;_, Ce; & rad A (see, for
example, [2, 1.5.18 and 2.4.2]). We also set eg =e — > _; €.

Fix 1 € {1,...,7}. Set A; = ¢;Ae;. Then A; is a local Banach algebra
whose radical is e;(rad A)e;. Let {ay : A € ¢} be a family in A;. Then there
exist a # [ € ¢ such that a, € aBA#. This implies that a, € ageiA#ei =
agA;. Thus A; satisfies the hypothesis of Lemma 3.2, and so A; is isomorphic
to C[X]/X%C[X] for some d; € N. Similarly, we see that Ay = egAeq is a
radical Banach algebra whose unitization, which is egA#eg in the case where
ep # 0, satisfies the hypothesis of Lemma 3.2, and so egAeg is isomorphic
to XC[X]/X%C[X] for some dgy € N.

Fix j € {0,...,r}. Let u,v € Ae; \ {0} be arbitrary. The hypothesis then
implies that there exist a # 8 € C such that au 4+ v € (Bu + v)A*, and so
au +v € (Bu+ v)ejA¥e;. Then, similar to Lemma 3.2, we see that either
u € vejA#ej orv € uejA#ej. Thus, we can deduce that at most one of the
subspaces e;Ae; (0 < i < ) is non-zero. In particular, e;Ae; = {0} if both
0<i#j<randj>1.

Suppose that e;Aeg # {0} for some 1 < i < r (this forces egAey = {0}).
Let u,v € e;Aeg \ {0}. It follows from the previous paragraph and egAey =
{0} that v and v are linearly dependent. Thus e; Aey has dimension 1. The
result then follows. m

Conversely, it can be seen that if A is an algebra of either form in the pre-
vious theorem, then for every aj,...,ay € A, there existi # j € {1,...,N}
such that a; € ajA#; here N is a natural number depending on dy, dy, . .., d,.

COROLLARY 3.5. Let A be a non-zero prime Banach algebra with the
property that for every collection {a, € A : o € ¢} there exist « # 3 € ¢
such that aq € agA#. Then A is isomorphic to C.
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