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A theorem of Gel’fand–Mazur type

by

Hung Le Pham (Edmonton)

Abstract. Denote by c any set of cardinality continuum. It is proved that a Banach
algebra A with the property that for every collection {aα : α ∈ c} ⊂ A there exist
α 6= β ∈ c such that aα ∈ aβA# is isomorphic to

rM
i=1

(C[X]/XdiC[X])⊕ E,

where d1, . . . , dr ∈ N, and E is either XC[X]/Xd0C[X] for some d0 ∈ N or a 1-dimensionalLr
i=1 C[X]/XdiC[X]-bimodule with trivial right module action. In particular, C is the

unique non-zero prime Banach algebra satisfying the above condition.

The classical Gel’fand–Mazur theorem states that C is the unique (com-
plex) normed division ring. A division ring has only {0} and itself as the
right [left] principal ideals, and thus, it is a special case of unital domains
whose set of right [left] principal ideals forms a chain. It is obvious that the
set of right principal ideals of a unital algebra A forms a chain if and only
if, for any a, b ∈ A, either a ∈ bA or b ∈ aA. In the commutative case, a
valuation ring is defined as a unital integral domain whose set of principal
ideals forms a chain.

In [3], J. Esterle proved that C is the unique commutative Banach algebra
which is a valuation ring. This was then extended in [4] as follows.

Theorem (Esterle). Let A be a commutative unital Banach algebra
whose set of principal ideals forms a chain. Then A is isomorphic to the
quotient C[X]/XdC[X] for some d ∈ N.

In this paper, we shall remove the commutativity hypothesis from this
result. Thus, in particular, C is the unique unital prime Banach algebra
whose set of right principal ideals forms a chain. For this purpose, we only
need to prove that a unital Fréchet algebra whose set of right principal ideals
forms a chain must be commutative; the above theorems of Esterle can then
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DOI: 10.4064/sm191-1-6 [81] c© Instytut Matematyczny PAN, 2009



82 Hung Le Pham

be applied. This will also remove the commutativity assumption from the
following theorem of Bouloussa [1]; here, a Fréchet algebra A is an algebra of
power series if there exists a continuous monomorphism from A into C[[X]]
whose image contains C[X].

Theorem (Bouloussa). A commutative unital Fréchet algebra A of di-
mension at least 2 which is a valuation ring must be an algebra of power
series. If , in addition, A has no continuous norm then A is topologically
isomorphic to C[[X]].

In fact, we shall consider Banach algebras A having a weaker property
that for every collection {aλ : λ ∈ c} ⊂ A there exist α 6= β ∈ c such that
aα ∈ aβA#; where A# is the conditional unitization of A. A consequence
of Theorem 3.4 is that an infinite-dimensional unital Banach algebra must
contain right [left] principal ideals Iλ (λ ∈ c) such that Iα 6⊂ Iβ (α 6= β ∈ c).

Note that there are infinite-dimensional prime Banach algebras A where
A and {0} are the only two-sided ideals, for example A = B(`2)/K(`2).

1. Preliminaries. More details of most of the following can be found,
for example, in [2].

Let A be an algebra. We denote by either eA or e the identity of the
conditional unitization A# of A.

An algebra A is prime if {0} is a prime ideal in A, i.e. if either a = 0 or
b = 0 whenever a, b ∈ A and aAb = {0}. A domain is obviously prime.

Let E be a left A-module. Denote by A ·E the set {ax : a ∈ A, x ∈ E}.
Let (an) ⊂ A. Define

lim←− a1 · · · an · E = {x ∈ E : there exists a sequence (xn) in E such that
x = x1 and xn = anxn+1 (n ∈ N)}.

Let E be an A-bimodule. Then A⊕E becomes an algebra with pointwise
addition and the following standard multiplication:

(a⊕ x)(b⊕ y) = ab⊕ (ay + xb) (a⊕ x, b⊕ y ∈ A⊕ E).

A Fréchet algebra is a topological algebra A whose topology is determined
by a sequence (pn) of algebra seminorms such that

d(a, b) =
∞∑
n=1

min{pn(a− b), 1}
2n

(a, b ∈ A)

is a complete metric.
We shall need the following result, which is [4, Corollary 3.5]; it was

proved for Banach algebras, but the proof works for Fréchet algebras.

Theorem 1.1 (Esterle). Let R be a radical Fréchet algebra. Then the
following conditions are equivalent :
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(i) There exists a non-zero element a ∈ R such that a ∈ Ra.
(ii) There exists a sequence (an) in R such that lim←− a1 · · · an ·R 6= {0}.
(iii) There exists a strictly increasing sequence of left principal ideals

in R#.

2. Right principal submodules. In this section, we shall prove a re-
sult for modules similar to results in [1], [3], and [4] (and without the com-
mutativity assumption). The proof follows the same ideas of using Baire’s
category theorem and Liouville’s theorem.

Lemma 2.1. Let R be a radical Fréchet algebra. Let E be a topological
vector space and a left R-module such that a 7→ ax, R → E, is continuous
for all x ∈ E, and E = R · E. Then, for each φ : E → R+ and each non-zero
continuous seminorm q on E, the set

U = {(x, y) ∈ E × E : φ(vx) < q(vy) for some v ∈ R#}

is dense in E × E.

Proof. First, let (x, y) be arbitrary in E×E with x ∈ R ·E and q(y) 6= 0.
Let x′ ∈ E and c ∈ R be such that cx′ = x. We see that, for each r ∈ N,
there exists λr ∈ C such that

0 < |λr| < 1/r and q((λr + c)−1y) > φ(x′) ;

for otherwise the Hahn–Banach and Liouville theorems imply q((λ+ c)−1y)
= 0 (λ ∈ C) (cf. [1, Lemme 1.1]), and so

q(y) = lim
λ→∞

q(λ(λ+ c)−1y) = 0.

Set vr = λr + c ∈ R# and xr = vrx
′ ∈ E. Then

φ(v−1
r xr) = φ(x′) < q(v−1

r y),

so that (xr, y) ∈ U (r ∈ N). We have limxr = x, so (x, y) ∈ U . The set
{y ∈ E : q(y) 6= 0} is dense in E. Therefore, U is dense in E × E as
claimed.

Proposition 2.2. Let R be a radical Fréchet algebra. Let E be a Fréchet
left R-module having a non-zero element x ∈ E such that x ∈ R · x. Then
there exists a sequence (xn) in R · x with the properties that xj /∈ xi · A
(i 6= j ∈ N) for each algebra A such that A acts continuously on the right
on E and E ∈ R-mod-A.

Proof. Set F = R · x. We see that 0 6= x ∈ F and F = R · F . Denote by
Ω the product space FN; its topology is defined by a complete metric. Let
(qk) be an increasing sequence of non-zero seminorms defining the topology
of E.
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For each triple s = (l, i, j) of natural numbers with i 6= j, set

Us = {(xr) ∈ Ω : l2ql(vxi) < q1(vxj) for some v ∈ R#}.
By Lemma 2.1, this is a dense (open) subset of Ω. By the Baire category
theorem, there exists a sequence (xr) contained in all Us.

Let i 6= j ∈ N. We need to show that

xj /∈ xi ·A.
Indeed, assume the contrary that xj = xic for some c ∈ A. The previous
paragraph shows that there exist (vl) in R# such that

ql(vlxi) < 1/l and q1(vlxj) > l (l ∈ N).

This shows that liml→∞ vlxic = 0; however, (vlxj : l ∈ N) can never con-
verge, a contradiction.

3. Main results

Lemma 3.1. Let R be an algebra and let a ∈ R. Suppose that lim←− a
n ·R

= {0} and R = aR#. Then R is commutative.

Proof. Denote by e the identity of R#. We also set [x, b, y] = xby − ybx
and [x, y] = [x, e, y] = xy − yx (b, x, y ∈ R#).

Let x, y ∈ R be arbitrary. Then R = aR# implies that there exist se-
quences (αn), (βn) in C and (xn), (yn) in R such that x = x0, y = y0, and
xn−1 = a(αne + xn) and yn−1 = a(βne + yn) (n ∈ N). Then we see that

[xn−1, a
n−1, yn−1] = a(αn[an, yn] + βn[xn, an] + [xn, an, yn]) (n ∈ N);

our convention here is a0 = e. For each n ∈ N, set

wn =
[ n∑
k=1

αka
k, yn

]
+

[
xn,

n∑
k=1

βka
k
]

+ [xn, an, yn].

Then [x, y] = aw1 and, for n > 1,

wn−1 =
[ n−1∑
k=1

αka
k, yn−1

]
+

[
xn−1,

n−1∑
k=1

βka
k
]

+ [xn−1, a
n−1, yn−1]

=
[ n−1∑
k=1

αka
k, βna+ ayn

]
+

[
αna+ axn,

n−1∑
k=1

βka
k
]

+ a(αn[an, yn] + βn[xn, an] + [xn, an, yn])
= awn.

Thus, we see that [x, y] ∈ lim←− a
n ·R = {0}. Hence, R is commutative.

Recall that a local algebra is a unital algebra whose radical has codimen-
sion 1.
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Lemma 3.2. Let A be a local Fréchet algebra with the property that for
every collection {aα ∈ radA : α ∈ c} there exist α 6= β ∈ c such that
aα ∈ aβA. Then A is either an algebra of power series or isomorphic to
C[X]/XdC[X] for some d ∈ N. If , in addition, A is a Banach algebra, it
must be of the latter form.

Proof. We have A = R# where R is the radical of A. Suppose that
R 6= {0}. Let a, b ∈ R. We claim that either a ∈ bR# or b ∈ aR#. Indeed,
set aα = αa + b (α ∈ C). The assumption implies that there exist α 6= β
such that αa+b ∈ (βa+b)R#; say αa+b = (βa+b)(λe+x) for some λ ∈ C
and x ∈ R. Then we see that

a[(α− λβ)e− βx] = b[(λ− 1)e + x],

and that α − λβ and λ − 1 cannot be 0 simultaneously. The claim then
follows since R# \R = InvR#.

Proposition 2.2 implies that R does not satisfy any of the conditions
in Theorem 1.1. In particular, Theorem 1.1(ii) shows that there exists a ∈
R \R ·R. Let x ∈ R be arbitrary. Then we have shown that either x ∈ aR#

or a ∈ xR#. The latter implies that a ∈ x · (R# \R), and so x ∈ a · (R# \R).
Thus in both cases we have x ∈ aR#. Hence, R and a satisfy the hypothesis
of Lemma 3.1, and so R is commutative.

Since for any x ∈ R\{0} we have x = anu for some n ∈ N and u ∈ R#\R,
either R is an integral domain or a is nilpotent. In the former case, by [1,
Théorème 2.5], A is an algebra of power series. In the latter case, it can
be proved as in the last part of the proof of [4, Theorem 8.4] that A is
isomorphic to C[X]/XdC[X] for some d ∈ N. The last assertion also follows
from [4, Theorem 8.4].

The above is sufficient to remove the commutativity assumption from
the above mentioned results.

Theorem 3.3. Let A be a unital Fréchet algebra A whose set of right
principal ideals forms a chain. Then:

(i) A is either an algebra of power series or isomorphic to C[X]/XdC[X]
for some d ∈ N.

(ii) If A is a Banach algebra then A is isomorphic to C[X]/XdC[X].
(iii) If A has no continuous norm then A is topologically isomorphic to

C[[X]].

Proof. The assumption implies that the set of right ideals in A forms a
chain. Let R be the unique maximal right ideal. Then R is the radical of A,
and it can be seen that R is closed. We claim that A/R = C. Let p be any
seminorm on A and set N = ker p. Then N ⊂ R, by the maximality of R.
Now, A/N is a normed algebra and R/N is the unique maximal right ideal
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for A/N . We can then deduce from Rickart–Jacobson’s density theorem for
A/N that A/R ∼= (A/N)/(R/N) must be of dimension 1. Thus A = R#.
Lemma 3.2 then completes the proof; (iii) follows from the last assertion of
[1, Théorème 2.5].

For the class of Banach algebras, it is possible to weaken the hypothesis
further.

Theorem 3.4. Let A be a Banach algebra with the property that for
every collection {aα : α ∈ c} ⊂ A there exist α 6= β ∈ c such that aα ∈ aβA#.
Then there exist d1, . . . , dr ∈ N such that A is isomorphic to either

r⊕
i=1

(C[X]/XdiC[X])⊕ (XC[X]/Xd0C[X])

for some d0 ∈ N, or
r⊕
i=1

(C[X]/XdiC[X])⊕ E

where E is a 1-dimensional
⊕r

i=1 C[X]/XdiC[X]-bimodule with trivial right
module action. If , in addition, A is unital , then A is isomorphic to

r⊕
i=1

C[X]/XdiC[X].

Proof. Assume toward a contradiction that σ(a) is uncountable for some
a ∈ A. Then we see that the boundary ∂σ(a) of σ(a) is uncountable (and
compact) and hence has cardinality c. Set S = ∂σ(a) \ {0}. The hypothesis
then implies that there exist α 6= β ∈ S such that

(a− β)a ∈ (a− α)aA# and so a ∈ (a− α)aA# ⊂ (a− α)A#.

It follows that α ∈ (a−α)A#, and thus a−α cannot be a topological divisor
of zero, contradicting the fact that α ∈ ∂σ(a).

Assume toward a contradiction that σ(a) is infinitely countable for some
a ∈ A. Then there exists an infinite sequence of disjoint subsets of σ(a)\{0}
which are both open and closed in σ(a). The functional calculus for a then
implies the existence of an orthogonal sequence (en) of non-zero idempotents
in A. For each subset E of N, define

aE =
∑
k∈E

1
2k‖ek‖

ek.

Then we see that aE /∈ aFA
# whenever E 6⊂ F . Combining this with

Sierpiński’s family {Eα : α ∈ c} of infinite subsets of N with the prop-
erty that Eα ∩ Eβ is finite for each α 6= β ∈ c (for more details see [5]) will
give us a contradiction to the assumption.
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We have shown that σ(a) is finite for all a ∈ A. A theorem due to
Kaplansky (see, for example, [2, 2.6.29]) then shows that A/radA has finite
dimension. Now, let P be any primitive ideal of A. Then P is the kernel
of a homomorphism π from A onto Md(C) for some d ∈ N. Assume toward
a contradiction that d ≥ 2. For each λ ∈ C, define Nλ to be the right
ideal of Md(C) consisting of those matrices whose first row is λ times the
second row. It is obvious that we can find aλ ∈ A such that π(aλ) ∈ Nλ

but π(aλ) /∈ Nα for α 6= λ. This again gives us a contradiction. Thus, we
have A/radA ∼= Cr for some r ∈ N. It then follows from a Wedderburn
decomposition theorem due to Feldman that there exists an orthogonal set
{e1, . . . , er} of idempotents of A such that A =

⊕r
i=1 Cei ⊕ radA (see, for

example, [2, 1.5.18 and 2.4.2]). We also set e0 = e−
∑r

i=1 er.
Fix i ∈ {1, . . . , r}. Set Ai = eiAei. Then Ai is a local Banach algebra

whose radical is ei(radA)ei. Let {aλ : λ ∈ c} be a family in Ai. Then there
exist α 6= β ∈ c such that aα ∈ aβA#. This implies that aα ∈ aβeiA#ei =
aβAi. Thus Ai satisfies the hypothesis of Lemma 3.2, and so Ai is isomorphic
to C[X]/XdiC[X] for some di ∈ N. Similarly, we see that A0 = e0Ae0 is a
radical Banach algebra whose unitization, which is e0A#e0 in the case where
e0 6= 0, satisfies the hypothesis of Lemma 3.2, and so e0Ae0 is isomorphic
to XC[X]/Xd0C[X] for some d0 ∈ N.

Fix j ∈ {0, . . . , r}. Let u, v ∈ Aej \{0} be arbitrary. The hypothesis then
implies that there exist α 6= β ∈ C such that αu+ v ∈ (βu+ v)A#, and so
αu + v ∈ (βu + v)ejA#ej . Then, similar to Lemma 3.2, we see that either
u ∈ vejA#ej or v ∈ uejA#ej . Thus, we can deduce that at most one of the
subspaces eiAej (0 ≤ i ≤ r) is non-zero. In particular, eiAej = {0} if both
0 ≤ i 6= j ≤ r and j ≥ 1.

Suppose that eiAe0 6= {0} for some 1 ≤ i ≤ r (this forces e0Ae0 = {0}).
Let u, v ∈ eiAe0 \ {0}. It follows from the previous paragraph and e0Ae0 =
{0} that u and v are linearly dependent. Thus eiAe0 has dimension 1. The
result then follows.

Conversely, it can be seen that if A is an algebra of either form in the pre-
vious theorem, then for every a1, . . . , aN ∈ A, there exist i 6= j ∈ {1, . . . , N}
such that ai ∈ ajA#; here N is a natural number depending on d0, d1, . . . , dr.

Corollary 3.5. Let A be a non-zero prime Banach algebra with the
property that for every collection {aα ∈ A : α ∈ c} there exist α 6= β ∈ c
such that aα ∈ aβA#. Then A is isomorphic to C.
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