
STUDIA MATHEMATICA 201 (3) (2010)

Common Cesàro hypercyclic vectors

by

George Costakis (Heraklion)

Abstract. In this work, which can be seen as a continuation of a paper by Hadjiloucas
and the author [Studia Math. 175 (2006)], we establish the existence of common Cesàro
hypercyclic vectors for the following classes of operators: (i) multiples of the backward
shift, (ii) translation operators and (iii) weighted differential operators. In order to do
so, we first prove a version of Ansari’s theorem for operators that are hypercyclic and
Cesàro hypercyclic simultaneously; then our argument essentially relies on Baire’s category
theorem. In addition, the minimality of the irrational rotation, Runge’s approximation
theorem and a common hypercyclicity-universality criterion established by Sambarino
and the author [Adv. Math. 182 (2004)], play an important role in the proofs.

1. Introduction. We start by recalling the notion of hypercyclicity.
Let X be a topological vector space. A linear operator T : X → X is
called hypercyclic if there exists a vector x ∈ X such that the sequence
{x, Tx, T 2x, . . .} is dense in X; the vector x is then called hypercyclic for T .
We will denote by HC(T ) the set of hypercyclic vectors for the operator T . In
the literature there are many examples of hypercyclic operators such as the
translation operator Tαf(z) = f(z+α) acting on the space of entire functions
H(C), the differentiation operator D : H(C) → H(C), certain unilateral
and bilateral weighted shifts, and composition operators on certain function
spaces (see the survey article [26]). For more recent results on hypercyclicity
we refer to the books [11], [30]; see also the survey articles [13], [24], [27],
[28], [37].

Throughout the present paper the symbol N stands, as usual, for the set
of positive integers. For the rest of the introduction X will be a complex
separable Banach space, unless otherwise stated. Relatively recently, León-
Saavedra [33] introduced the notion of Cesàro hypercyclicity. Following his
terminology, we denote by Mn(T ) the arithmetic means of an operator T :
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X → X, that is,

Mn(T ) =
I + T + · · ·+ Tn−1

n
, n = 1, 2, . . . .

The operator T will be called Cesàro hypercyclic if there is a vector x whose
Cesàro orbit under T , {Mn(T )x : n = 1, 2, . . .}, is dense in X. Recent studies
on Cesàro hypercyclic operators and Cesàro orbits can be found in [20], [33],
[35]. Let us also mention that León-Saavedra [33] showed that hypercyclicity
does not imply Cesàro hypercyclicity or vice versa.

In [33] it is shown that an operator T is Cesàro hypercyclic if and only
if there exists a vector y such that {n−1Tny : n = 1, 2, . . .} is dense. We call
the vector y Cesàro hypercyclic with respect to the sequence {n−1Tn}.

We ask the following.

Question 1.1. Is it true that if for some vector y the orbit {n−1Tny :
n = 1, 2, . . .} is somewhere dense, then it is dense in X?

Of course, we can ask the above question by replacing the orbit

{n−1Tny : n = 1, 2, . . .}

with the set
{z ∈ X : ∃nk → +∞, n−1

k Tnky → z},

since it is not difficult to check that an operator T is Cesàro hypercyclic if
and only if there exists a vector y such that the set {z ∈ X : ∃nk → ∞,
n−1
k Tnky → z} is dense in X. Question 1.1 is inspired by the next two

problems:

(i) a corresponding question asked by A. Peris [38] in the setting of
hypercyclic operators,

(ii) a problem on the existence of common Cesàro hypercyclic vectors
which we shall discuss later.

P. S. Bourdon and N. S. Feldman, in a very nice paper, answered the
question raised by Peris [38], proving that: if the orbit Orb(T, x) = {Tnx :
n=0, 1, 2, . . .} is somewhere dense then it is everywhere dense in X (see [14]).
We now state the following theorem, established in [20], which will be of use
to us.

Theorem 1.2. Let X be a complex separable Banach space and let
T : X → X be a bounded linear operator. The operator T is hypercyclic
and Cesàro hypercyclic if and only if there exist vectors x and y such that
the sets Orb(T, x) = {Tnx : n = 0, 1, 2, . . .} and F = {z ∈ X : ∃nk → +∞,
n−1
k Tnky → z} are somewhere dense. In fact, if Orb(T, x) and F are some-

where dense in X then both are dense in X.
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Using some consequences of Theorem 1.2 (see Section 2), our purpose
is to prove the existence of common Cesàro hypercyclic vectors for several
classes of operators.

As observed by León-Saavedra the problem of Cesàro hypercyclicity can
be seen as the problem on supercyclicity with respect to the sequence {n−1},
or as problem of hypercyclicity for a specific sequence of operators (not just
the sequence coming from the orbit {Tnx}). To be more precise, let us
give the following well known more general definition of hypercyclicity for a
sequence of operators (we refer to [26]).

Definition. Let X be a topological vector space (we mainly use as a
model space a complex separable Banach space, or the space of entire func-
tions H(C)). Let Tn : X → X be a sequence of continuous linear operators.
A vector x ∈ X is called hypercyclic for the sequence of operators {Tn} if
the sequence {T1x, T2x, . . .} is dense in X. The set of hypercyclic vectors for
{Tn} will be denoted by HC({Tn}).

Using this terminology, we can say that a vector x is Cesàro hypercyclic
for an operator T : X → X with respect to the sequence {n−1} if x ∈
HC({n−1Tn}). From now on, by the Cesàro orbit of a vector x under T we
mean the sequence {n−1Tnx : n = 1, 2, . . .}.

Let us also mention that under some natural assumptions, if the set
of hypercyclic vectors for a sequence of operators is non-empty then it is
necessarily residual, i.e. it contains a countable intersection of open and
dense sets (see for example [26]).

At this point we mention a few facts concerning the minimality of the
irrational rotation which will be used frequently throughout this paper. For a
real number x the symbol [x] denotes the integer part of x. The original and
well known statement, known as the minimality of the irrational rotation,
says that for every θ irrational the sequence {e2πinθ : n = 0, 1, 2, . . .} is dense
in T = {z ∈ C : |z| = 1} (see for example [31]). However, we will use the
following stronger version of the minimality of the irrational rotation (see
[23] for a relevant discussion).

Proposition 1.3. Let θ be an irrational number. Then for every ε > 0
there exist a strictly increasing sequence {nk} of positive integers and a
positive integer m such that

0 ≤ nkθ − [nkθ] < ε for every k = 1, 2, . . .

and
sup
k
|nk+1 − nk| < m,

i.e., the sequence {nk} has bounded gaps.
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Let us now describe the main results of the present paper. Applying the
results from Section 2 and refining some technics from [22] we shall prove
the following theorems.

Theorem 1.4. Let T be the unilateral backward shift operator acting on
l2(N). Then the set

⋂
|λ|>1 HC({n−1(λT )n}) is residual in l2(N).

Hence the set of common Cesàro hypercyclic vectors for multiples of
backward shift is large in the topological sense, i.e. residual. We note that
the above theorem has its analogue in the setting of hypercyclic operators
for pure powers of λT (see Theorem 4 in [22]).

In [22] we also established the existence of common hypercyclic vectors
for all the translation operators Tα : H(C)→ H(C), Tα(f)(z) := f(z + α),
α ∈ C\{0}. Here we prove the following analogue in the Cesàro hypercyclic-
ity setting.

Theorem 1.5. Consider the translation operator Ta : H(C) → H(C),
Tα(f)(z) := f(z + α), α ∈ C \ {0}. Then the set

⋂
α∈C\{0}HC({n−1Tnα }) is

residual in H(C).

As in [22] the proofs of Theorems 1.4 and 1.5 bear some similarity but
they are based on quite different approaches. To prove Theorem 1.4 we
will use a common universality-hypercyclicity criterion established in [22],
while a basic tool for the proof of Theorem 1.5 is Runge’s approximation
theorem. Of course in both proofs the version of Ansari’s theorem for Cesàro
hypercyclic operators, which is proven in Section 2, is used along with the
minimality of the irrational rotation (Proposition 1.3).

Continuing our investigation of common hypercyclic vectors, we also
establish the next theorem, where two parameters appear. In fact, we are
able to replace in Theorem 1.5 the weight n−1 by the more general weight
nb for any real number b, but we restrict the translation property to be valid
only for non-zero real α.

Theorem 1.6. Let Tα, α ∈ C\{0}, be the translation operator acting on
the space H(C) of entire functions. Then the set

⋂
b∈R

⋂
α∈R\{0}HC({nbTα})

is residual in H(C).

It would be very interesting if one could prove a result similar to Theorem
1.6, but allow α to be any non-zero complex number. After the proof of
Theorem 1.6, we will explain why our method does not work in this case. In
a recent paper [10], Bayart and Matheron were able to solve this problem.

Furthermore it is possible to deal with the differentiation operator acting
on H(C), in order to provide common hypercyclic vectors for certain classes
of weighted sequences of differential operators.
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Theorem 1.7. Let D : H(C) → H(C) be the differentiation operator.
Then the set

⋂
b∈R HC({nbDn}) is residual in H(C).

The proof will be based on a straightforward application of the common
universality criterion established in [22].

The paper is organized as follows. In Section 2 we establish, as an appli-
cation of Theorem 1.2, versions of Herrero’s conjecture and Ansari’s theorem
in the context of operators that are hypercyclic and Cesàro hypercyclic. Sec-
tions 3 and 4 contain the proofs of Theorems 1.4 and 1.5 respectively. In
Section 5, after establishing a series of theorems similar in spirit to Theorem
1.2 and to Theorem 2.7 (a first version of Ansari’s result), we prove Theorem
1.6. In the last section, we give a proof of Theorem 1.7.

Let us also list some papers dealing with the subject of common hyper-
cyclic vectors: [1], [3], [10], [12], [15]–[17], [19], [21], [22], [25], [34], [41]–[43].
We also note that E. Abakumov and G. Gordon [1] were the first to estab-
lish the existence of common hypercyclic vectors for an uncountable class of
operators, the multiples of the backward shift, answering a question raised
by H. Salas [40].

2. Applications of Theorem 1.2. In this section we present two appli-
cations of Theorem 1.2. More specifically we shall give versions of Herrero’s
conjecture [32] and Ansari’s theorem [2] in the context of operators which are
hypercyclic and Cesàro hypercyclic simultaneously. Shamim Ansari [2], us-
ing essentially a connectivity argument, showed the following striking result:
if T is hypercyclic, then for every positive integer n, Tn is also hypercyclic
and furthermore T and Tn share the same collection of hypercyclic vectors.
Recently two new, illuminating proofs of Ansari’s theorem have been pub-
lished: by Grosse-Erdmann, León-Saavedra and Piqueras-Lerena [29] and
by Marano and Salas [36]. Recall that a positive answer to Herrero’s con-
jecture, that is, the proof that multi-hypercyclic operators are hypercyclic,
was given by the author [18] and independently by A. Peris [38]. Observe
that Herrero’s conjecture implies Ansari’s theorem (see for example [38],
[14]), while both Herrero’s conjecture and Ansari’s theorem are corollaries
of Bourdon and Feldman’s Theorem 2.4 of [14]. Let us also mention that
J. Wengenroth [44] was able to relax the hypothesis that X is a Banach
space (or more generally a locally convex space). In fact, he showed that the
previously mentioned results are valid in arbitrary topological vector spaces.

To continue with a version of Herrero’s conjecture, we state a lemma.

Lemma 2.1. Suppose y1, . . . , ym are vectors in X. The following are
equivalent:

(i) The set {n−1Tnyj : j = 1, . . . ,m, n = 1, 2, . . .} is dense in X.
(ii)

⋃m
j=1{z ∈ X : ∃nk → +∞, n−1

k Tnkyj → z} = X.
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Proof. Trivial.

We now establish several lemmas in the spirit of [33] León-Saavedra [33]
proved that if T is Cesàro hypercyclic, then for every complex number λ,
the operator T − λ has dense range. In a similar way we can prove

Lemma 2.2. If T is multi-Cesàro hypercyclic, that is, there exist a posi-
tive integer m and vectors y1, . . . , ym in X such that the set

⋃m
j=1{Mn(T )yj :

n = 1, 2, . . .} is dense in X, then for every complex number λ, the operator
T − λ has dense range.

Lemma 2.3. Suppose y1, . . . , ym are vectors in X. The following are
equivalent:

(i) The set {n−1Tnyj : j = 1, . . . ,m, n = 1, 2, . . .} is dense in X.
(ii) The set {n−1(I − Tn)yj : j = 1, . . . ,m, n = 1, 2, . . .} is dense in X.

Proof. The proof relies on the fact that for y ∈ X the quantity

‖n−1Tny − n−1(I − Tn)y‖ = n−1‖y‖
converges to 0 as n→ +∞.

Lemma 2.4. Suppose that the set
⋃m
j=1{Mn(T )yj : n = 1, 2, . . .} is dense

in X for some y1, . . . , ym ∈ X. Then the set {n−1Tnyj : j = 1, . . . ,m, n =
1, 2, . . .} is dense in X.

Proof. By Lemma 2.2 and our hypothesis we deduce that the set

(T − I)
( m⋃
j=1

{Mn(T )yj : n = 1, 2, . . .}
)

=
m⋃
j=1

{n−1(I −Tn)(yj) : n = 1, 2, . . .}

is dense in X. Now Lemma 2.3 implies the desired result.

Below we establish an analogue of Herrero’s conjecture for operators
which are hypercyclic and Cesàro hypercyclic simultaneously.

Theorem 2.5. If T is multi-hypercyclic and multi-Cesàro hypercyclic,
then T is hypercyclic and Cesàro hypercyclic.

Proof. That T is hypercyclic is already known from the work of Bourdon
and Feldman [14]. Since T is multi-Cesàro hypercyclic, there are y1, . . . , ym ∈
X such that the set

⋃m
j=1{Mn(T )yj : n = 1, 2, . . .} is dense in X. Applying

Lemma 2.4 we find that {n−1Tnyj : j = 1, . . . ,m, n = 1, 2, . . .} is dense in
X. Now Lemma 2.1 implies that

m⋃
j=1

{z ∈ X : ∃nk → +∞, n−1
k Tnkyj → z} = X.

From this we deduce that for some i ∈ {1, . . . ,m} the set

{z ∈ X : ∃nk → +∞, n−1
k Tnkyi → z}
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is somewhere dense. Finally, Theorem 1.2 ensures that T is Cesàro hyper-
cyclic.

We now turn to an analogue of Ansari’s theorem, in the context of hy-
percyclic and Cesàro hypercyclic operators.

Lemma 2.6. Suppose there exists a vector y ∈ X such that

{z ∈ X : ∃nk → +∞, n−1
k Tnky → z} = X.

Then for every m = 1, 2, . . .,
m−1⋃
ρ=0

{z ∈ X : ∃nk → +∞, n−1
k Tmnk(T ρy)→ z} = X.

Proof. Let us first verify that for every m = 1, 2, . . . ,

m{z ∈ X : ∃nk → +∞, n−1
k Tnky → z}

⊂
m−1⋃
ρ=0

{z ∈ X : ∃nk → +∞, n−1
k Tmnk(T ρy)→ z}.

Let z ∈ {w ∈ X : ∃nk → +∞, n−1
k Tnky → w} and fix a positive inte-

ger m. Since every natural number N can be expressed as N = mn + ρ
for some natural number n and ρ ∈ {0, 1, . . . ,m − 1}, there exists a se-
quence {nk} of positive integers and some ρ ∈ {0, 1, . . . ,m − 1} such that
nk → +∞ and (mnk + ρ)−1Tmnk+ρy → z. Now it is not difficult to see that
n−1
k Tmnk(T ρy)→ mz. Hence

mz ∈ {z ∈ X : ∃nk → +∞, n−1
k Tmnk(T ρy)→ z}.

Since {z ∈ X : ∃nk → +∞, n−1
k Tnky → z} = X, the desired result follows.

We are ready to prove a version of Ansari’s theorem which will be useful
in the next sections.

Theorem 2.7. If T : X → X is hypercyclic and for some y ∈ X the
orbit {n−1Tny : n = 1, 2, . . .} is dense, then for every positive integer m the
orbit {n−1Tmny : n = 1, 2, . . .} is also dense. Hence, if T is hypercyclic and
Cesàro hypercyclic, then for every positive integer m, Tm is hypercyclic and
Cesàro hypercyclic.

Proof. Fix a positive integer m. Lemma 2.6 implies that for some ρ ∈
{0, 1, . . . ,m−1} the set {z ∈ X : ∃nk → +∞, n−1

k Tmnk(T ρy)→ z} is some-
where dense. Since Tm is hypercyclic (by Ansari’s theorem), Theorem 1.2
shows that {z ∈ X : ∃nk → +∞, n−1

k Tmnk(T ρy) → z} = X. Therefore
the orbit {n−1Tmn(T ρy)} is dense. Because T is a hypercyclic operator, it
has dense range. Hence, the set Tm−ρ({n−1Tmn(T ρy)}) = {n−1Tm(n+1)y}
is dense. From that, it is easy to check that the orbit {n−1Tmny} is dense.
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Remark 2.8. Observe that Theorem 2.7 (and Theorem 1.2), in view
of the result of Wengenroth [44], holds for any topological vector space as
well. In particular it holds for the complete metric space H(C) of entire
functions, endowed with the topology of uniform convergence on compact
sets. This remark is crucial for the rest of the paper, especially when we deal
with hypercyclic operators acting on H(C). In this section we preferred to
work on a complex Banach space, because we frequently wanted to refer to
León-Saavedra’s paper [33].

3. Proof of Theorem 1.4. Let us first state the following common uni-
versality criterion, established in [22], which will be used repeatedly through-
out this paper.

Theorem 3.1. Let X be a separable F-space (a topological vector space
whose topology is induced by a complete invariant metric ρ; to simplify no-
tation we write ‖x‖ = ρ(x, 0)). Let {Tn,λ : n ∈ N, λ ∈ I} be a family
of operators on X such that for fixed n the map λ 7→ Tn,λ is continu-
ous. Assume there is a dense set {xj : j = 1, 2, . . .} ⊂ X and a family
{Sn,λ : n ∈ N, λ ∈ I} of operators such that Tn,λ ◦ Sn,λ = Id and on X:

(1) Given xj and a compact set K ⊂ I there is a sequence of positive
numbers ck such that

(a)
∑∞

k=1 ck <∞,
(b) ‖Tn+k,λ ◦ Sn,αxj‖ ≤ ck for any n, k ≥ 0 and λ, α ∈ K,
(c) ‖Tn,λ ◦Sn+k,αxj‖ ≤ ck for any n, k ≥ 0 and λ, α ∈ K with λ ≤ α.

(2) Given ε, xj and a compact set K ⊂ I, there exists 0 < C(ε) < 1 such
that for λ, α ∈ K,

if 1 ≥ λ/α > C(ε)1/n then ‖Tn,λ ◦ Sn,αxj − xj‖ < ε.

Then there exists a residual set G ⊂ X such that for every λ ∈ I,

G ⊂ HC({Tn,λ}).
In the rest of this section the symbol T denotes the backward shift op-

erator acting on the space l2(N) of square summable sequences. The proof
of Theorem 1.4 is based on the next two theorems. We follow the scheme
developed in [22].

Theorem 3.2. There is a dense Gδ set G ⊂ l2(N) such that

G ⊂ HC({n−1(λT )n}) for every real λ > 1.

Proof. We will apply the common universality-hypercyclicity criterion.
For every n ∈ N define

Tn,λ =
(λT )n

n
and Sn,λ = n

Sn

λn
,
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where S is the forward shift defined by

S(x1, x2, . . .) = (0, x1, x2, . . .) for (x1, x2, . . .) ∈ l2(N).

It is obvious that Tn,λ ◦ Sn,λ = Id. As a countable dense set in l2 (= l2(N))
take

D = {(xn) ∈ l2 : xn ∈ Q + iQ and xn = 0 eventually}.
To check items (1), (2) of Theorem 4.1, fix x = (xn) ∈ D, a compact interval
[λ1, λ2] ⊂ (1,∞) and ε > 0. There is k0 such that xk = 0 for every k ≥ k0.
Working as in the proof of Theorem 15 from [22], set

ck =
k + 1
λk
‖x‖, k ≥ k0,

and choose C(ε) so that

1− ε/‖x‖ < C(ε) < 1.

Then it is easy to check that all the hypotheses of Theorem 3.1 are satisfied.
This completes the proof.

Theorem 3.3. Suppose x ∈ HC({n−1(λT )n}) for some λ > 1. Then

x ∈ HC({n−1(λe2πiθT )n}) for every θ ∈ [0, 1].

Hence, if x is Cesàro hypercyclic for λT then it is also Cesàro hypercyclic
for λe2πiθT for every θ ∈ [0, 1].

Proof. Fix θ ∈ [0, 1]. We shall prove that {n−1(λe2πiθT )nx} is dense.
In case θ is rational, we argue as in the proof of Theorem 16 from [22],

provided that we now use the version of Ansari’s theorem for hypercyclic
and Cesàro hypercyclic operators, Theorem 2.7 (notice that Theorem 2.7 is
applicable, since λT is hypercyclic and Cesàro hypercyclic: see [33]).

Now assume that θ is irrational. Fix z ∈ l2 \ {0} and ε > 0.
Let y = {yj} ∈ l2 be such that yj is eventually zero and

(3.1) ‖y − z‖ < ε

8
.

Observe that the series
∞∑
j=1

∥∥∥∥Sjyλj
∥∥∥∥

converges. Hence, there exists a positive integer l satisfying

(3.2) yj = 0 for j ≥ l and
∞∑
j=l

∥∥∥∥Sjyλj
∥∥∥∥ < ε

8
.

By Proposition 1.3 there exist a positive integer m and a sequence of positive
integers n1 < n2 < · · · such that

(3.3) 0 ≤ nkθ

l
−
[
nkθ

l

]
<

ε

4πl‖z‖
and sup

k
|nk+1 − nk| < ml.
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Set

w = l

[
y +

Sly

λl
+ · · ·+ S(m−1)ly

λ(m−1)l

]
.

Let ε1 be a positive number such that

(3.4)

if ‖v − u‖ < ε1 then
∥∥∥∥(λT )t

l
(v)− (λT )t

l
(u)
∥∥∥∥ < ε

8
for 1 ≤ t ≤ ml.

Applying Theorem 2.7, choose a positive integer n such that

(3.5)
∥∥∥∥(λT )nlx

n
− w

∥∥∥∥ < ε1

and

(3.6)
∣∣∣∣1− n

n+ j

∣∣∣∣ < ε1
ε1 + ‖w‖

, j = 0, 1, . . . ,m.

It is plain that there exists a positive integer nk which can be written as

nk = nl + jl

for some positive integer j with 0 ≤ j ≤ m− 1. We now estimate∥∥∥∥(λT )nkx
nk

− z
∥∥∥∥ =

∥∥∥∥(λT )jl

l

(
(λT )nlx
n+ j

)
− z
∥∥∥∥

≤
∥∥∥∥(λT )jl

l

(
(λT )nlx
n+ j

)
− (λT )jl

l

(
(λT )nlx

n

)∥∥∥∥+
∥∥∥∥(λT )jl

l

(
(λT )nlx

n

)
− z
∥∥∥∥

=: A+B.

Because of (3.5), (3.6) we get∥∥∥∥(λT )nlx
n

− (λT )nlx
n+ j

∥∥∥∥ =
∣∣∣∣1− n

n+ j

∣∣∣∣ ∥∥∥∥(λT )nlx
n

∥∥∥∥ < ε1

and using (3.4) we deduce that

A < ε/8.

It remains to estimate B. Using (3.1), (3.2) and (3.5) it follows that

B ≤
∥∥∥∥(λT )jl

l

(
(λT )nlx

n

)
− (λT )jl

l
w

∥∥∥∥+
∥∥∥∥(λT )jl

l
w − y

∥∥∥∥+ ‖y − z‖

< ε/8 + ε/8 + ε/8 = 3ε/8.

Therefore, ∥∥∥∥(λT )nkx
nk

− z
∥∥∥∥ < ε

2
,
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and combining this with (3.3) we arrive at∥∥∥∥(λe2πiθT )nkx
nk

− z
∥∥∥∥ =

∥∥∥∥e2πinkθ (λT )nkx
nk

− z
∥∥∥∥

≤
∥∥∥∥(λT )nkx

nk
− z
∥∥∥∥+ ‖e2πinkθz − z‖

<
ε

2
+ 2π

∣∣∣∣nkθ − l[nkθl
]∣∣∣∣‖z‖ < ε

2
+
ε

2
= ε.

This completes the proof of Theorem 3.3.

It is evident that Theorem 1.4 is an immediate consequence of Theorems
3.2 and 3.3.

4. Proof of Theorem 1.5. As usual H(C) denotes the space of entire
functions endowed with the topology of uniform convergence on compact
subsets of C. Throughout this section the symbol Tα, for α ∈ C\{0}, stands
for the translation operator Tα : H(C)→ H(C) defined by

Tα(f)(z) := f(z + α) for every f ∈ H(C).

Following the scheme developed in [22], our Theorem 1.5 consists of two
steps. As mentioned in the introduction, in contrast with the proof of Theo-
rem 1.4, the common hypercyclicity criterion is replaced by an appropriate
use of Runge’s theorem. Of course the version of Ansari’s theorem for hyper-
cyclic and Cesàro hypercyclic operators and the minimality of the irrational
rotation are important tools in our approach.

Theorem 4.1. There is a dense Gδ set G ⊂ H(C) such that

G ⊂ HC({n−1Tne2πiθ}) for every θ ∈ [0, 1].

Proof. Let {φj : j ≥ 1} be a countable dense set in H(C). For s, j, k,m
in N define

E(s, j, k,m) ={
f ∈ H(C) : ∀θ ∈ [0, 1] ∃n = n(θ) ≤ m : sup

|z|≤k

∣∣∣∣f(z + ne2πiθ)
n

−φj(z)
∣∣∣∣ < 1

s

}
.

It is not difficult to verify that the set E(s, j, k,m) is open in H(C) for all
s, j, k,m ∈ N: the proof is similar to that of Lemma 9 in [22] and is omitted.
Now define

G :=
⋂
s

⋂
j

⋂
k

⋃
m

E(j, s, k,m).

We shall show that G satisfies the conclusion of Theorem 4.1. In view of
Baire’s category theorem and since each E(s, j, k,m) is open, it suffices to
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prove that for all s, j, k ∈ N the set
∞⋃
m=1

E(s, j, k,m)

is dense in H(C).
Fix s, j, k ∈ N, g ∈ H(C), a compact set C and ε > 0. We will be done if

we prove the existence of an f ∈ H(C) and a positive integer m satisfying

(4.1) f ∈ E(s, j, k,m)

and

(4.2) sup
z∈C
|f(z)− g(z)| < ε.

Without loss of generality assume that C ⊂ {|z| ≤ k}; moreover φj will be
simply denoted by φ. Choose δ < 1/2 such that

(4.3) if |z| ≤ k and |z − w| < δ then |φ(z)− φ(w)| < 1
2s
.

Consider a partition 0 = θ0 < θ1 < · · · < θl = 1 to be chosen later. Set

t = 2k + 1 and B = {|z| ≤ k + δ}.
For d = 0, 1, . . . , l define

Bd = B + e2πiθd(d+ 1)t.

Observe that the sets B,B0, B1, . . . , Bl are pairwise disjoint. Now define the
function h on the compact set R = B ∪

⋃l
d=0Bd by

h(z) =
{
g(z), z ∈ B,
φ(z − e2πiθd(d+ 1)t)(d+ 1)t, z ∈ Bd, d = 0, 1, . . . , l.

Since R has connected complement, by Runge’s theorem (see [39]), there is
a polynomial f such that

(4.4) sup
z∈R
|f(z)− h(z)| < min

{
1
2s
, ε

}
.

In the rest of the proof we shall choose l and a partition 0 = θ0 < θ1 < · · · <
θl = 1 so that f is the desired function. The definition of h and (4.4) imply

sup
z∈C
|f(z)− g(z)| < ε,

therefore (4.2) holds. To finish the proof we have to ensure that (4.1) also
holds. For that, we shall find l and 0 = θ0 < θ1 < · · · < θl = 1 such that for
θ ∈ [θd, θd+1), we get

(4.5) sup
|z|≤k

∣∣∣∣f(z + (d+ 1)te2πiθ)
(d+ 1)t

− φ(z)
∣∣∣∣ < 1

s
.
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Then setting m = (l+ 1)t we derive (4.1). Let θ ∈ [θd, θd+1) and assume for
the moment that

(4.6) |e2πiθd+1 − e2πiθd |(d+ 1)t < δ.

For |z| ≤ k we get z + (d+ 1)te2πiθ ∈ Bd. Hence, for |z| ≤ k,∣∣∣∣f(z + (d+ 1)te2πiθ)
(d+ 1)t

− φ(z)
∣∣∣∣

≤
∣∣∣∣f(z + (d+ 1)te2πiθ)

(d+ 1)t
− φ(z + (d+ 1)te2πiθ − (d+ 1)te2πiθd)

∣∣∣∣
+ |φ(z + (d+ 1)t(e2πiθ − e2πiθd))− φ(z)|.

Now we estimate the right hand side of the above inequality. The definition
of h, (4.4) and the fact that (d+ 1)t > 1 imply∣∣∣∣f(z + (d+ 1)te2πiθ)

(d+ 1)t
− φ(z + (d+ 1)te2πiθ − (d+ 1)te2πiθd)

∣∣∣∣ < 1
2s
.

Furthermore, (4.3) and (4.6) yield

|φ(z + (d+ 1)t(e2πiθ − e2πiθd))− φ(z)| < 1
2s
.

Hence, (4.5) holds. It only remains to find l and the partition 0 = θ0 < θ1 <
· · · < θl = 1 so that (4.6) is satisfied. But this can be done exactly as in the
proof of Lemma 10 in [22]. This completes the proof that G is dense and
hence that of Theorem 4.1.

Theorem 4.2. Let f ∈ HC({n−1Tn
e2πiθ
}) for some θ. Then for any pos-

itive real number r, the function f also belongs to HC({n−1Tn
re2πiθ

}).
Proof. It is not difficult to see (for example using a Baire’s category

argument along with Runge’s approximation theorem) that Tα is Cesàro
hypercyclic for any α ∈ C \ {0}, that is, for every α ∈ C \ {0} there is
f ∈ H(C) so that the sequence {n−1Tnα f} is dense in H(C). Hence, in our
case, the conclusion of Theorem 2.7 (see also Remark 2.8) holds. Suppose f
is hypercyclic for the sequence {n−1Tn

e2πiθ
}. Fix r > 0. We shall prove that

f is also hypercyclic for {n−1Tn
re2πiθ

}. Fix g ∈ H(C), a compact set L ⊂ C
and ε > 0. We want to prove that there is some positive integer N such that

sup
z∈L

∣∣∣∣f(z +Nre2πiθ)
N

− g(z)
∣∣∣∣ < ε.

If r = p/q is rational, using Theorem 2.7 and the argument in the proof
of Theorem 8 in [22], the result easily follows. We concentrate on the case
where r is irrational. The proof requires a few steps.

Step 1: The role of the uniform continuity of g and the minimality of
the irrational rotation.
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In this step we define a real number δ > 0, a positive integer k and two
sequences of positive integers n1 < n2 < · · · and m1 ≤ m2 ≤ · · · , having
certain “approximation properties”, by using the uniform continuity of g on
L and the minimality of the irrational rotation. So, choose a positive integer
k such that

k > 2 sup
z∈L
|z|.

Let δ be a positive number such that δ < 1 and

(4.7) if z ∈ L and |z − w| < δ then |g(z)− g(w)| < ε/4.

By Proposition 1.3 there exists a sequence of positive integers n1 < n2 < · · ·
such that for every j = 1, 2, . . . ,

0 ≤ njr

k
−
[
njr

k

]
<
δ

k
,(4.8)

δ

njr
<

ε

7ε+ 8 supz∈L |g(z)|
(4.9)

and

(4.10) sup
j
|nj+1 − nj | <∞.

By (4.8) and since δ < 1 it follows that the integer part of njr, [njr], is a
multiple of k. Setting mjk = [njr], we get

(4.11) 0 ≤ njr −mjk < δ

and

(4.12) sup
j
|mj+1 −mj | < m

for some positive integer m.

Step 2: The auxiliary function h which we want to approximate on an
appropriate set K.

Let d(z, L) denote the distance from z ∈ C to the compact set L. Set

Lδ = {z : d(z, L) ≤ δ}, Llδ = Lδ + lke2πiθ, l = 1, . . . ,m− 1,

K = Lδ ∪ L1
δ ∪ · · · ∪ Lm−1

δ .

Observe that, by the choice of k in Step 1, the sets Lδ, L1
δ , . . . , L

m−1
δ are

pairwise disjoint. We now define the function h on K by

h(z) =
{
g(z)/r, z ∈ Lδ,
g(z − lke2πiθ)/r, z ∈ Llδ, l = 1, . . . ,m− 1.

Step 3: We shall prove the following
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Claim 1. There exists a positive integer j such that

sup
z∈L

∣∣∣∣f(z + njre
2πiθ)

nk
− g(z)

r

∣∣∣∣ < 3ε
4r
,

where k is the positive integer from Step 1 and nj is the jth term of the
sequence n1 < n2 < · · · which appears in Step 1 as well.

Proof. By Runge’s theorem there exists an entire function ξ such that

(4.13) sup
z∈K
|ξ(z)− h(z)| < ε

4r
.

Since f is hypercyclic for {n−1Tn
e2πiθ
}, Theorem 2.7 shows that the sequence

{n−1T kn
e2πiθ

f} is dense in H(C). Then the sequence {k−1n−1T kn
e2πiθ

f} is also
dense in H(C). Hence, we may find a positive integer n satisfying

(4.14) sup
z∈K

∣∣∣∣f(z + nke2πiθ)
nk

− ξ(z)
∣∣∣∣ < ε

4r
,

and

(4.15)
∣∣∣∣ nk

nk + ρk
− 1
∣∣∣∣ < ε

6ε+ 8 supz∈L |g(z)|
,

for every ρ = 0, 1, . . . ,m− 1. Observe that (4.12) ensures the existence of a
positive integer j such that

nk ≤ mjk ≤ nk + (m− 1)k.

In addition there is l, 0 ≤ l ≤ m− 1, such that

mjk = nk + lk.

If we set w = (njr−mjk)e2πiθ, then (4.11) implies that |w| < δ. Using (4.7),
(4.13) and (4.14), for z ∈ L we get∣∣∣∣f(z + njre

2πiθ)
nk

− g(z)
r

∣∣∣∣
=
∣∣∣∣f(z + (njr −mjk)e2πiθ +mjke

2πiθ)
nk

− g(z)
r

∣∣∣∣
≤
∣∣∣∣f(z + w + (lk + nk)e2πiθ)

nk
− ξ(z + w + lke2πiθ)

∣∣∣∣
+
∣∣∣∣ξ(z + w + lke2πiθ)− g(z + w)

r

∣∣∣∣+
∣∣∣∣g(z + w)

r
− g(z)

r

∣∣∣∣
<

ε

4r
+

ε

4r
+

ε

4r
=

3ε
4r
.

Hence,

(4.16) sup
z∈L

∣∣∣∣f(z + njre
2πiθ)

nk
− g(z)

r

∣∣∣∣ < 3ε
4r
.
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Step 4: In this last step we shall prove the following claim which com-
pletes the proof of the theorem.

Claim 2. For the positive integer j of Step 3 we have

sup
z∈L

∣∣∣∣f(z + njre
2πiθ)

nj
− g(z)

∣∣∣∣ < ε.

Proof. Using (4.15) and (4.16) we get

(4.17)
∣∣∣∣f(z + njre

2πiθ)
nk + lk

− f(z + njre
2πiθ)

nk

∣∣∣∣
≤
∣∣∣∣1− nk

nk + lk

∣∣∣∣ ∣∣∣∣f(z + njre
2πiθ)

nk

∣∣∣∣ < ε

8r
.

Moreover combining (4.9), (4.16), (4.17) and using the inequality∣∣∣∣1− [njr]
njr

∣∣∣∣ < δ

njr

(recall that nk + lk = [njr]), it follows that

(4.18)
∣∣∣∣f(z + njre

2πiθ)
nk + lk

− f(z + njre
2πiθ)

njr

∣∣∣∣
≤
∣∣∣∣1− nk + lk

njr

∣∣∣∣ ∣∣∣∣f(z + njre
2πiθ)

nk + lk

∣∣∣∣ < ε

8r
.

Hence, (4.16)–(4.18) imply∣∣∣∣f(z + njre
2πiθ)

njr
− g(z)

r

∣∣∣∣ < ε

r
.

So we arrive at

sup
z∈L

∣∣∣∣f(z +Nre2πiθ)
N

− g(z)
∣∣∣∣ < ε

for N = nj . This completes the proof of Theorem 4.2.

Theorems 4.1 and 4.2 immediately imply Theorem 1.5.

5. Some extensions. In this section we shall describe some extensions
of the results presented in previous sections. Our goal is to establish a version
of Ansari’s theorem for more general sequences of operators than considered
before, and then use it to prove the existence of common hypercyclic vectors.
We recall that an F -space is a topological vector space whose topology is
induced by a complete invariant metric ρ. To simplify notation we write
‖x‖ = ρ(x, 0). Let us start with a version of Theorem 1.2.
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Theorem 5.1. Let T be a hypercyclic operator acting on an F -space X.
Fix a real number b. Suppose there exists y ∈ X such that the set

F = {z ∈ X : ∃nk → +∞, nbkTnky → z}
is somewhere dense. Then F is dense in X and since F is closed, we conclude
F = X.

Proof. The proof is along the lines of the proof of Theorem 1.2 and the
required details are left to the reader.

The next lemma is analogous to Lemma 2.6.

Lemma 5.2. Let T be an operator acting on an F -space and b ∈ R.
Suppose there exists a vector y ∈ X such that

{z ∈ X : ∃nk → +∞, nbkTnky → z} = X.

Then for every m = 1, 2, . . . ,
m−1⋃
ρ=0

{z ∈ X : ∃nk → +∞, nbkTmnky → z} = X.

Proof. It suffices to check that

m−b{z ∈ X : ∃nk → +∞, nbkTnky → z}

⊂
m−1⋃
ρ=0

{z ∈ X : ∃nk → +∞, nbkTmnky → z}.

The proof is as in the case b = −1 (see Lemma 2.6).

We now give a new version of Ansari’s result.

Theorem 5.3. Suppose T is a hypercyclic operator acting on an F -space.
Fix a real number b and assume that for some y ∈ X the orbit {nbTny} is
dense in X. Then, for every positive integer m, the orbit {nbTmny} is also
dense.

Proof. Using Theorem 5.1 and Lemma 5.2, we can argue as in the proof
of Theorem 2.7.

The rest of this section is devoted to the proof of Theorem 1.6. The
version of Ansari’s theorem we established above plays an essential role in
our argument. Following the standard procedure (see Sections 3, 4), we next
prove two theorems.

Theorem 5.4. Fix any two real numbers λ1 < λ2 and a non-zero real
number α. There is a dense Gδ set G ⊂ H(C) such that

G ⊂
⋂

λ∈[λ1,λ2]

HC({nλTnα }).
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Proof. Suppose that α > 0 (the case α < 0 can be proved in a similar
fashion). Without loss of generality we may assume that α = 1. The proof
uses ideas from the proof of Theorem 4.1. Actually, in this case the hard part
of the proof, which is to provide a denseness result, is a bit different (although
of the same flavor since we are mainly dealing with a one-parameter family
of operators) from that of the proof of Theorem 4.1, because of the nature
of the partition we are forced to choose. This will become clear later in the
proof.

Let {φj : j ≥ 1} be a countable dense set in H(C). For s, j, k,m ∈ N
consider the set

E(m, j, s, n) = {f ∈ H(C) : for every λ ∈ [λ1, λ2] there is n = n(λ) ≤ m
such that sup

|z|≤k
|nλf(z + n)− φj(z)| < 1/s}.

Minor modifications in the proof of Lemma 9 from [22] show that the set
E(s, j, k,m) is open in H(C) for all s, j, k,m ∈ N. It suffices to show that
the set

∞⋃
m=1

E(s, j, k,m)

is dense in H(C) for all s, j, k ∈ N, because then arguing as in the proof of
Theorem 4.1 we obtain Theorem 5.4.

Fix s, j, k ∈ N, g ∈ H(C), a compact set C and ε > 0. We want to find
f ∈ H(C) and a positive integer m such that

(5.1) f ∈ E(s, j, k,m)

and

(5.2) sup
z∈C
|f(z)− g(z)| < ε.

For simplicity φj will be denoted by φ. We may also assume C ⊂ {|z| ≤ k}.
Choose a sufficiently small positive number δ such that

(5.3) if |z| ≤ k and |1− r| < δ then |1− r| |φ(z)| < 1
2s
.

Let λ1 = b0 < b1 < · · · < bl = λ2 be a partition to be chosen later. We
define

t = 2k + 1, B = {|z| ≤ k},

Bd = B + (d+ 1)t, d = 0, 1, . . . , l, R = B ∪
l⋃

d=0

Bd

and

h(z) =
{
g(z), z ∈ B,
[(d+ 1)t]−bdφ(z − (d+ 1)t), z ∈ Bd, d = 0, 1, . . . , l.



Common Cesàro hypercyclic vectors 221

Observe that B,B0, B1, . . . , Bl are pairwise disjoint. Since R has connected
complement, by Runge’s theorem there is a polynomial f so that

(5.4) sup
z∈R
|f(z)− h(z)| < min

{
1
2s
, ε

}
.

Obviously, the definition of h and (5.4) yield

(5.5) sup
z∈C
|f(z)− g(z)| < ε,

hence (5.2) holds. It remains to show that (5.1) also holds. For that we
shall choose l and a partition λ1 = b0 < b1 < · · · < bl = λ2, such that for
b ∈ [bd, bd+1)

(5.6) sup
|z|≤k

|[(d+ 1)t]bf(z + (d+ 1)t)− φ(z)| < 1
s
.

Then, setting m = (l + 1)t we obtain (5.1). Observe that

if |z| ≤ k then z + (d+ 1)t ∈ Bd.
Thus for every z with |z| ≤ k we obtain

|[(d+ 1)t]bf(z + (d+ 1)t)− φ(z)|
≤ |[(d+ 1)t]bf(z + (d+ 1)t)− [(d+ 1)t]b−bdφ(z + (d+ 1)t− (d+ 1)t)|

+ |[(d+ 1)t]b−bdφ(z)− φ(z)|.
Let us now bound the right hand side of the above inequality:

|[(d+ 1)t]bf(z + (d+ 1)t)− [(d+ 1)t]b−bdφ(z + (d+ 1)t− (d+ 1)t)|
≤ [(d+ 1)t]λ2 |f(z + (d+ 1)t)− [(d+ 1)t]−bdφ(z + (d+ 1)t− (d+ 1)t)|.

Now (5.4) gives

(5.7) |[(d+1)t]bf(z+(d+1)t)− [(d+1)t]b−bdφ(z+(d+1)t−(d+1)t)| ≤ 1
2s
.

It remains to bound the term |[(d+ 1)t]b−bdφ(z)− φ(z)|. Observe that this
term points out how the partition should be chosen. If

(5.8) |1− [(d+ 1)t]b−bd | < δ,

using (5.3) we arrive at

(5.9) |[(d+ 1)t]b−bdφ(z)− φ(z)| < 1
2s
.

Then (5.7) and (5.9) imply (5.6) and we are done. Therefore, we are left
with finding l and the partition λ1 = b0 < b1 < · · · < bl = λ2, so that (5.8)
is satisfied. Since (d+ 1)t > 1 and b ∈ [bd, bd+1), we notice that

(5.10) bd+1 − bd <
ln(δ + 1)

ln((d+ 1)t)
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implies (5.8). If we set
βd = bd+1 − bd,

then (5.10) reads

(5.11) βd <
ln(δ + 1)

ln((d+ 1)t)
.

It suffices to find l and positive numbers β0, . . . , βl−1 such that (5.11) holds
and

(5.12) β0 + β1 + · · ·+ βl−1 = λ2 − λ1.

Therefore, if we choose l ≥ 1 so that

η = ln(δ + 1)
l−1∑
j=0

1
ln((j + 1)t)

> 1

and define, for d = 0, 1, . . . , l − 1,

βd =
λ2 − λ1

η

ln(δ + 1)
ln((d+ 1)t)

,

the relations (5.11), (5.12) are satisfied. This completes the proof of Theo-
rem 5.4.

Remark 5.5. Theorem 5.4 ensures the existence of an entire function
f such that for every b ∈ R the sequence {nbf(z + n)} is dense in H(C).
However, a stronger and more natural result in this direction would be to
establish the existence of a residual set G in H(C) such that for every f ∈ G
the set {nbf(z+ e2πiθn)} is dense for every b ∈ R and every θ ∈ [0, 1]. Then
we shall be able to derive the existence of an entire function f such that
the sequence {nbf(z + nα)} is dense for every b ∈ R and every α ∈ C \ {0}.
The difficulty in obtaining a stronger version of Theorem 5.4 is due to the
partition. Actually in this case two partitions should be chosen (one for the
real numbers b lying on some interval and one for the complex numbers
lying on the unit circle). Furthermore, the two partitions are coupled, which
creates one more obstacle. To overcome these difficulties it seems that a new
idea is needed. Recently Bayart and Matheron, in a very deep paper [10],
came up with such an idea. They were able to refine our Theorem 5.4 and
prove the existence of a residual set G in H(C) such that for every f ∈ G
the set {nbf(z + e2πiθn)} is dense for every b ∈ R and every θ ∈ [0, 1]. For
further results concerning common hypercyclic vectors for two-parameter
families of operators see [43].

Theorem 5.6. Let f ∈ HC({nbTn
e2πiθ
}) for some b ∈ R and θ ∈ [0, 1].

Then f ∈ HC({nbTn
re2πiθ

}) for any positive real number r.
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Proof. It is easy to check that the sequence {nbTnα } is hypercyclic for
every fixed b ∈ R and α ∈ R \ {0} (and actually for every α ∈ C \ {0}).
Therefore, the conclusion of Theorem 5.3 holds. Making some minor modifi-
cations in the proof of Theorem 4.2, such as replacing n−1 with nb, choosing
suitable bounds in (4.10), (4.16) and using Theorem 5.3 instead of Theo-
rem 2.7, we obtain the conclusion. The details are left to the reader.

We are now ready to present the final step of the proof of Theorem 1.6.
Assume that α = 1 in Theorem 5.4. The set G obtained in Theorem 5.4
depends on the choice of the interval I = [λ1, λ2], so denote it by G = GI .
Cover the real line by countably many intervals In, i.e. R =

⋃
n In, and

applying Theorem 5.4, consider the corresponding GIn . Then the set G1 =⋂
nGIn is residual in H(C) and G1 ⊂

⋂
b∈R HC({nbTn1 }). Starting now with

α = −1 and applying the above procedure, we end up with a set G−1 residual
in H(C) such that G−1 ⊂

⋂
b∈R HC({nbTn−1}). Clearly, G1 ∩G−1 is residual

in H(C) and Theorem 5.6 implies G1 ∩G−1 ⊂
⋂
b∈R

⋂
α∈R\{0}HC({nbTnα }).

This finishes the proof of Theorem 1.6.

6. Proof of Theorem 1.7. The proof of Theorem 1.7 is based on a
straightforward application of the common universality-hypercyclicity cri-
terion, Theorem 3.1. Actually we shall first prove two versions of Theorem
1.7, for b positive and b negative, and then Theorem 1.7 will follow trivially.

Theorem 6.1. Let D : H(C) → H(C) be the differentiation operator.
Then the set

⋂
b>0 HC({nbDn}) is residual in H(C).

Proof. Recall that H(C) is a complete metric space with the metric

ρ(f, g) =
∞∑
n=1

1
2n

sup|z|≤n |f(z)− g(z)|
1 + sup|z|≤n |f(z)− g(z)|

for f, g ∈ H(C). For convenience we write ‖f‖ = ρ(f, 0). Define the families
of operators Tn,λ = nλDn, λ > 0, Sn,λ : H(C) → H(C), by Sn,λ(f)(z) =
n−λf (−n)(z), where f (−1) is the antiderivative of f whose value at 0 is 0
and f (−n) = (f (−(n−1)))(−1) for every n = 1, 2, . . . . Clearly Tn,λ ◦ Sn,λ = Id
for every positive integer n and every λ > 0. To check properties (1) and
(2) of Theorem 3.1 we shall use as a dense set the set of polynomials with
coefficients in Q + iQ. Let p be such a polynomial. Observe that

Tn+k,λ ◦ Sn,α(p) = 0 for k > deg(p),

Tn,λ ◦ Sn+k,α(p)(z) =
nλ

(n+ k)α
p(−k)(z).
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Therefore, for λ ≤ α we get

‖Tn,λ ◦ Sn+k,α(p)‖ ≤ nλ

(n+ k)α
‖p(−k)‖ ≤ ‖p(−k)‖.

Defining ck = ‖p(−k)‖, it can be shown that
∑∞

k=1 ck < ∞ (see the proof
of Theorem 13 in [22]). Hence, property (1) of Theorem 3.1 is satisfied. It
remains to check (2). Let ε > 0, p be a polynomial with coefficients in Q+iQ,
[λ1, λ2] ⊂ (0,∞) be a compact interval and fix c, 0 < c < 1. Then

‖Tn,λ ◦ Sn,α(p)− p‖ =
∣∣∣∣nλnα − 1

∣∣∣∣‖p‖.
Since limn→∞(1− c1/n) log n = 0, there is a positive integer n0 such that

|nλ2(1−c1/n) − 1| < ε

‖p‖
for n ≥ n0.

Hence, for n ≥ n0 and λ, α ∈ [λ1, λ2] and if 1 > λ/α > c1/n, we deduce that∣∣∣∣nλnα − 1
∣∣∣∣ ≤ ∣∣∣∣nαnλ − 1

∣∣∣∣ = |nα(1−λ/α) − 1| < ε

‖p‖
.

Therefore (2) holds for n ≥ n0 with 1 > C(ε) > c. Now just take C(ε) so
that (2) also holds for n ≤ n0. This completes the proof of Theorem 6.1.

Theorem 6.2. Let D : H(C) → H(C) be the differentiation operator.
Then the set

⋂
b<0 HC({nbDn}) is residual in H(C).

Proof. The proof is similar to the proof of Theorem 6.1. Indeed, following
that proof, it is easy to show that item (1) of Theorem 3.1 is satisfied. It
remains to check (2). For that, let ε > 0, p be a polynomial with coefficients
in Q + iQ, [λ1, λ2] ⊂ (−∞, 0) be a compact interval and fix c, 0 < c < 1.
Observe that there is a positive integer n0 such that

|nλ1(1−c1/n) − 1| < ε

‖p‖
for every n ≥ n0.

Then, arguing as in the proof of Theorem 6.1, one verifies (2).

From Theorems 6.1, 6.2 and the well known fact that the set HC(D) is
residual, Theorem 1.7 follows.

Acknowledgements. I am grateful to the referee. Her/his helpful re-
marks and illuminating comments considerably improved the presentation
of the paper.
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