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Generalizations to monotonicity for uniform convergence

of double sine integrals over R2

+

by

Péter Kórus and Ferenc Móricz (Szeged)

Abstract. We investigate the convergence behavior of the family of double sine in-
tegrals of the form

∞�

0

∞�

0

f(x, y) sin ux sin vy dx dy, where (u, v) ∈ R2
+ := R+ × R+,

R+ := (0,∞), and f : R2
+ → C is a locally absolutely continuous function satisfying

certain generalized monotonicity conditions. We give sufficient conditions for the uniform

convergence of the remainder integrals
	b1

a1

	b2

a2
to zero in (u, v) ∈ R2

+ as max{a1, a2} → ∞
and bj > aj ≥ 0, j = 1, 2 (called uniform convergence in the regular sense). This implies

the uniform convergence of the partial integrals
	b1

0

	b2

0
in (u, v) ∈ R2

+ as min{b1, b2} → ∞
(called uniform convergence in Pringsheim’s sense). These sufficient conditions are the
best possible in the special case when f(x, y) ≥ 0.

1. Introduction: Convergence of double integrals over R2
+. Let

φ : R2
+ → C be a locally integrable function over R2

+ in Lebesgue’s sense,
in symbols: φ ∈ L1

loc(R
2
+), where R+ := [0,∞). By definition, the double

integral

(1.1)
∞�

0

∞�

0

φ(x, y) dx dy

is said to converge in Pringsheim’s sense if the partial integrals

I(φ; b1, b2) :=
b1�

0

b2�

0

φ(x, y) dx dy, (b1, b2) ∈ R2
+,
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converge to a finite limit as b1, b2 → ∞ independently of each other, in
symbols: min{b1, b2} → ∞.

By the Cauchy convergence criterion, a necessary and sufficient condition
for the convergence of the double integral (1.1) in Pringsheim’s sense is that
for every ε > 0 there exists b0 = b0(ε) such that

|I(φ; b1, b2)− I(φ; b3, b4)| < ε if min{b1, b2, b3, b4} > b0.

It follows from the convergence in Pringsheim’s sense that the remainder
integrals satisfy

(1.2)
b1�

a1

b2�

a2

φ(x, y) dx dy

= I(φ; b1, b2)− I(φ; a1, b2)− I(φ; a2, b1) + I(φ; a1, a2)→ 0
as min{a1, a2} → ∞, bj > aj > 0, j = 1, 2.

By definition, the double integral (1.1) is said to converge in the regular
sense if

(1.3)
b1�

a1

b2�

a2

φ(x, y) dx dy → 0 as max{a1, a2} → ∞, bj > aj ≥ 0, j = 1, 2

(cf. (1.2)). Condition (1.3) is equivalent to the joint fulfillment of the two
conditions

b1�

a1

b2�

0

φ(x, y) dx dy → 0 as b1 > a1 →∞ and b2 > 0 is arbitrary,

and
b1�

0

b2�

a2

φ(x, y) dx dy → 0 as b2 > a2 →∞ and b1 > 0 is arbitrary.

It follows immediately that if the double integral (1.1) converges in the
regular sense, then it converges in Pringsheim’s sense. The converse impli-
cation is not true. For example, set

φ(x, y) :=


(−1)[x][1 + x/2] for (x, y) ∈ [0,∞)× [0, 1),
(−1)1+[x][1 + x/2] for (x, y) ∈ [0,∞)× [1, 2),
0 for (x, y) ∈ [2,∞)× (2,∞),
φ(y, x) for (x, y) ∈ [0, 2)× [2,∞),

where [·] means the integer part of a real number. Since

I(φ; b1, b2) = 0 whenever min{b1, b2} ≥ 2,

the double integral (1.1) converges to zero in Pringsheim’s sense. On the
other hand, the double integral (1.1) cannot converge in the regular sense,
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since
2k−1�

2k−2

1�

0

φ(x, y) dx dy = k, k = 1, 2, . . . .

In the special case when φ is Lebesgue integrable over the whole quad-
rant R2

+, the double integral (1.1) converges in the regular sense, and its
limit in Pringsheim’s sense is equal to the Lebesgue integral of φ over R2

+.

We note that the notions of the ‘convergence of a double integral over R2
+

in Pringsheim’s sense or in the regular sense’ are the nondiscrete versions of
the notions of the ‘convergence of a double series

∑∞
k=0

∑∞
`=0 ak` of complex

numbers in Pringsheim’s sense or in the regular sense’, respectively. For
details, see [10, Vol. 2, pp. 300–302], [3] and [6].

2. Main results: Uniform convergence of double sine integrals.
We investigate the uniform convergence of the family of double sine integrals

(2.1)
∞�

0

∞�

0

f(x, y) sinux sin vy dx dy, (u, v) ∈ R2
+,

where f : R2
+ → C is a Lebesgue measurable function.

In order to ensure the existence of the partial integrals

(2.2) Iuv(f ; b1, b2) :=
b1�

0

b2�

0

f(x, y) sinux sin vy dx dy, b1, b2 > 0,

we always assume that for all (b1, b2) ∈ R2
+,

(2.3) xyf(x, y) ∈ L1
loc(R

2
+), that is,

b1�

0

b2�

0

xy|f(x, y)| dx dy <∞.

We note that the double sine integral (2.1) is the nondiscrete version of
the double sine series

∑∞
k=1

∑∞
`=1 ak` sin ku sin `v, where {ak`} is a double

sequence of complex numbers (for details see [4]). Historically, the first result
in this topic is due to Chaundy and Jolliffe [2], who proved the following
theorem: If {ak : k = 1, 2, . . .} is a decreasing sequence of nonnegative
numbers, then the sine series

∑∞
k=1 ak sin ku converges uniformly in u ∈ R+

if and only if kak → 0 as k →∞.
In what follows, we always assume that the function f occurring in (2.1)

is locally absolutely continuous on R2
+, in symbols: f ∈ ACloc(R2

+), by which
we mean the following: the partial derivatives fx := ∂f/∂x and fy := ∂f/∂y
exist everywhere on R2

+, and f can be recovered from them in the usual way:



290 P. Kórus and F. Móricz

for all bj > aj > 0, j = 1, 2, we have

b1�

a1

fx(x, y) dx = f(b1, y)− f(a1, y), y > 0,(2.4)

b2�

a2

fy(x, y) dy = f(x, b2)− f(x, a2), x > 0;(2.5)

furthermore, the mixed partial derivatives fxy, fyx exist and fxy = fyx
almost everywhere on R2

+, and fx, fy can be recovered from them: for all
bj > aj > 0, j = 1, 2, we have

b1�

a1

fxy(x, y) dx = fy(b1, y)− fy(a1, y), y > 0,(2.6)

b2�

a2

fxy(x, y) dy = fx(x, b2)− fx(x, a2), x > 0.(2.7)

It follows immediately that for all bj > aj > 0, j = 1, 2, we have

b1�

a1

b2�

a2

fxy(x, y) dx dy = f(b1, b2)− f(a1, b2)− f(b1, a2) + f(a1, a2).

We refer to [1] and the references in it for the definition and basic properties
of absolute continuity of functions in two variables.

Our next definition is motivated by the analogous one in the case of
single sine integrals introduced in [7]; the latter was inspired by the corre-
sponding discrete definition in the case of single trigonometric series (see [9]).
A function f ∈ ACloc(R2

+) is said to be of mean value bounded variation, in
symbols: f ∈ MVBVF(R2

+), if there exist constants C and λ ≥ 2, depending
only on f , such that for all a1, y > 0 we have

(2.8)
2a1�

a1

|fx(x, y)| dx ≤ C

a1

λa1�

λ−1a1

|f(x, y)| dx;

for all x, a2 > 0 we have

(2.9)
2a2�

a2

|fy(x, y)| dy ≤ C

a2

λa2�

λ−1a2

|f(x, y)| dy;

and for all a1, a2 > 0 we have

(2.10)
2a1�

a1

2a2�

a2

|fxy(x, y)| dx dy ≤ C

a1a2

λa1�

λ−1a1

λa2�

λ−1a2

|f(x, y)| dx dy.
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In our first main result, we give sufficient conditions for the uniform
convergence of the double sine integrals (2.1) in the regular sense.

Theorem 1. Assume the function f : R2
+ → C satisfies condition (2.3)

and belongs to the class MVBVF(R2
+). If for all x, y > 0 we have

(2.11) xyf(x, y)→ 0 as max{x, y} → ∞,

and for all b1, b2 > 0 we have

(2.12)
1
b1b2

b1�

0

b2�

0

xy|f(x, y)| dx dy → 0 as max{b1, b2} → ∞,

then the double sine integrals (2.1) converge in the regular sense uniformly
in (u, v) ∈ R2

+.

We note that if the product xyf(x, y) is bounded on R2
+, then condition

(2.3) is satisfied and condition (2.11) clearly implies (2.12).
In our next theorem, we show that in case f(x, y) ≥ 0 condition (2.11)

is necessary for the uniform convergence of the double sine integrals (2.1) in
the regular sense.

Theorem 2. Assume the function f : R2
+ → R+ satisfies condition

(2.3) and belongs to the class MVBVF(R2
+). If the double sine integrals (2.1)

converge in the regular sense uniformly in (u, v) ∈ R2
+, then condition (2.11)

holds true.

The following corollary is an immediate consequence of Theorems 1
and 2.

Corollary 1. Assume the function f : R2
+ → R+ satisfies conditions

(2.3) and (2.12), and belongs to the class MVBVF(R2
+). Then the double

sine integrals (2.1) converge in the regular sense uniformly in (u, v) ∈ R2
+ if

and only if condition (2.11) is satisfied.

Our next definition is also motivated by [7] and [8]. A function f ∈
ACloc(R2

+) is said to be of non-onesided bounded variation, in symbols: f ∈
NBVF(R2

+), if there exists a constant C, depending only on f , such that

2a1�

a1

|fx(x, y)| dx ≤ C(|f(a1, y)|+ |f(2a1, y)|), a1, y > 0,(2.13)

2a2�

a2

|fy(x, y)| dy ≤ C(|f(x, a2)|+ |f(x, 2a2)|), x, a2 > 0,(2.14)
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(2.15)
2a1�

a1

2a2�

a2

|fxy(x, y)| dx dy

≤ C(|f(a1, a2)|+ |f(2a1, a2)|+ |f(a1, 2a2)|+ |f(2a1, 2a2)|), a1, a2 > 0.

We say that a function f : R2
+ → R is monotonically decreasing if it is

decreasing in each variable and, in addition, for all x2 > x1 > 0 and y2 >
y1 > 0,

f(x1, y1)− f(x2, y1)− f(x1, y2) + f(x2, y2) ≥ 0.

We note that in the literature there exist other variations of the term
‘monotonically decreasing’ (see, e.g., [5]).

It is clear that if f : R2
+ → R+ belongs to the class ACloc(R2

+), then f is
monotonically decreasing if and only if

fx(x, y) ≤ 0, fy(x, y) ≤ 0 and fxy(x, y) ≥ 0 almost everywhere;

and in this case f clearly belongs to the class NBVF(R2
+).

Our second main result is formulated in the following

Theorem 3. If the function f : R2
+→C belongs to the class NBVF(R2

+),
then it also belongs to the class MVBVF(R2

+). The converse implication is
not true.

The next corollary is an immediate consequence of Corollary 1 and The-
orem 3.

Corollary 2. Assume the function f ∈ ACloc(R2
+) is monotonically

decreasing and satisfies conditions (2.3) and (2.12). Then the double sine
integrals (2.1) converge in the regular sense uniformly in (u, v) ∈ R2

+ if and
only if condition (2.11) is satisfied.

For example, the function

f(x, y) := (x+ 1)α(y + 1)β, −2 < α, β < −1,

is monotonically decreasing and satisfies each of the conditions (2.3), (2.11)
and (2.12). Thus, in this case the double sine integrals (2.1) converge in the
regular sense uniformly in (u, v) ∈ R2

+.
We note that Theorems 1–3 and Corollaries 1–2 above may be considered

as extensions of the analogous ones in [7, Theorems 2 and 3] from single to
double sine integrals.

It is clear that under the conditions of Theorem 1, the double sine in-
tegrals (2.1) converge in Pringsheim’s sense also uniformly in (u, v) ∈ R2

+.
Similarly to the proof of Theorem 2 in Section 4 below, the following theo-
rem can be easily proved, which gives a necessary condition for the uniform
convergence of the double sine integrals (2.1) in Pringsheim’s sense.
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Theorem 4. Assume the function f : R2
+ → R+ satisfies condition

(2.3) and belongs to the class MVBVF(R2
+). If the double sine integrals (2.1)

converge in Pringsheim’s sense, or only the remainder integrals (cf. (1.2))

b1�

a1

b2�

a2

f(x, y) sinux sin vy dx dy, bj > aj > 0, j = 1, 2,

converge to 0 as min{a1, a2} → ∞ uniformly in (u, v) ∈ R2
+, then

(2.16) xyf(x, y)→ 0 as min{x, y} → ∞.

However, all our attempts have failed so far to modify the steps in the
proof of Theorem 1 in order to guarantee the uniform convergence of the
double sine integrals (2.1) in Pringsheim’s sense for all (u, v) ∈ R2

+ under
the conditions of Theorem 1 with (2.11) replaced by the weaker (2.16).

3. Auxiliary results

Lemma 1. Assume the function f : R2
+ → C satisfies condition (2.3)

and belongs to the class MVBVF(R2
+). If condition (2.11) is satisfied, then

for all a1, y > 0 we have

(3.1) a1y

∞�

a1

|fx(x, y)| dx→ 0 as max{a1, y} → ∞;

for all x, a2 > 0 we have

(3.2) xa2

∞�

a2

|fy(x, y)| dy → 0 as max{x, a2} → ∞;

and for all a1, a2 > 0 we have

(3.3) a1a2

∞�

a1

∞�

a2

|fxy(x, y)| dx dy → 0 as max{a1, a2} → ∞.

Proof. By (2.11), for every ε > 0 there exists x0 = x0(ε) > 0 such that
for all x, y > 0,

(3.4) xy|f(x, y)| < ε if max{x, y} > x0.

(i) Let max{λ−1a1, y} > x0. By (3.4) and (2.8), we estimate as follows:

a1y

∞�

a1

|fx(x, y)| dx = a1y
∞∑
k=0

2k+1a1�

2ka1

|fx(x, y)| dx
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≤ a1y
∞∑
k=0

C

2ka1

λ2ka1�

λ−12ka1

|f(x, y)| dx ≤ Cy
∞∑
k=0

1
2k

λ2ka1�

λ−12ka1

ε

xy
dx

= 2Cε(lnλ)
∞∑
k=0

1
2k

= 4C(lnλ)ε if max{λ−1a1, y} > x0.

Since ε > 0 is arbitrary, (3.1) is proved.
(ii) In a similar way, (3.2) is proved by making use of (3.4) and (2.9).
(iii) Let max{λ−1a1, λ

−1a2} > x0. By (3.4) and (2.10),

a1a2

∞�

a1

∞�

a2

|fxy(x, y)| dx dy

= a1a2

∞∑
k=0

∞∑
`=0

2k+1a1�

2ka1

2`+1a2�

2`a2

|fxy(x, y)| dx dy

≤
∞∑
k=0

∞∑
`=0

C

2k2`

λ2ka1�

λ−12ka1

λ2`a2�

λ−12`a2

|f(x, y)| dx dy

≤
∞∑
k=0

∞∑
`=0

C

2k2`

λ2ka1�

λ−12ka1

λ2`a2�

λ−12`a2

ε

xy
dx dy

= 4Cε(lnλ)2
∞∑
k=0

1
2k

∞∑
`=0

1
2`

= 16C(lnλ)2ε if max{a1, a2} > λx0.

Since ε > 0 is arbitrary, (3.3) is proved.

Lemma 2. Assume the function g : R+ → C is locally absolutely contin-
uous on R+ and such that xg(x) ∈ L1

loc(R+). If there exists a constant C
such that for every a > 0,

2a�

a

|g′(x)| dx ≤ C(|g(a)|+ |g(2a)|),

then for every a > 0,
2a�

a

|g′(x)| dx ≤ 4C
a

4a�

a/4

|g(x)| dx.

The proof of Lemma 2 is contained in the proof of [7, Theorem 3].

Lemma 3. Assume the function f : R2
+ → R+ belongs to the class

MVBVF(R2
+). Then for all a, b > 0 we have
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(3.5) abf(a, b) ≤ (8C + 2)
λa�

a/2λ

λb�

b/2λ

f(x, y) dx dy,

where the constants C and λ are from the definition of the class MVBVF(R2
+).

Proof. By (2.4), for all a ≤ s ≤ 2a and t > 0 we have

f(s, t)− f(a, t) =
s�

a

fx(x, t) dx.

Using (2.8) and the fundamental theorem of calculus, we have

f(a, t) ≤
s�

a

|fx(x, t)| dx+ f(s, t)(3.6)

≤
s�

s/2

|fx(x, t)| dx+ f(s, t) ≤ 2C
s

λs/2�

s/2λ

f(x, t) dx+ f(s, t)

≤ 2C
s

λa�

a/2λ

f(x, t) dx+ f(s, t), a ≤ s ≤ 2a and t > 0.

Integrating both sides of (3.6) with respect to s over the interval [a, 2a] gives

(3.7) af(a, t) ≤ 2C
λa�

a/2λ

f(x, t) dx+
2a�

a

f(x, t) dx, t > 0.

Making use of (2.5) and (2.9), an analogous argument yields

(3.8) bf(s, b) ≤ 2C
λb�

b/2λ

f(s, y) dy +
2b�

b

f(s, y) dy, s > 0.

Next, by making use of (2.6) (or (2.7)) and (2.10), a double version of
the above argument gives the following: for all a ≤ s ≤ 2a and b ≤ t ≤ 2b
we have

f(a, b) =
s�

a

t�

b

fxy(x, y) dx dy + f(a, t) + f(s, b)− f(s, t)(3.9)

≤
s�

a

t�

b

|fxy(x, y)| dx dy + f(a, t) + f(s, b)

≤
s�

s/2

t�

t/2

|fxy(x, y)| dx dy + f(a, t) + f(s, b)



296 P. Kórus and F. Móricz

≤ 4C
st

λs/2�

s/2λ

λt/2�

t/2λ

f(x, y) dx dy + f(a, t) + f(s, b)

≤ 4C
ab

λa�

a/2λ

λb�

b/2λ

f(x, y) dx dy + f(a, t) + f(s, b).

Integrating both sides of (3.9) with respect to s ∈ [a, 2a] and t ∈ [b, 2b], we
find that

(3.10) abf(a, b) ≤ 4C
λa�

a/2λ

λb�

b/2λ

f(x, y) dx dy + a

2b�

b

f(a, t) dt+ b

2a�

a

f(s, b) ds.

Combining inequalities (3.7), (3.8) and (3.10) yields

abf(a, b) ≤ 4C
λa�

a/2λ

λb�

b/2λ

f(x, y) dx dy

+ 2C
λa�

a/2λ

2b�

b

f(x, t) dx dt+
2a�

a

2b�

b

f(x, t) dx dt

+ 2C
2a�

a

λb�

b/2λ

f(s, y) ds dy +
2a�

a

2b�

b

f(s, y) ds dy,

whence (3.5) follows immediately, due to the fact that λ ≥ 2.

4. Proofs of Theorems 1–4

Proof of Theorem 1. Let an arbitrary ε > 0 be given. By conditions
(2.11) and (2.12), there exists b0 = b0(ε) > 0 such that for all x, y > 0 we
have

(4.1) xy|f(x, y)| < ε if max{x, y} > b0,

and for all b1, b2 > 0 we have

(4.2)
1
b1b2

b1�

0

b2�

0

xy|f(x, y)| dx dy < ε if max{b1, b2} > b0.

Furthermore, by (3.1)–(3.3) in Lemma 1, there exists x0 = x0(ε) > 0 such
that

a1y

∞�

a1

|fx(x, y)| dx < ε if max{a1, y} > x0,(4.3)

xa2

∞�

a2

|fy(x, y)| dy < ε if max{x, a2} > x0,(4.4)
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a1a2

∞�

a1

∞�

a2

|fxy(x, y)| dx dy < ε if max{a1, a2} > x0,(4.5)

where min{a1, a2, x, y} > 0.
Let y0 := max{b0, x0}. We claim that for all (u, v) ∈ R2

+ we have

(4.6) |Iuv(f ; a1, b1; a2, b2)| :=
∣∣∣ b1�
a1

b2�

a2

f(x, y) sinux sin vy dx dy
∣∣∣ < 16ε

whenever max{a1, a2} > y0 and bj > aj ≥ 0, j = 1, 2.

To justify this claim, we will distinguish nine cases (i)–(ix). By Fatou’s
lemma, we may assume that a1, a2 > 0.

Case (i): a1 < b1 ≤ 1/u and a2 < b2 ≤ 1/v. By (4.2), we have

|Iuv(f ; a1, b1; a2, b2)| ≤ uv
b1�

a1

b2�

a2

xy|f(x, y)| dx dy

≤ uv
1/u�

0

1/v�

0

xy|f(x, y)| dx dy < ε,

which is (4.6) with ε in place of 16ε.

Case (ii): a1 < b1 ≤ 1/u and 1/v ≤ a2 < b2. Applying Fubini’s theorem,
we find that

|Iuv(f ; a1, b1; a2, b2)| =
∣∣∣ b1�
a1

(sinux)
( b2�
a2

f(x, y) sin vy dy
)
dx
∣∣∣(4.7)

≤
b1�

a1

ux
∣∣∣ b2�
a2

f(x, y) sin vy dy
∣∣∣ dx.

Integrating by parts with respect to y gives

(4.8)
∣∣∣ b2�
a2

f(x, y) sin vy dy
∣∣∣

=
∣∣∣∣[−f(x, y)

cos vy
v

]b2
y=a2

+
b2�

a2

fy(x, y)
cos vy
v

dy

∣∣∣∣
≤ 1
v

{
|f(x, a2)|+ |f(x, b2)|+

b2�

a2

|fy(x, y)|dy
}

≤ a2|f(x, a2)|+ b2|f(x, b2) + a2

b2�

a2

|fy(x, y)| dy.

Combining (4.7) and (4.8), it follows from (4.1) and (4.4) that
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|Iuv(f ; a1, b1; a2, b2)|

≤ u
b1�

a1

{
xa2|f(x, a2)|+ xb2|f(x, b2)|+ xa2

b2�

a2

|fy(x, y)| dy
}
dx

≤ u
b1�

a1

3ε dx = 3εu(b1 − a1) ≤ 3ε,

which is (4.6) with 3ε in place of 16ε.

Case (iii): a1 < b1 ≤ 1/u and a2 < 1/v < b2. In view of the decomposi-
tion

(4.9) Iuv(f ; a1, b1; a2, b2) =
{ b1�

a1

1/v�

a2

+
b1�

a1

b2�

1/v

}
f(x, y) sinux sin vy dx dy,

the previous Cases (i) and (ii) give (4.6) with 4ε.

Case (iv): 1/u ≤ a1 < b1 and a2 < b2 ≤ 1/v. This is the symmetric
counterpart of Case (ii), but this time in the proof we use (4.3) instead of
(4.4). Thus, we have (4.6) again with 3ε.

Case (v): 1/u ≤ a1 < b1 and 1/v ≤ a2 < b2. Making use of Fubini’s
theorem and integrating by parts with respect to y (cf. (4.7) and (4.8)) gives

(4.10) Iuv(f ; a1, b1; a2, b2) =
b1�

a1

(sinux)
{
f(x, a2)

cos va2

v

− f(x, b2)
cos vb2
v

+
b2�

a2

fy(x, y)
cos vy
v

dy

}
dx

=
1
v

{
(cos va2)

b1�

a1

f(x, a2) sinux dx− (cos vb2)
b1�

a1

f(x, b2) sinux dx

+
b2�

a2

(cos vy)
( b1�
a1

fy(x, y) sinux dx
)
dy
}

=: J1 + J2 + J3, say.

Integrating by parts with respect to x, we obtain

|J1| ≤
1
v

∣∣∣ b1�
a1

f(x, a2) sinux dx
∣∣∣

=
1
v

{
f(a1, a2)

cosua1

u
− f(b1, a2)

cosub1
u

+
b1�

a1

fx(x, a2)
cosux
u

dx

}

≤ 1
uv

{
|f(a1, a2)|+ |f(b1, a2)|+

b1�

a1

|fx(x, a2)| dx
}
.
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Since this time 1/u ≤ a1 and 1/v ≤ a2, it follows from (4.1) and (4.3) that

(4.11) |J1| ≤ a1a2|f(a1, a2)|+b1a2|f(b1, a2)|+a1a2

b1�

a1

|fx(x, a2)| dx < 3ε.

In an analogous way, we conclude that

|J2| ≤
1
v

∣∣∣ b1�
a1

f(x, b2) sinux dx
∣∣∣(4.12)

≤ a1b2|f(a1, b2)|+ b1b2|f(b1, b2)|+ a1b2

b1�

a1

|fx(x, b2)| dx < 3ε.

Finally, applying Fubini’s theorem and integrating by parts twice, we find
that

(4.13) |J3| ≤
1
v

b2�

a2

∣∣∣ b1�
a1

fy(x, y) sinux dx
∣∣∣ dy

=
1
v

b2�

a2

∣∣∣∣[− fy(x, y)
cosux
u

]b1
x=a1

+
b1�

a1

fxy(x, y)
cosux
u

dx

∣∣∣∣ dy
=

1
uv

b2�

a2

∣∣∣fy(a1, y) cosua1 − fy(b1, y) cosub1 +
b1�

a1

fxy(x, y) cosux dx
∣∣∣ dy

≤ 1
uv

b2�

a2

{
|fy(a1, y)|+ |fy(b1, y)|+

b1�

a1

|fxy(x, y)| dx
}
dy

≤ a1a2

b2�

a2

|fy(a1, y)|dy + b1a2

b2�

a2

|fy(b1, y)| dy

+ a1a2

b1�

a1

b2�

a2

|fxy(x, y)| dx dy < 3ε,

due to (4.4) and (4.5).
Combining (4.10)–(4.13) gives (4.6) with 9ε.

Case (vi): 1/u ≤ a1 < b1 and a2 < 1/v < b2. By the decomposition in
Case (iii) (see (4.9)), the previous Cases (iv) and (v) give (4.6) with 12ε.

Case (vii): a1 < 1/u < b1 and a2 < b2 ≤ 1/v. This is the symmetric
counterpart of Case (iii). Thus, we have (4.6) again with 4ε.

Case (viii): a1 < 1/u < b1 and 1/v ≤ a2 < b2. This is the symmetric
counterpart of Case (vi). Thus, we have (4.6) again with 12ε.
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Case (ix): a1 < 1/u < b1 and a2 < 1/v < b2. Again by the decomposi-
tion in Case (iii), the previous Cases (vii) and (viii) give (4.6) with 16ε as
stated.

To sum up, we have proved (4.6) for all (u, v) ∈ R2
+. Since ε > 0 is

arbitrary, the proof of Theorem 1 is complete.

Proof of Theorem 2. Given arbitrary a, b > 0, set

u :=
π

2λa
and v :=

π

2λb
,

where λ is from the definition of the class MVBVF(R2
+). Clearly, for all x

in the interval a/2λ ≤ x ≤ λa we have
π

4λ2
≤ ux ≤ π

2
;

and analogously, for all b/2λ ≤ y ≤ λb we have
π

4λ2
≤ vy ≤ π

2
.

Using the nonnegativity of f and applying Lemma 3 yields

(4.14)
λa�

a/2λ

λb�

b/2λ

f(x, y) sinux sin vy dx dy

≥
(

sin
π

4λ2

)2 λ�

a/2λ

λb�

b/2λ

f(x, y) dx dy ≥ 1
8C + 2

(
sin

π

4λ2

)2

abf(a, b).

By assumption, (1.3) is satisfied with φ(x, y) := f(x, y) sinux sin vy uni-
formly in (u, v) ∈ R2

+. Consequently, the integral on the left-hand side in
(4.14) converges to zero as max{a, b} → ∞. A fortiori, for all a, b > 0 we
have

abf(a, b)→ 0 as max{a, b} → ∞.

This proves (2.11). The proof of Theorem 2 is complete.

Proof of Theorem 3. (i) If f ∈ NBVF(R2
+), then conditions (2.13)–(2.15)

are satisfied. By (2.15), for all s, t > 0 we have

(4.15)
2s�

s/2

2t�

t/2

|fxy(x, y)| dx dy

=
{ s�

s/2

t�

t/2

+
2s�

s

t�

t/2

+
s�

s/2

2t�

t

+
2s�

s

2t�

t

}
|fxy(x, y)| dx dy
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≤ {|f(s/2, t/2)|+ |f(s, t/2)|+ |f(s/2, t||+ |f(s, t)|
+ |f(s, t/2)|+ |f(2s, t/2)|+ |f(s, t)|+ |f(2s, t)|
+ |f(s/2, t)|+ |f(s, t)|+ |f(s/2, 2t)|+ |f(s, 2t)|
+ |f(s, t)|+ |f(2s, t)|+ |f(s, 2t)|+ |f(2s, 2t)|}

= C{|f(s/2, t/2)|+ 2|f(s, t/2)|+ 2|f(s/2, t)|+ 4|f(s, t)|
+ |f(2s, t/2)|+ |f(s/2, 2t)|+ 2|f(2s, t)|+ 2|f(s, 2t)|+ |f(2s, 2t)|}

=: CA(s, t), say.

Integrating both sides of this inequality with respect to s and t over [3a/2, 2a]
and [3b/2, 2b], respectively, gives

(4.16)
2a�

3a/2

2b�

3b/2

{ 2s�

s/2

2t�

t/2

|fxy(x, y)|dx dy
}
ds dt

≤
2a�

3a/2

2b�

3b/2

A(s, t) ds dt, a, b ≥ 0.

Now, we observe that if 3a/2 ≤ s ≤ 2a, then s/2 ≤ a and 2s ≥ 3a; and
analogous inequalities hold for t if 3b/2 ≤ t ≤ 2b; that is,

[s/2, 2s] ⊃ [a, 2a] whenever s ∈ [3a/2, 2a],
[t/2, 2t] ⊃ [b, 2b] whenever t ∈ [3b/2, 2b].

Consequently, we conclude that

(4.17)
2a�

3a/2

2b�

3b/2

{ 2s�

s/2

2t�

t/2

|fxy(x, y)| dx dy
}
ds dt

≥
2a�

3a/2

2b�

3b/2

{ 2a�

a

2b�

b

|fxy(x, y)| dx dy
}
ds dt =

ab

4

2a�

a

2b�

b

|fxy(x, y)| dx dy.

On the other hand, by (4.15) we can estimate as follows (integrating by
substitution):

(4.18)
2a�

3a/2

2b�

3b/2

A(s, t) ds dt

= C
{

4
a�

3a/4

b�

3b/4

|f(s1, t1)| ds1 dt1 + 4
2a�

3a/2

b�

3b/4

|f(s, t1)| ds dt1

+ 4
a�

3a/4

2b�

3b/2

|f(s1, t) ds1 dt+ 4
2a�

3a/2

2b�

3b/2

|f(s, t)| ds dt
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+
4a�

3a

b�

3b/4

|f(s1, t1)| ds1 dt1 +
a�

3a/4

4b�

3b

|f(s1, t1)| ds1 dt1

+
2a�

3a/2

4b�

3b

|f(s, t1)| ds dt1 +
4a�

3a

2b�

3b/2

|f(s1, t)| ds1 dt

+
1
4

4a�

3a

4b�

3b

|f(s1, t1)| ds1 dt1
}

≤ 4C
4a�

3a/4

4b�

3b/4

|f(s, t)| ds dt,

where we exploited the fact that the integrals in the braces {·} above are
over disjoint domains.

Combining (4.16)–(4.18) yields

ab

4

2a�

a

2b�

b

|fxy(x, y)| dx dy ≤ 4C
4a�

3a/4

4b�

3b/4

|f(s, t)| ds dt,

which is equivalent to (2.10) with 16C in place of C and λ := 4.
As to the fulfillment of conditions (2.8) and (2.9), we apply Lemma 2

for g(x) := f(x, y) where y > 0 is fixed, then for g(y) := f(x, y) where
x > 0 is fixed. As a result, we conclude that (2.8) follows from (2.13),
while (2.9) follows from (2.14), with 4C in place of C and λ := 4 in both
cases.

(ii) Define

g(x) :=
1

1 + x
sin
(
π

ln 2
lnx
)
, x ∈ R+.

Clearly, g(x)→ 0 as x→∞, xg(x) ∈ L1
loc(R+), and

g′(x) =
π

ln 2
1

x(1 + x)
cos
(
π

ln 2
lnx
)
− 1

(1 + x)2
sin
(
π

ln 2
lnx
)
.

It follows that g ∈ ACloc(R+). Since

g(2k) =
1

1 + 2k
sin kπ = 0, k = 1, 2, . . . ,

g cannot belong to the class NBVF(R+).
On the other hand, we claim that g belongs to MVBVF(R+). Indeed,

for any a > 0, an elementary argument gives
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2a�

a

|g′(x)| dx

≤ π

ln 2
1
a

2a�

a

1
1 + x

∣∣∣∣ cos
(
π

ln 2
lnx
)∣∣∣∣ dx+

1
a

2a�

a

1
1 + x

∣∣∣∣ sin( π

ln 2
lnx
)∣∣∣∣ dx

=
π

ln 2
1
a

2a�

a

1
1 + x

∣∣∣∣ sin( π

ln 2
lnx+

π

2

)∣∣∣∣ dx+
1
a

2a�

a

|g(x)| dx

=
π

ln 2
1
a

2
√

2a�
√

2a

1√
2 + u

∣∣∣∣ sin( π

ln 2
lnu
)∣∣∣∣ du+

1
a

2a�

a

|g(x)| dx

≤ C
λa�

λ−1a

|g(u)| du, where u :=
√

2x, C :=
π

ln 2
+ 1, λ := 2

√
2.

Now, define
f(x, y) := g(x)g(y), (x, y) ∈ R2

+.

It is easy to check that f 6∈ NBVF(R2
+), but f ∈ MVBVF(R2

+).
The proof of Theorem 3 is complete.

Proof of Theorem 4. It runs along the same lines as the proof of The-
orem 2, with the modification that this time min{a, b} → ∞ (instead of
max{a, b} → ∞).

Acknowledgements. The authors thank the referee for valuable sug-
gestions to improve the presentation and for calling our attention to pa-
per [5].
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