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On the functional properties of Bessel zeta-functions
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1. Introduction. Let θ > 0, ν ∈ C and s be a complex variable. Our
main object is to investigate the following Dirichlet series:

(1.1) Jν−1(s; θ) :=
∞∑
n=1

Jν−1(2
√
θn)

ns+(ν+1)/2
,

where Jν(z) denotes the J-Bessel function (cf. [Er2, 7.2.1, (2)]). In the
present paper, we describe an integral representation, a transformation for-
mula and a power series expansion involving the Riemann zeta-function
via the Bromwich integrals (Theorem 1.1). These functional properties of
Jν−1(s; θ) show that (1.1) is one of the artless zeta-functions. We therefore
call Jν−1(s; θ) the J-Bessel zeta-function of order ν − 1.

The J-Bessel zeta-function appears in the Fourier series expansion of the
Poincaré series attached to SL(2,Z) by applying the inverse Mellin trans-
form. This fact strongly suggested that Jν−1(s; θ) should have a kind of
functional equation. The inverse Laplace transform of Weber’s first expo-
nential integral (Lemma 2.2 below) is the key ingredient in the proof of the
integral expression for Jν−1(s; θ), which leads to the expected transforma-
tion formula (Theorem 1.1, (1.4)). Since (1.4) holds on the left half s-plane
Im(s) < −1, our transformation formula can be regarded as a kind of Hur-
witz zeta-type functional equation. The integral expression also indicates
that the J-Bessel function is a new generating function of the Riemann
zeta-function, namely a power series expansion involving the Riemann zeta-
function in its coefficients (Theorem 1.1, (1.5)). As one application of these
results, in Section 4 below, we will give a new proof of the Fourier expan-
sion of Poincaré series attached to SL(2,Z), which shows that the J-Bessel
zeta-function plays a similar role to the Hurwitz zeta-function in the theory
of (holomorphic and non-holomorphic) Eisenstein series.

2010 Mathematics Subject Classification: Primary 11M41; Secondary 11F11.
Key words and phrases: Bessel zeta-function, Poincaré series, Ramanujan’s formula.
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In addition, the Bessel zeta-function Jν−1(s; θ) naturally inherits the
recurrence relation for Jν−1(2

√
θn) (Theorem 1.1, (1.6)). Furthermore, the

techniques employed in the proof of our main results allow us to deduce
integral representations and transformation formulas for several new zeta-
functions (cf. [No]).

We remark that Kaczorowski and Perelli [KP4] treated more general
zeta-functions twisted by hypergeometric or Bessel functions. They derived
meromorphic continuations of these zeta-functions via the properties of non-
linear twists obtained in [KP1]–[KP3].

In this paper, we discuss the K-Bessel zeta-function as well, defined by
the following Dirichlet series:

(1.2) Kν−1(s; θ) :=
∞∑
n=1

Kν−1(2
√
θn)

ns+(ν+1)/2
.

Here Kν(z) is the K-Bessel function (cf. [Er2, 7.2.2, (13)]), and (1.2) is an
entire function of s for any given θ > 0 and ν ∈ C.

Let Γ (s) be the Gamma function and F (α; γ; z) be Kummer’s confluent
hypergeometric function of the first kind defined by

F (α; γ; z) =
Γ (γ)

Γ (α)Γ (γ − α)

1�

0

ezuuα−1(1− u)γ−α−1 du

for Re(γ) > Re(α) > 0 (see [Er1, 6.5, (1)]), and U(α; γ; z) be the confluent
hypergeometric function of the second kind defined by

U(α; γ; z) =
1

Γ (α)

∞�

0

e−zuuα−1(1 + u)γ−α−1 du

for Re(α) > 0 and |arg(z)| < π/2 (see [Er1, 6.5, (2)]).

Throughout this paper, ζ(s) denotes the Riemann zeta-function,
	(0+)
−∞

denotes integration over a Hankel contour, starting at negative infinity on
the real axis, encircling the origin with a small radius in the positive direc-
tion, and returning to the starting point, and

	
(c) denotes an integral over

the vertical straight path from c− i∞ to c+ i∞.

By the estimates of the J-Bessel function (Proposition 3.1 below), the
Dirichlet series (1.1) converges absolutely in the region Re(s) > 0 when
Re(ν) > 1/2, and also in the region Re(s) > b3/2 − Re(ν)c/2 − 1 when
Re(ν) ≤ 1/2. When ν is an integer, Jν−1(s; θ) converges absolutely for
Re(s) > (1− ν)/2.

Theorem 1.1. Let ν ∈ C and θ > 0. The J-Bessel zeta-function has an
integral representation
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(1.3) Jν−1(s; θ) =
θs+(ν+1)/2Γ (−s)

2πiΓ (ν)

(0+)�

−∞

useθu

1− eθu
F (−s; ν;−u−1) du,

which provides a meromorphic continuation to the whole s-plane. Further,
the transformation formula

(1.4) Jν−1(s; θ) =
θ(ν−1)/2Γ (−s)

Γ (ν)

∞∑
n=−∞, n 6=0

(2πin)sF

(
− s; ν;

−θ
2πin

)
holds for Re(s) < −1, and the power series expansion

(1.5) Jν−1(s; θ) =
∞∑
m=0

θ(ν−1)/2

Γ (ν +m)m!
ζ(s+ 1−m)(−θ)m,

holds for s ∈ C \ {0, 1, 2, . . .}. The J-Bessel zeta-function also satisfies the
following recurrence formula:

(1.6) Jν−1(s; θ) + Jν+1(s− 1; θ) =
ν√
θ
Jν(s; θ).

Remark. The power series expression (1.5) is a generalization of Ra-
manujan’s formula [Ra] (the binomial type power series)

(1.7) ζ(s, 1 + x) =
∞∑
m=0

Γ (s+m)

Γ (s)m!
ζ(s+m)(−x)m

for |x| < 1 and s ∈ C\{1}. Here ζ(s, x) is the Hurwitz zeta-function. An ex-
ponential type series was found by Chowla and Hawkins [CH], and Gauss’
hypergeometric type and Kummer’s confluent hypergeometric type series
were introduced by Katsurada [Ka1]. In [Ka2, Theorem 5.1], some Dirichlet
series whose coefficients involve hypergeometric functions were introduced as
generating functions of ζ(s). Boudjelkha [Bo] provided functional equations
and power series expansions of a kind of Bessel series via the Schläfli–Sonine
integral representations. For related results and generalizations of Ramanu-
jan’s formula (1.7), we refer to [SC].

Theorem 1.2. For every complex ν and θ > 0, the K-Bessel zeta-
function is an entire function of s and has an integral representation

(1.8) Kν−1(s; θ)

=
θs+(ν+1)/2

4πi
Γ (−s)Γ (−s− ν + 1)

(0+)�

−∞

useθu

1− eθu
U(−s; ν;u−1) du,

which provides the transformation formula
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(1.9) Kν−1(s; θ)

=
θ(ν−1)/2

2
Γ (−s)Γ (−s− ν + 1)

∞∑
n=−∞, n 6=0

(2πin)sU

(
−s; ν;

θ

2πin

)
for Re(s) < min{−1,−ν}.

2. Preliminary results. In this section, we establish some Fourier–
Mellin integrals of confluent hypergeometric functions, which are equivalent
to the inverse integral transforms of Weber’s first exponential-type integrals
(cf. [Wa, 13.3]). Formally, equalities (2.3) and (2.4) in Lemma 2.2 below are
derived by the inverse Laplace transforms of Bessel functions (cf. [Er1, 6.10,
(8), (9)]). We examine these integral transforms directly starting from the
Mellin–Barnes integrals of Bessel functions and confluent hypergeometric
functions.

First, we quote Barnes’ integral representations of the modified Bessel
functions.

Lemma 2.1. The J-Bessel function has an integral representation

(2.1) Jν−1(Z) =
1

2πi

�

(c1)

Γ (−w)

Γ (w + ν)

(
Z

2

)2w+ν−1
dw

for Z > 0 and (1 − Re(ν))/2 < c1 < 0, and the K-Bessel function has an
expression

(2.2) Kν−1(Z) =
1

4πi

�

(c2)

Γ (w)Γ (w − ν + 1)

(
Z

2

)−2w+ν−1
dw

for Z > 0 and c2 > max{0,Re(ν)− 1}.

Proof. Noting that the pair

Z−νJν(Z),
2s−ν−1Γ (s/2)

Γ (ν + 1− s/2)
(0 < Re(s) < ν + 3/2)

is a pair of Mellin transforms (cf. [Ti1, (7.9.1)]), we obtain the integral
(2.1) taking s/2 = −w and replacing ν by ν − 1. Under the condition
(1 − Re(ν))/2 < c1 < 0, the integral (2.1) is absolutely convergent. Sim-
ilarly,

Z−νKν(Z), 2s−ν−2Γ (s/2)Γ (s/2− ν) (Re(s) > max{0, 2Re(ν)})

is a pair of Mellin transforms (cf. [Ti1, (7.9.11)]). Taking s/2 = w and
replacing ν by ν − 1, we obtain the representation (2.2).

The following lemma is crucial in the proof of our main results.
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Lemma 2.2. Let T > 0. The integral representations

(2.3) Tα−(γ+1)/2Jγ−1(2
√
T ) =

Γ (α)

2πiΓ (γ)

(0+)�

−∞
u−αeTuF (α; γ;−u−1) du,

(2.4) Tα−(γ+1)/2Kγ−1(2
√
T )

=
Γ (α)Γ (α− γ + 1)

4πi

(0+)�

−∞
u−αeTuU(α; γ;u−1) du

hold for (α, γ) ∈ C2, and represent entire functions both of α and of γ.

Proof. First, we show the following formula: for c3 > 0,

(2.3b) Tα−(γ+1)/2Jγ−1(2
√
T ) =

Γ (α)

2πiΓ (γ)

�

(c3)

u−αeTuF (α; γ;−u−1) du.

Temporarily, we assume 1 − Re(α) < 0 and 1/2 + Re(α) − Re(γ) < 0.
Kummer’s confluent hypergeometric function has an integral representation

(2.5) F (α; γ; z) =
1

2πi

Γ (γ)

Γ (α)

�

(c4)

Γ (−w)Γ (α+ w)

Γ (γ + w)
(−z)w dw

for −π/2 < arg(−z) < π/2 and −Re(α) < c4 < 0 (cf. [Er1, 6.5, (4)]). Taking
z = u−1 and substituting (2.5) into the integrand of (2.3b), we observe that
the right side of (2.3b) is equal to

(2.6)
1

(2πi)2

�

(c3)

eTuu−α
�

(c4)

Γ (−w)Γ (α+ w)

Γ (γ + w)
u−w dw du

=
1

(2πi)2

�

(c4)

Γ (−w)Γ (α+ w)

Γ (γ + w)

�

(c3)

eTuu−(α+w) du dw.

The interchange of the order of integration is justified by the absolute con-
vergence of the double integrals in (2.6) when 1 − Re(α) < 0 and 1/2 +
Re(α) − Re(γ) < c4 due to Stirling’s formula. The u-integral on the right
side of (2.6) is evaluated by using Laplace’s integral representation (cf. [WW,
12.22, ex. 1])

1

2πi

�

(c3)

euu−s du =
1

Γ (s)
,

for a positive constant c3 and Re(s) > 1. Hence the right side of (2.6) is
equal to

(2.7)
Tα−1

2πi

�

(c4)

Γ (−w)

Γ (γ + w)
Tw dw.
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Applying Barnes’ representation (2.1) of the J-Bessel function to (2.7), we
obtain (2.3b) under the assumptions 1 − Re(α) < 0 and 1/2 + Re(α) −
Re(γ) < 0. Because the confluent hypergeometric series F (α; γ; z) converges
for all finite z and defines an entire function of z, we may modify the in-
tegration path in (2.3b) to Hankel’s contour in (2.3) under the assumption
1− Re(α) < 0.

The analytic continuation is established by the fact that F (α; γ; z)/Γ (γ)
is entire both in α and in γ (cf. [Er1, 6.7.1]). Hence, the right side of (2.3) is
a meromorphic function of α and an entire function of γ. The holomorphy
in α is ascertained by the left side of (2.3).

The proof of (2.4) is similar. Substituting the integral representation of
U(α; γ; z) (cf. [Er1, 6.5, (5)]) into the integrand of (2.4), we exchange the
order of the integrals. Applying Hankel’s integral (cf. [Er1, 1.6, (2)]) and
Barnes’ integral representation (2.2) of the K-Bessel function, we obtain
(2.4) for Re(α) > max{0,Re(γ) − 1}. The analytic continuation is carried
out similarly to the proof of (2.3) by applying the connection formula (cf.
[Er1, 6.5, (7)]) to the integrand of (2.4).

3. Proofs of theorems. First, to determine the domain of absolute
convergence of the J-Bessel zeta-function (1.1), we show some estimations
of Jν−1(Z), which are derived from Poisson’s integral and Bessel’s represen-
tation of the J-Bessel function (for ν real, these estimates are described in
[Wa, 3.31], [Er2, 7.3.2] and [Ol, §2, ex. 9.6]).

Proposition 3.1. Let Z = X + iY ∈ C. For given ν ∈ C, there are
positive constants C1, C2 and C3 depending only on ν which satisfy

(3.1) |Jν−1(Z)| ≤ C1e
|Y ||Zν−1|

for Re(ν) > 1/2, and

(3.2) |Jν−1(Z)| ≤ e|Y |{C2|Zν+N0−1|+ C3|Zν+N0+1|}

for Re(ν) ≤ 1/2. Here N0 = b3/2−Re(ν)c denotes the positive integer such
that 1/2 < Re(ν) +N0 ≤ 3/2.

If the order is an integer, then

(3.3) |Jm(Z)| ≤ e|Y | (m ∈ Z).

Proof. Starting from Poisson’s integral representation

Jν−1(Z) =
(Z/2)ν−1

π1/2Γ (ν − 1/2)

π/2�

−π/2

exp(iZ sin θ) cos2(ν−1) θ dθ,
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which holds for Re(ν) > 1/2 (cf. [Er2, 7.12, (6)]), we see that

|Jν−1(Z)| ≤ e|Y ||(Z/2)ν−1|
π1/2|Γ (ν − 1/2)|

π/2�

−π/2

|cos2(ν−1) θ|dθ

=
e|Y ||(Z/2)ν−1|Γ (Re(ν)− 1/2)

|Γ (ν − 1/2)|Γ (Re(ν) + 1)
.

Here we have used an integral expression for the beta-function:

B(z1, z2) =
Γ (z1)Γ (z2)

Γ (z1 + z2)
= 2

π/2�

0

(sin θ)2z1−1(cos θ)2z2−1 dθ

for Re(zj) > 0 (j = 1, 2) (cf. [Er1, 1.5.1, (19)]). Taking C1 = |21−ν |Γ (Re(ν)−
1/2)/|Γ (ν − 1/2)|Γ (Re(ν) + 1), we obtain the assertion of (3.1).

For Re(ν) ≤ 1/2, we apply (3.1) to the recurrence formula (cf. [Wa, 3.2
(1)], [Er2, 7.2.8, (56)])

(3.4) Jν−1(Z) + Jν+1(Z) =
2ν

Z
Jν(Z),

and achieve the estimate (3.2) by induction.
The inequality (3.3) is a consequence of Bessel’s integral representation

for Jm(Z) (cf. [Er2, 7.3.1, (2)]), which holds for integer m:

Jm(Z) =
1

2π

π�

−π
exp(−imθ + iZ sin θ) dθ.

Thus, the proof of Proposition 3.1 is complete.

Now, we prove our main theorems.

Proof of Theorem 1.1. For z ∈ C, we define the function

(3.5) Jν−1(z, s; θ) :=

∞∑
n=1

Jν−1(2
√
θn)

ns+(ν+1)/2
zn.

By Proposition 3.1, for given θ > 0 and (ν, s) ∈ C2, the right side of (3.5)
converges absolutely when |z| < 1, and by Lemma 2.2, (3.5) is equal to

(3.6)
θs+(ν+1)/2Γ (−s)

2πiΓ (ν)

∞∑
n=1

(0+)�

−∞
znuseθnuF (−s; ν;−u−1) du.

Here, we let r be the small radius around the origin on the path of
the integral above. Then the interchange of summation and integration is
justified when |zeθu| < 1. Accordingly, (3.6) is equal to

(3.7)
θs+(ν+1)/2Γ (−s)

2πiΓ (ν)

(0+)�

−∞

zus

e−θu − z
F (−s; ν;−u−1) du.
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The integral above converges absolutely if z 6= e−θu for u ∈ Ur = {u ∈
C | u ∈ (−∞,−r) or |u| = r}, hence (3.7) represents a holomorphic function
of z and a meromorphic function of s when z 6= e−θu with u ∈ Ur. There-
fore, (3.7) gives an analytic continuation of Jν−1(z, s; θ) in both z and s. In
particular, Jν−1(z, s; θ) is holomorphic at z = 1, which provides the equality
(1.3) in Theorem 1.1.

Next, we deform the Hankel contour (1.3) so as to prove the transfor-
mation formula (1.4). Let R be a sufficiently large integer and CR be the
integration path that starts at negative infinity on the real axis, encircles
the origin with radius 2π(R + 1/2)/θ in the positive direction, and returns
to the starting point. In transforming the integration path, the contour CR
passes simple poles at u = 2πin/θ (n = ±1,±2, . . . ,±R) with residues
(−1/θ)(2πin/θ)sF (−s; ν;−θ/2πin). Then, by the residue theorem, we have

(3.8)
1

2πi

(0+)�

−∞

us

e−θu − 1
F (−s; ν;−1/u) du =

1

θ

R∑
n=−R,n 6=0

(
2πin

θ

)s
F

(
−s; ν;− θ

2πin

)
+

1

2πi

�

CR

us

e−θu − 1
F (−s; ν;−1/u) du.

Because F (−s; ν;Z) is holomorphic at Z = 0, F (−s; ν;−1/u) is bounded
on CR, and also (e−θu − 1)−1 is bounded except on neighborhoods of the
points where θu = 2πim (m ∈ Z). Hence, there exists a positive constant A
depending only on R such that∣∣∣∣ us

e−θu − 1
F (−s; ν;−1/u)

∣∣∣∣ ≤ ARRe(s)eπ Im(s)

on the contour CR. Taking R→∞ in (3.8), we obtain

1

2πi

(0+)�

−∞

us

e−θu − 1
F (−s; ν;−1/u) du

=
1

θ

∞∑
n=−∞, n 6=0

(
2πin

θ

)s
F

(
− s; ν;− θ

2πin

)
for Re(s) < −1, which provides the transformation formula (1.4).

In order to prove (1.5), we start with Kummer’s series

(3.9) F

(
−s; ν;−1

u

)
· Γ (−s)
Γ (ν)

=

∞∑
m=0

Γ (−s+m)

Γ (ν +m)Γ (m+ 1)

(
−1

u

)m
,

which converges absolutely for any ν ∈ C and s ∈ C \ {0, 1, 2, . . .} (cf. [Er1,
6.1, (1)], [Ol, Chap. 7, §9, (9.04)]). Substituting (3.9) into the integrand in
(1.3) and exchanging the order of integration and summation, we see that
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Jν−1(s; θ) is equal to

(3.10)
θs+(ν+1)/2

2πi

∞∑
m=0

(−1)mΓ (−s+m)

Γ (ν +m)Γ (m+ 1)

(0+)�

−∞

us−meθu

1− eθu
du.

By employing the integral representation of the Riemann zeta-function (see
[Ti2, (2.4.2)]),

ζ(s) =
e−πisΓ (1− s)

2πi

(0+)�

+∞

vs−1e−v

1− e−v
dv,

with s replaced by s−m+1 and changing the variable according to v = eiπθu,
we have

(3.11) ζ(s−m+ 1) =
θs−m+1Γ (−s+m)

2πi

(0+)�

−∞

us−meθu

1− eθu
du.

Substituting (3.11) into (3.10), we obtain the power series expansion (1.5).
The formula (1.6) is a direct consequence of the recurrence relation (3.4).

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. The asymptotic expansion of the K-Bessel func-
tion (cf. [Wa, 3.71, (12)], [Er2, 7.4.1, (1)]) yields

(3.12) Kν−1(Z) =

(
π

2Z

)1/2

e−Z{1 +O(Z−1)}

for |arg(Z)| < 3π/2. Here the O-constant depends only on ν. Due to the
exponential decay above, the Dirichlet series (1.2) converges absolutely over
the whole complex s-plane, so Kν−1(s; θ) is an entire function of s for given
θ > 0 and ν ∈ C. The integral representation (1.8) and the transformation
formula (1.9) are obtained in a similar way to Theorem 1.1, replacing the
role of the J-Bessel function by the K-Bessel function.

4. Relation to the Poincaré series. Let m ∈ Z>0 and let H =
{z ∈ C | Im(z) > 0} be the complex upper half-plane. We denote γ(z) =
(az + b)/(cz + d) for γ =

(
a b
c d

)
∈ SL2(Z), and use the notation e(z) =

exp(2πiz). Let k ≥ 4 be an integer, and define the mth Poincaré series
attached to SL2(Z) of weight k by

(4.1) P km(z) := (−1)k
∑
{c,d}

e(mγ(z))

(cz + d)k
.

Here the summation is taken over γ =
( ∗ ∗
c d

)
, a complete system of represen-

tatives of
{( ∗ ∗

0 ∗
)
∈ SL2(Z)

}
\SL2(Z) ∼= {(c, d) ∈ Z2 | gcd(c, d) = 1, c > 0 or

c = 0, d = 1}. In this section, we describe the reconstruction (4.1) from the
Fourier expansion of P km(z) via the transformation formula for Jν−1(s; θ).
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Proposition 4.1. Let µ > 0. For all positive integers k,

(4.2) 2π(−1)k/2
∞∑
n=1

(
n

µ

)(k−1)/2
Jk−1(4π

√
µn)e(nz)

= (−1)k
∞∑

n=−∞

e(−µ/(z + n))

(z + n)k
.

Proof. First, we apply the Mellin inversion integral transformation to
the left side of (4.2):

e−Z =
1

2πi

�

(c)

Γ (w)Z−w dw,

which holds for any c > 0 and Z ∈ C such that |arg(Z)| < π/2. We choose
the branch so that −α = e−πiα and assume (k + 1)/2 < c. Then we may
interchange the order of summation and integration under the condition
(k + 1)/2 < c, and observe that the left side of (4.2) is equal to

(4.3)
2π(−1)k/2µ(1−k)/2

2πi

�

(c)

Γ (w)

(
2πz

i

)−w
Jk−1(w − k; 4π2µ) dw.

We shift the integration path (c) so that c→ +∞, and substitute (1.5) into
(4.3). Then the interchange of integration and summation is justified by
Stirling’s formula and the order of ζ(σ + it) for σ < 0 (cf. [Ti2, (5.1.1)]).
Shifting back each integration path to Cl = (k + l − 1/2) and counting the
residues coming from the simple poles of ζ(1− k − l + w) at w = k + l, we
find that (4.3) is equal to

(4.4)
(2πi)k

2πi

∞∑
l=0

�

Cl

Γ (w)(2πe−πi/2z)−w
(4π2eπiµ)lζ(1− k − l + w)

Γ (k + l)Γ (l + 1)
dw

+

∞∑
l=0

(
−1

z

)k (−2πiµ/z)l

Γ (l + 1)
.

In the above integrands, we apply the functional equation of the Riemann
zeta-function

∞∑
n=−∞
n6=0

n−s = (eπis + 1)ζ(s) =
(2πi)s

Γ (s)
ζ(1− s)

if arg(n) = −π for n < 0, and change the variable w to −w to obtain

(4.5)
1

2πi

∞∑
n=−∞
n6=0

∞∑
l=0

(2πiµ)ln−k−l

Γ (l + 1)

�

C′
l

Γ (−w)Γ (k + l + w)

Γ (k + l)

(
e−πiz

n

)w
dw

+
∞∑
l=0

(
−1

z

)k (−2πiµ/z)l

Γ (l + 1)
.

Here, we use the notation C ′l = (−k − l + 1/2).
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Next, we employ the Mellin–Barnes formula for binomial functions:

(1 + Z)−a =
1

2πi

�

C

Γ (−w)Γ (a+ w)

Γ (a)
Zw dw

for a ∈ C and Z ∈ C. Here |arg(Z)| ≤ π − δ for some positive constant δ,
and the integration path C is taken from −i∞ to i∞ so as to separate the
poles of Γ (a + w) and Γ (−w) (cf. [WW, 14.51]). By taking a = k + l and
Z = −z/n in the above formula, we see that (4.5) is equal to

∞∑
n=−∞

1

(n− z)k
∞∑
l=0

1

Γ (l + 1)

(
2πiµ

n− z

)l
,

which is equivalent to the right side of (4.2). This completes the proof of
Proposition 4.1.

By the definition of P km(z), we see that

(4.6) P km(z) = (−1)ke(mz) + (−1)k
∑

(c,d)∈Z2, c>0
gcd(c,d)=1

e(mγ(z))

(cz + d)k
.

In the standard way, we rearrange the d-sum into an n-sum of finite d-sums
modulo c, and apply Proposition 4.1 with µ = m/c2 and z replaced by
z + d/c. Thus, we achieve the following:

Theorem (Fourier series expansion of the Poincaré series).

P km(z) = (−1)ke(mz) + (−1)k/22π
∞∑
n=1

(
n

m

)(k−1)/2

×
∞∑
c=1

1

c
Kc(m,n)Jk−1

(
4π

c

√
mn

)
e(nz).

Here, the Kloosterman sum is defined as follows:

Kc(m,n) =
∑

dmod c
gcd(c,d)=1

e

(
md̄+ nd

c

)
(d̄d ≡ 1 mod c).

Remark. As is well-known, the equality (4.2), from right to left, can
be shown by using the Fourier transform. Our procedure in the proof of
Proposition 4.1 is different.

It is also natural to try to derive some linear relations or expressions for
the Poincaré series P km(z) via the recurrence formula for Jν−1(s; θ). In fact,
this is possible in a way. After adapting (1.6) of Theorem 1.1 to (4.3), we
employ formula (1.5) for Jk+1 (resp. Jk) as in the proof of Proposition 4.1.
For the resulting integrals, we apply the Mellin–Barnes formula for binomial
functions and arrange the summations by using Kummer’s relation (cf. [Er1,
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6.3, (7)]). Finally, we arrive at the formula

P km(z) = (−1)ke(mz)

+
∑

(c,d)∈Z2, c>0
gcd(c,d)=1

{
(−1)k

e(mγ(z))

(cz + d)k
F

(
1; k + 1;

2πim

c(cz + d)

)

+ (−1)k
2πi

k + 1
· m
c
· e(mγ(z))

(cz + d)k+1
F

(
1; k + 2;

2πim

c(cz + d)

)}
.

This is an expression of the Poincaré series P km(z). However, this equality
itself can be proved directly by using the following (trivial) relation:

−Z
k + 1

· F (1; k + 2;Z) + F (1; k + 1;Z) = 1.

Namely, the equation above is equivalent to a consequence of the recurrence
formula for Jν−1(s; θ).
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