Simplicity of twists of abelian varieties

by

Alex Bartel (Coventry)

1. Introduction. Let A / k be an abelian variety over a field, let $R \leq \operatorname{End}(A)$ be a commutative ring of endomorphisms of A (here and below, we regard the abelian varieties as schemes over a base, and this is also the category in which our morphisms will live; in particular, $\operatorname{End}(A)$ denotes endomorphisms of A defined over k; the same remark applies to statements like " A is principally polarised", etc.), and let K / k be a finite Galois extension with Galois group G. Let Γ be an $R[G]$-module, together with an isomorphism $\psi: R^{n} \rightarrow \Gamma$ for some n. Attached to this data is the so-called twist of A by Γ, denoted by $B=\Gamma \otimes_{R} A$, which is an abelian variety over k with the property that the base change $B_{K}=B \times_{k} K$ is isomorphic to $\left(A_{K}\right)^{n}$.

As soon as $n>1, B$ is, by its very definition, never absolutely simple. But it can be simple over k, and to know when this is the case is important for some applications (see e.g. [4]). If A^{\prime} is a proper abelian subvariety of A, then $\Gamma \otimes_{R} A^{\prime}$ is a proper abelian subvariety of $\Gamma \otimes_{R} A$. Similarly, if $\Gamma^{\prime} \leq \Gamma$ is an R-free $R[G]$-submodule of strictly smaller R-rank, then $\Gamma^{\prime} \otimes_{R} A$ is isogenous to a proper abelian subvariety of $\Gamma \otimes_{R} A$. The purpose of this note is to point out that, under some mild additional hypotheses (and in particular over number fields in the generic case, when $\left.\operatorname{End}\left(A_{\bar{k}}\right) \cong \mathbb{Z}\right)$, these are the only two ways in which B can fail to be simple.

As a concrete example, we mention the following generalisation of Howe's analysis [4]:

Theorem 1.1. Let A / k be a simple abelian variety of dimension 1 or 2 over a number field, let p be an odd prime number and let K / k be a Galois extension with Galois group G of order p. If A is not absolutely simple or not principally polarised, assume that $p>3$. Let I be the augmentation ideal

[^0]in $\mathbb{Z}[G]$, i.e. the kernel of the $\operatorname{map} \mathbb{Z}[G] \rightarrow \mathbb{Z}, g \mapsto 1$ for $g \in G$. Then $I \otimes_{\mathbb{Z}} A$ is simple if and only if $\operatorname{End}(A) \otimes \mathbb{Q}$ does not contain the quadratic subfield of $\mathbb{Q}\left(\mu_{p}\right)$.

Remark 1.2. If $p=2$, then $I \otimes_{\mathbb{Z}} A$ is a quadratic twist of A, and so also simple if A is. Since, for all $p, I \otimes \mathbb{Q}$ is the unique non-trivial irreducible $\mathbb{Q}[G]$-module, the theorem completely deals with simplicity of those twists of elliptic curves and of principally polarised absolutely simple abelian surfaces that are trivialised by a cyclic prime degree extension.

REMARK 1.3. By computing the endomorphism ring of $I \otimes \mathbb{Q}$ as a $\mathbb{Q}[G]$-module, Howe [4] showed part of one implication in the case when $\operatorname{dim}(A)=1$: he proved that if E / k is a non-CM elliptic curve, then $I \otimes_{\mathbb{Z}} E$ is simple. In the proof of the theorem that we present, one does not need to know the endomorphism ring of $I \otimes \mathbb{Q}$ to deduce the result for elliptic curves; one does, however, need to know it to prove the statement for abelian surfaces.

The same technique yields uniform statements for higher-dimensional abelian varieties, where the restriction on p depends on the dimension of the variety:

Theorem 1.4. Fix an integer d. There exists an integer p_{0} such that for all number fields k, all simple abelian varieties A / k of dimension d, all primes $p>p_{0}$, and all Galois extensions K / k with cyclic Galois group G of order p, the twist $I \otimes_{\mathbb{Z}} A$ is simple if and only if $\operatorname{End}(A) \otimes \mathbb{Q}$ does not contain a subfield of $\mathbb{Q}\left(\mu_{p}\right)$ other than \mathbb{Q}. Here, I is, as in Theorem 1.1, the augmentation ideal in $\mathbb{Z}[G]$.

Similarly concrete results can be obtained for twists by other representations, and we give several more examples in the same vein in the last section.

The tensor construction $\Gamma \otimes_{R} A$ can be defined in a more general setting, namely when Γ is merely assumed to be R-projective, rather than R-free. The object $\Gamma \otimes_{R} A$ then represents the functor on k-algebras $T \mapsto \Gamma \otimes_{R} A(T)$. Since we shall mainly be interested in $R=\mathbb{Z}$, we will not indulge in this generality here.
2. Endomorphisms of twists of abelian varieties. In this section we begin by recalling (see [9, §III.1.3]) the definition of a twist of an abelian variety by an Artin representation, and then give sufficient conditions for the endomorphism ring of such a twist to be an integral domain, equivalently for the twist to be simple. We strongly recommend [6] for a very thorough treatment of twists of abelian varieties, and, more generally, of commutative algebraic groups.

Let Y / k be an abelian variety, and K / k a finite Galois extension with Galois group G. A K / k-form of Y is a pair (X, f), where X / k is an abelian variety, and $f: Y_{K} \rightarrow X_{K}$ is an isomorphism, defined over K. There is an obvious notion of isomorphism between such pairs, and the set of isomorphism classes of K / k-forms of Y is in bijection with the pointed set $H^{1}\left(G\right.$, Aut $\left.Y_{K}\right)$, where the G-action on Aut Y_{K} is given by $\phi^{\sigma}=\sigma \circ \phi \circ \sigma^{-1}$ for $\sigma \in G$ and $\phi \in$ Aut Y_{K} (we adhere to the common convention that the superscript for the action is written on the right, even though this is actually a left action). The bijection is given by assigning to a K / k-form (X, f) the cocycle represented by $\sigma \mapsto f^{-1} f^{\sigma}$, where, as before, f^{σ} is defined to be $\sigma \circ f \circ \sigma^{-1}$.

Now, suppose that A / k is an abelian variety, and $R \leq \operatorname{End}(A)$ a commutative ring. With K / k and G as above, let Γ be an $R[G]$-module, together with an R-module isomorphism $\psi: R^{n} \rightarrow \Gamma$ for some $n \in \mathbb{N}$. Then the map $a_{\Gamma}: \sigma \mapsto \psi^{-1} \psi^{\sigma}=\psi^{-1} \circ \sigma \circ \psi \in \mathrm{GL}_{n}(R) \leq \operatorname{Aut}\left(A_{K}\right)^{n}$ defines a cocycle in $H^{1}\left(G\right.$, Aut $\left.\left(A_{K}\right)^{n}\right)$. Indeed, note that since G acts trivially on automorphisms of A^{n} that are defined over k, as is the case for $\mathrm{GL}_{n}(R) \leq \operatorname{Aut}\left(A_{K}\right)^{n}$, 1-cocycles whose image lies in $\mathrm{GL}_{n}(R)$ are simply group homomorphisms. The twist B of A by Γ, written $B=\Gamma \otimes_{R} A$ is, by definition, the K / k-form of A^{n} corresponding to the cocycle a_{Γ}.

We now come to the endomorphism ring of B. Our aim is to find criteria for B to be simple, equivalently for $\operatorname{End}(B)$ to be a division ring. In theory, one can easily describe $\operatorname{End}(B)$ in terms of the G-module structure of $\operatorname{End}\left(A_{K}\right)$ and $\operatorname{End}_{R}(\Gamma)$, as follows.

Lemma 2.1. There is an isomorphism

$$
\operatorname{End}\left(\Gamma \otimes_{R} A\right) \xrightarrow{\sim}\left(\operatorname{End}_{R}(\Gamma) \otimes \operatorname{End}\left(A_{K}\right)\right)^{G} .
$$

Proof. This immediately follows from [6, Proposition 1.6], by noting that the absolute Galois group of k acts on Γ through the quotient G.

However, in the most general form, this description is not easy to use for determining when the right hand side of the equation is a division ring. On the other hand, generically the situation is much better.

Assumption 2.2. For the rest of this section, assume that $\operatorname{End}(A)=$ $\operatorname{End}\left(A_{K}\right)$. Since we are interested in criteria for B to be simple, we will also assume from now on that A itself is simple, therefore so is A_{K} by the previous assumption.

REmARK 2.3. This assumption is generically satisfied over number fields in the following sense. Fix an abelian variety A over a number field k, and a Galois group G. The ring $\operatorname{End}\left(A_{\bar{k}}\right)$ is a module under the absolute Galois $\operatorname{group} \operatorname{Gal}(\bar{k} / k)$ of k. Let L be the fixed field under the maximal subgroup of $\operatorname{Gal}(\bar{k} / k)$ that acts trivially. Then $\operatorname{End}\left(A_{K}\right)=\operatorname{End}(A)$ whenever $K \cap L=k$.

See also [7, 10] for a more in-depth discussion on fields of definition of endomorphisms.

Notation 2.4. The following notation will be retained throughout the paper:

- $K / k-$ a Galois extension of fields with Galois group G;
- A / k - a simple abelian variety;
- $S=\operatorname{End}(A)$;
- $R \leq S-$ a commutative subring;
- Γ - an R-free $R[G]$-module;
- $B=\Gamma \otimes_{R} A$ - the twist of A by Γ, which is an abelian variety over k;
- $D=S \otimes_{\mathbb{Z}} \mathbb{Q}$ - a division algebra;
- $F=R \otimes_{\mathbb{Z}} \mathbb{Q}$ - a field contained in D.

Under Assumption 2.2, Lemma 2.1 becomes

$$
\begin{equation*}
\operatorname{End}(B) \cong \operatorname{End}_{R[G]}(\Gamma) \otimes_{R} S \tag{2.5}
\end{equation*}
$$

In general, it is a subtle question with a rich literature when the tensor product of two division rings over a common subring is a division ring. But for a generic polarised abelian variety, $S=\mathbb{Z}$. More generally, if S is commutative, Schur's Lemma furnishes an elementary answer to the question of simplicity of B.

Proposition 2.6. Assume, in addition to Assumption 2.2, that S is commutative, i.e. D is a field. Then B is simple if and only if $\Gamma \otimes_{R} D$ is a simple $D[G]$-module.

Proof. The twist B is simple if and only if $\operatorname{End}(B)$ is a division ring, which in turn is equivalent to

$$
\operatorname{End}(B) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \operatorname{End}_{R[G]}(\Gamma) \otimes_{R} D
$$

being a division algebra. An elementary computation shows that when S is commutative, $\operatorname{End}_{R[G]}(\Gamma) \otimes_{R} D$ is isomorphic to the endomorphism ring of the $D[G]$-module $\Gamma \otimes_{R} D$. The isomorphism is given by

$$
\begin{aligned}
\operatorname{End}_{R[G]}(\Gamma) \otimes_{R} D & \rightarrow \operatorname{End}_{D[G]}\left(\Gamma \otimes_{R} D\right) \\
\alpha \otimes f & \mapsto(\gamma \otimes g \mapsto \alpha(\gamma) \otimes f g)
\end{aligned}
$$

We deduce that, by Schur's Lemma, B is simple if and only if $\Gamma \otimes_{R} D$ is a simple $D[G]$-module.

There is a slightly different way of phrasing this discussion, which is closer to Howe's original proof. Since A_{K} is assumed to be simple, S is a division ring, and $\operatorname{End}_{K}\left(A^{n}\right) \cong M_{n}(S)$, the n-by- n matrix ring over S. Since the base change of B to K is isomorphic to $\left(A_{K}\right)^{n}$, any endomorphism of B gives rise
to an endomorphism of $\left(A_{K}\right)^{n}$, i.e. an element of $M_{n}(S)$. Conversely, it is easy to characterise the elements of $M_{n}(S)$ that descend to endomorphisms of B, as follows.

Proposition 2.7 ([4, Proposition 2.1]). An element of $M_{n}(S)$ descends to an endomorphism of B if and only if it commutes with all elements of the image of G under the cocycle $a_{\Gamma}: G \rightarrow \mathrm{GL}_{n}(R) \leq \mathrm{GL}_{n}(S)$.

Now, we merely need to observe that, as we remarked above, the cocycle a_{Γ} is in fact nothing but the group homomorphism $G \rightarrow$ Aut Γ with respect to an R-basis on Γ. The commutant of its image in $M_{n}(S)$ is the intersection of $M_{n}(S)$ with the commutant of the image of a_{Γ} in $M_{n}(D)$, where $D=S \otimes \mathbb{Q}$ is, as in Proposition 2.6, assumed to be a field. Moreover, since for any $x \in M_{n}(D)$, some integer multiple of x lies in $M_{n}(S)$, the commutant of $a_{\Gamma}(G)$ in $M_{n}(S)$ is a division ring if and only if its commutant in $M_{n}(D)$ is a division algebra. By Schur's Lemma, the latter is the case if and only if $\Gamma \otimes_{R} D$ is simple.

Another example in which equation 2.5 can be completely analysed is when $D=S \otimes \mathbb{Q}$ is a quaternion algebra over $F=R \otimes \mathbb{Q}$. In that case, a theorem of Risman [8] asserts that if D^{\prime} is any division algebra over F, then $D \otimes_{F} D^{\prime}$ has zero-divisors if and only if D^{\prime} contains a splitting field for D. So we immediately deduce the following result.

Proposition 2.8. Assume, in addition to Assumption 2.2, that D is a quaternion algebra over $F=R \otimes \mathbb{Q}$. Then B is simple if and only if $\operatorname{End}_{F[G]}(\Gamma \otimes F)$ contains no splitting field of D.

A generalisation in a slightly different direction is the special case that $L=\operatorname{End}_{R[G]}(\Gamma) \otimes \mathbb{Q}$ is a field.

Proposition 2.9. Assume, in addition to Assumption 2.2 , that L is a field. Suppose also that R is contained in the centre of $\operatorname{End}(A)$. Then B is simple if and only if L intersects every splitting field of D in $F=$ $R \otimes \mathbb{Q}$.

Proof. The proof will use the general theory of division algebras (see e.g. [1, $\S 74 \mathrm{~A}]$). Let Z be the centre of D. If $L \cap Z \neq F$, then certainly $L \otimes_{F} D$ is not a division algebra, since $L \otimes_{F} Z$ is not a field. Suppose that $L \cap Z=F$, so that $L \otimes_{F} Z$ is a field. Then $L \otimes_{F} D$ is a simple algebra with centre $L \otimes_{F} Z$. The dimension of D over F is equal to the dimension of $L \otimes_{F} D$ over L, and their respective dimensions over their centres are therefore also equal. So L intersects a splitting field of D in a field that is bigger than F if and only if the index of $L \otimes_{F} D$ is smaller than that of D if and only if $L \otimes_{F} D$ has zero divisors.
3. Consequences. We first deduce Theorem 1.1 from Propositions 2.6 and 2.8 .

Let G be cyclic of odd prime order p. Recall that $I \leq \mathbb{Z}[G]$ is defined to be the augmentation ideal in $\mathbb{Z}[G], I=\operatorname{ker}\left(\sum_{g \in G} n_{g} g \mapsto \sum_{g \in G} n_{g}\right)$. The complexification $I \otimes \mathbb{C}$ is isomorphic to the direct sum of all non-trivial simple $\mathbb{C}[G]$-modules, which are all Galois conjugate. It is therefore easy to see that $I \otimes_{\mathbb{Z}} \mathbb{Q}$ is a simple $\mathbb{Q}[G]$-module, and that moreover, given any number field $D, I \otimes_{\mathbb{Z}} D$ is reducible if and only if D intersects $\mathbb{Q}\left(\mu_{p}\right)$ nontrivially.

First, let A / k be an elliptic curve over a number field. Then $\operatorname{End}(A) \otimes \mathbb{Q}$ is a field, and the fact that $\operatorname{End}(A)=\operatorname{End}\left(A_{K}\right)$ for an odd degree extension K / k follows from classical CM theory (see e.g. [5, Chapter 3]). Thus, the dimension 1 case of Theorem 1.1 follows from Proposition 2.6 .

The dimension 2 case is more subtle. Let A / k be an absolutely simple abelian surface over a number field. Then $\operatorname{End}\left(A_{\bar{k}}\right) \otimes \mathbb{Q}$ is one of the following:
(1) \mathbb{Q},
(2) a real quadratic number field,
(3) a CM field of degree 4,
(4) an indefinite quaternion algebra over \mathbb{Q}.

We first claim that in all four cases, $\operatorname{End}(A)=\operatorname{End}\left(A_{K}\right)$ for an odd degree extension K / k. This is clear in case (1), and in case (3) this follows from classical CM theory (see e.g. [5, Chapter 3]). For case (2), observe that the absolute Galois group of k acts on $\operatorname{End}\left(A_{\bar{k}}\right) \otimes \mathbb{Q}$ by \mathbb{Q}-algebra automorphisms. If the endomorphism algebra is a quadratic field, then the action factors through a quotient of $\operatorname{Gal}(\bar{k} / k)$ of index at most 2 , which proves the claim. Finally, case (4) is handled by [2, Theorem 1.3].

If A / \bar{k} is isogenous to a product of elliptic curves, then there are more possibilities for the structure of $\operatorname{End}(A)$, which have been classified in [3, Theorem 4.3]. It follows from this classification that if $\operatorname{End}(A) \otimes \mathbb{Q}$ is a division algebra, then it is still either isomorphic to \mathbb{Q} or a quadratic field or a quaternion algebra, and that moreover $\operatorname{End}(A)=\operatorname{End}\left(A_{K}\right)$ for any extension K / k of degree coprime to 6 . So the dimension 2 case of Theorem 1.1 follows from Proposition 2.6 when $\operatorname{End}(A) \otimes \mathbb{Q}$ is a field, and from Proposition 2.8 when it is a quaternion algebra, which covers all possible cases.

To deduce Theorem 1.4 from Proposition 2.9 , we use a result of Silverberg [10, which we will rephrase slightly for our purposes: for any fixed d, there exists a bound b depending only on d (specifically, $b=4(9 d)^{4 d}$ is enough), such that for all abelian varieties over number fields A / k of dimension d, and all extensions K / k of prime degree greater than $b, \operatorname{End}(A)=$ $\operatorname{End}\left(A_{K}\right)$. Theorem 1.4 is an immediate consequence of this result together with Proposition 2.9, because $\operatorname{End}_{\mathbb{Q}[G]}(\Gamma \otimes \mathbb{Q}) \cong \mathbb{Q}\left(\mu_{p}\right)$.

Proposition 2.6 has an application to questions of simplicity of Weil restrictions of scalars. If A / k is a simple abelian variety, and K / k is a finite Galois extension with Galois group G, then the Weil restriction of scalars $R_{K / k}\left(A_{K}\right)$ is never simple, since there is a surjective trace map $R_{K / k}\left(A_{K}\right) \rightarrow A$. Its kernel is, up to isogeny, precisely the twist $I \otimes_{\mathbb{Z}} A$, where I is the augmentation ideal in $\mathbb{Z}[G]$. The following is therefore an immediate consequence of Proposition 2.6.

Corollary 3.1. Let A / k be an abelian variety with $\operatorname{End}\left(A_{\bar{k}}\right)=\mathbb{Z}$. Let K / k be a finite Galois extension with Galois group G. The kernel of the trace map $R_{K / k}\left(A_{K}\right) \rightarrow A$ is simple over k if and only if G has prime order.

Proof. Cyclic groups of prime order are precisely the finite groups with only two rational irreducible representations, i.e. those for which $I \otimes_{\mathbb{Z}} \mathbb{Q}$ is a simple $\mathbb{Q}[G]$-module.

If K / k is Galois with dihedral Galois group G of order $2 p, p$ an odd prime, then there is a unique intermediate quadratic extension $k^{\prime}=k(\sqrt{d}) / k$, and for any abelian variety $A / k, R_{K / k}\left(A_{K}\right) \sim A \times A_{d} \times X^{2}$, where A_{d} is the quadratic twist of A by k^{\prime} / k. The remaining factor X (up to isogeny) is the twist of A by a lattice in the ($p-1$)-dimensional irreducible rational representation ρ of G, which is the sum of all the two-dimensional complex representations of G.

Corollary 3.2. Let E / k be an elliptic curve over a number field, and $K / k, X$ as above. Then X is simple.

Proof. The values of each irreducible two-dimensional character of G generate the maximal real subfield $\mathbb{Q}\left(\mu_{p}\right)^{+}$of the p th cyclotomic field, and they are all Galois conjugate over \mathbb{Q}. They will therefore remain conjugate over any imaginary quadratic field, so the conclusion holds even when E has CM.

We conclude with an amusing example of a "symplectic twist". Let E / k be an elliptic curve over a number field, let K / k be Galois with Galois group Q_{8}, the quaternion group. There are three intermediate quadratic fields, and correspondingly, the Weil restriction $R_{K / k}\left(E_{K}\right)$ has, up to isogeny, four factors E, E_{1}, E_{2}, E_{3} that are quadratic twists of E. Write $R_{K / k}\left(E_{K}\right) \sim$ $E \times E_{1} \times E_{2} \times E_{3} \times H$.

Corollary 3.3. Let $K / k, E / k, H$ be defined as above. Then H is simple, unless E has $C M$ by an imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$ with d equal to the sum of three squares, in which case H is isogenous to a product of two isomorphic simple factors.

Proof. The factor H is (up to isogeny) the twist of E by two copies of the standard representation of Q_{8}. The endomorphism algebra of this representation is isomorphic to Hamilton's quaternions, which is split by precisely the imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ for which d is the sum of three squares.

Acknowledgments. I would like to thank Barinder Banwait for bringing Howe's paper to my attention, which motivated this work. Many thanks are due to Victor Rotger for very helpful email correspondence. I gratefully acknowledge the financial support by the Royal Commission for the Exhibition of 1851.

References

[1] C. W. Curtis and I. Reiner, Methods of Representation Theory, with Applications to Finite Groups and Orders, Vol. 2, Wiley, New York, 1987.
[2] L. V. Dieulefait and V. Rotger, The arithmetic of QM-abelian surfaces through their Galois representations, J. Algebra 281 (2004), 124-143.
[3] F. Fite, K. Kedlaya, V. Rotger and A. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math. 148 (2012), 1390-1442.
[4] E. Howe, Isogeny classes of abelian varieties with no principal polarizations, in: Moduli of Abelian Varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, Basel, 2001, 203-216.
[5] S. Lang, Complex Multiplication, Grundlehren Math. Wiss. 255, Springer, Berlin, 1983.
[6] B. Mazur, K. Rubin and A. Silverberg, Twisting commutative algebraic groups, J. Algebra 314 (2007), 419-438.
[7] K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. of Math. 101 (1975), 555-562.
[8] L. J. Risman, Zero divisors in tensor products of division algebras, Proc. Amer. Math. Soc. 51 (1975), 35-36.
[9] J.-P. Serre, Cohomologie Galoisienne, 5th ed., Lecture Notes in Math. 5, Springer, Berlin, 1994.
[10] A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure Appl. Algebra 77 (1992), 253-262.

Alex Bartel
Department of Mathematics
Warwick University
Coventry CV4 7AL, UK
E-mail: a.bartel@warwick.ac.uk

[^0]: 2010 Mathematics Subject Classification: 11G05, 11G10, 11R34, 14K05.
 Key words and phrases: abelian varieties, Artin representations, endomorphism ring, Galois cohomology.

