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1. Introduction. In the theory of abelian extensions of imaginary quad-
ratic number fields K, elliptic units play a role analogous to that of cyclo-
tomic units in the theory of abelian extensions of Q. Elliptic units are central
objects in the Iwasawa theory of CM elliptic curves. In fact, they appear in
Rubin’s two-variable main conjecture [Ru91, Theorem 41(i)] and they are
used in the construction of p-adic L-functions (see [Y82], [dS87] and [BV10]).
Moreover, Coates and Wiles [CW77] studied elliptic units in connection with
the Birch and Swinnerton-Dyer conjecture.

Now, let K be an imaginary quadratic number field and E/K an el-
liptic curve with complex multiplication by OK , the ring of integers of K,
with good ordinary reduction above a split prime p, p 6= 2, 3. Denote by p
and p̄ the two distinct primes of OK above p and write Kk,n := K(E[p̄kpn]),
k, n ≥ 0, for the field obtained by adjoining to K the coordinates of p̄kpn-
division points of E. We write K∞ =

⋃
k,nKk,n, G for the Galois group

G(K∞/K) and Λ(G) for the Iwasawa algebra of G with coefficients in Zp.
By S ⊂ Λ(G) we denote the canonical Ore set as defined at the beginning of
Section 3 and write S-tor for the category of finitely generated Λ(G)-modules
that are S-torsion. Furthermore, we write E∞ = lim←−k,n(O×Kk,n

⊗Z Zp) for

the projective limit (with respect to norm maps) of the global units O×Kk,n

tensored with Zp. We will define two Λ(G)-submodules CY and CR of E∞,
consisting of those elliptic units considered by Yager in [Y82] and Rubin in
[Ru91], respectively. Under the assumption that the conductor f of E/K is
a prime power, we prove the following result.

Theorem 3.19. Let f = lr for some prime ideal l of OK and some r ≥ 1.
Then in K0(S-tor) we have
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[CR/CY ] = [Λ(G/Dl)],

where we write Dl for the decomposition group of l in G = G(K∞/K).

Before we outline the structure of this paper, let us make some remarks
concerning the generality and the applications of the theorem. First, we
note that if E is already defined over Q and E is a representative with
minimal discriminant and conductor in its Q̄-isomorphism class as in [Si99,
Appendix A, §3], then f = lr, r ≥ 1, is a prime power (see [S14, Theo-
rem A.6.8 and Proposition A.6.9]), so that the theorem applies in these
cases.

Next, we briefly mention some applications of Theorem 3.19. In a talk
held in Cambridge on the occasion of J. Coates’ 60th birthday, K. Kato
stated a conjecture for, in general, non-abelian p-adic Lie extensions F∞/Q
containing the cyclotomic Zp-extension Qcyc. Kato’s conjecture concerns
the existence of an element Lp,u ∈ K1(Zp[[G(F∞/Q)]]S∗), where S∗ is a
certain Ore set, depending on a global unit u. This Lp,u is required to
satisfy a prescribed interpolation property and to map to a specified el-
ement under the connecting homomorphism ∂ : K1(Zp[[G(F∞/Q)]]S∗) →
K0(S∗-tor) from K-theory, where S∗-tor denotes the category of finitely
generated Zp[[G(F∞/Q)]]-modules which are S∗-torsion. Theorem 3.19 can
be used to prove (under a torsion assumption) an analogous statement
in the commutative setting K∞/K described above (see [S14, Theorem
2.4.41]).

Moreover, Theorem 3.19 can be used to bridge the work of Yager and Ru-
bin on the two-variable main conjecture when proving the non-commutative
Iwasawa main conjecture as stated in [CFKSV] for CM elliptic curves E/Q
(with prime power conductor over K). Compare the work [BV10] of Bouga-
nis and Venjakob, in particular Remark 2.8 there.

In the present paper we proceed as follows.

1◦ In Section 2 we define groups of elliptic units studied by Rubin, de
Shalit and Yager.

2◦ In Subsection 3.1 we show that Yager’s elliptic units coincide with a
group of elliptic units considered by de Shalit (Proposition 3.1).

3◦ In Subsection 3.2 we determine a (relatively small) set of generators
of CR = lim←−k,n(C(Kk,n) ⊗Z Zp) (Corollary 3.7), and afterwards show

that the quotient of CR and de Shalit’s elliptic units (i.e., CR/CY by
step 2◦) is S-torsion by giving a concrete element of S that annihilates
the quotient (Theorem 3.10).

4◦ In Subsection 3.3 we determine the image of CY under the (two-
variable) semilocal version L of the Coleman map for the formal group
Ê associated to a Weierstraß equation of E (Corollary 3.14).
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5◦ In Subsection 3.4 we determine the image of CR under L subject to
the condition that the conductor of E/K is a prime power (Theorem
3.18).

6◦ In Subsection 3.5 we combine the descriptions of CY and CR via L
and prove Theorem 3.19.

For basic facts about elliptic units our main references are the works [Ru91]
by Rubin and [dS87] by de Shalit. For Robert’s treatment of elliptic units see
[R73], [R90] and [R92]. There are other useful accounts due to Rubin [Ru87,
Appendix] and to Coates and Wiles [CW77, Section 5], [CW78, Section 3].
The different notation used in some of the above is compared in Bley [B04].

We note that large portions of the present paper are slightly modified
versions of parts of the author’s doctoral dissertation [S14]. For related re-
sults about elliptic units, we refer to the paper [V12] by Viguié, who proves
a similar statement to Lemma 3.2 (compare [V12, Lemma 2.4, Corollary
2.5]). He also determines a set of generators for projective limits of elliptic
units for certain Zp-extensions [V12, Lemma 2.7]. Our situation is different
in that we deal with Z2

p-extensions, which requires different ideas.

We also want to refer to the paper [K12], where Y. Kang establishes, for
a p-adic L-function interpolating values of primitive Hecke L-functions, an
analogue of Yager’s main result from [Y82]. Kang uses a modification of the
elliptic units used by Yager.

2. Definition of elliptic units. In this section we recall some different,
yet (as we will see) closely related definitions of elliptic units. Throughout,
K will denote a quadratic imaginary number field. We will eventually be
interested in the fields F = Kk,n := K(E[p̄kpn]) for an elliptic curve E/K
with complex multiplication by OK , where p and p̄ are distinct primes of K
above a rational prime p, p 6= 2, 3, at which E/K has good reduction.

2.1. Rubin’s elliptic units. Let us recall the definition of elliptic units
for a number field F which is an abelian Galois extension of a quadratic
imaginary field K containing the Hilbert class field H of K that is used by
Rubin in [Ru91]. For an integral ideal m of K we denote by K(m) the ray
class field of K modulo m. We fix an embedding K̄ ⊂ C and a period lattice
L ⊂ C of some elliptic curve defined over H with complex multiplication
by OK ; for the existence of such a curve Rubin refers to [Sh71, Theorem 5.7].
For any integral ideal a ⊂ OK , (a, 6) = 1, he then considers the meromorphic
function

Θ0(z; a) = Θ0(z;L, a) =

(
∆(L)Na

∆(a−1L)

)1/12 ∏
u∈(a−1L/L)/±1

(℘(z;L)−℘(u;L))−1,
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where ∆ is the Ramanujan ∆-function, a twelfth root of ∆(L)Na/∆(a−1L)
is fixed and ℘(z;L) is the Weierstraß ℘-function for the lattice L.

Now, let m be an integral ideal of K such that O×K → OK/m is injective
(recall that O×K is a finite group) and let τ ∈ C/L be an element of order ex-
actly m. It is shown in [B04, Proposition 2.2] that Θ0(τ ; a) belongs to K(m).

Definition 2.1. Let K be a quadratic imaginary number field and F
a finite abelian Galois extension of K, containing the Hilbert class field of K.
Rubin makes the following definitions:

(i) CF is the group generated by all elements

(1) (NFK(m)/FΘ0(τ ; a))σ−1,

where σ ranges over Gal(F/K), m over the integral ideals of K such that
O×K → OK/m is injective, a over the integral ideals such that (a, 6m) = 1,
and τ over the primitive m-division points. NFK(m)/F denotes the norm map
from the composite field FK(m) of F and K(m) to F and we note that the
elements σ − 1 generate the augmentation ideal I(F/K), i.e., the kernel of
the augmentation map aug : Z[G(F/K)]→ Z.

(ii) C(F ), the group of elliptic units of F , is

C(F ) = µ∞(F )CF ,

where µ∞(F ) is the group of all roots of unity in F .

(iii) For Kk,n := K(E[p̄kpn]) as above we also define the projective limit
of Rubin’s elliptic units

CR := lim←−
k,n

(C(Kk,n)⊗Z Zp),

where the limit is taken with respect to norm maps.

2.2. De Shalit’s elliptic units. De Shalit considers the function

Θ(z;L, a) = Θ0(z; a)12,

which is an elliptic function with respect to L and can be expressed in
terms of the fundamental theta function, which is noted in [dS87, II, 2.3].
Moreover, Θ(z;L, a) satisfies the monogeneity relation

Θ(cz; cL, a) = Θ(z;L, a), c ∈ C×.

Assumption 2.2. From now on we assume that K has class number one.
Note that this is automatically satisfied whenever we consider an elliptic
curve E/K with complex multiplication by OK .

So we can find Ω ∈ L and xn ∈ OK such that L = OKΩ and n = (xn) for
any integral ideal n of K. With this notation, Ω/xn is a primitive n-division
point in C/L.
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Definition 2.3. De Shalit makes the following definitions:

(i) Θn is the subgroup of K(n)× generated by

(2) Θ(1; n, a) = Θ(τ ;L, a),

where a ranges over the integral ideals of K such that (a, 6n) = 1, and τ is
a primitive n-division point in C/L.

(ii) Cn is the group of units in K(n)× whose 12th power belongs to
µ∞(K(n))Θn for any integral ideal n ofK such thatO×K ↪→ OK/n is injective.

Remark 2.4. (i) Θn is independent of τ , which follows from 1 and Re-
mark 2.6.

(ii) If n is divisible by at least two distinct primes, then Θn is a subgroup
of the group O×K(n) of units in K(n)×.

(iii) The groups Θn and Cn are G(K(n)/K)-stable, which follows from
[dS87, II, Proposition 2.4(ii)].

(iv) Note that Rubin’s group C(F ) for a ray class field F = K(n) is, in
general, larger than I(K(n)/K)Cn, since in the definition of generators as in
(1) he allows m to range over all integral ideals of K such that O×K → OK/m
is injective.

The values of Θ at two different primitive n-division points are related
through the action of the Galois group G(K(n)/K), which we want to illus-
trate in the next remark. Let us first introduce some notation for arithmetic
Frobenius elements.

Definition 2.5. Let F/K be an abelian (finite or infinite) extension in
which the prime ideal q is unramified. We then write

(q, F/K) ∈ Dq ⊂ G(F/K)

for the arithmetic Frobenius at q which (topologically) generates the decom-
position group Dq. If c is an ideal which has a prime decomposition

∏r
i=1 q

mi
i

and each qi is unramified in F/K, then we define

(c, F/K) :=
r∏
i=1

(qi, F/K)mi .

Remark 2.6. If τ is any primitive n-division point we can find c ∈ OK ,
c prime to n, such that τ = cΩ/xn. Let us write σc = ((c),K(n)/K) in
G(K(n)/K). Then

Θ(Ω/xn;L, a)σc = Θ(Ω/xn; (c)−1L, a)(3)

= Θ(c(Ω/xn); c(c)
−1L, a) = Θ(τ ;L, a),

where the first equality follows from [dS87, II, Proposition 2.4(ii)], using the
main theorem of complex multiplication [Sh71, 5.3]. For the second equality
we have used the monogeneity property. We conclude that the values of Θ
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at two different primitive n-division points belong to the same orbit under
the action of G(K(n)/K).

2.3. Yager’s elliptic units. Let I6pf be the set of integral ideals of K
which are prime to 6pf and let

S =
{
µ : I6pf → Z

∣∣∣ µ(b) = 0 for almost all b ∈ I6pf

and
∑

b∈I6pf

(Nb− 1)µ(b) = 0
}
.

For any µ ∈ S we define

Θ(z;L, µ) =
∏

b∈I6pf

Θ(z;L, b)µ(b).

For certain fpnp̄k-division points τ Yager then considers Θ(τ ;L, µ). Let us
write Fk,n = K(fpnp̄k) for the ray class field modulo fpnp̄k.

Definition 2.7. (i) Let CY,k,n be the group generated by elements of
the form

NFk,n/Kk,n
Θ(τ ;L, µ)

for k, n ≥ 1 and µ ∈ S, where we write NFk,n/Kk,n
for the norm map from

Fk,n to Kk,n.
(ii) We also define the projective limit of Yager’s units

CY := lim←−
k,n

(CY,k,n ⊗Z Zp),

where the limit is taken with respect to norm maps.

Remark 2.8. (i) CY,k,n is Galois stable by [dS87, II, Proposition 2.4].
(ii) Moreover, it does not matter which fpnp̄k-division point τ we start

with since Θ(τ ;L, µ) and Θ(τ ′;L, µ) are in the same orbit under the action of
G(Fk,n/K) for any two such division points τ and τ ′; compare Remark 2.6.

3. Results. As before, we write Fk,n=K(fpnp̄k) and Kk,n :=K(E[p̄kpn])
for an elliptic curve E/K with complex multiplication by OK , where p and
p̄ are distinct primes of K above a rational prime p, p 6= 2, 3, at which
E/K has good reduction. For any Galois extension F/K we denote by
I(F/K) the augmentation ideal in Z[G(F/K)]. We set K∞ =

⋃
k,nKk,n,

G = Gal(K∞/K) and write Λ(G) = Λ(G,Zp) for the commutative Iwasawa
algebra of G with coefficients in Zp. We also define the canonical Ore set

S = {x ∈ Λ(G) | Λ(G)/Λ(G)x is finitely generated over Λ(H)},
where H = G(K∞/K

cyc) and Kcyc is the cyclotomic Zp-extension of K so
that G/H ∼= Zp.
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3.1. Comparison of Yager’s and de Shalit’s elliptic units

Proposition 3.1. We have

CY,k,n ⊗Z Zp =
(
I(Kk,n/K)NFk,n/Kk,n

(Θfpnp̄k)
)
⊗Z Zp

for all k, n ≥ 1.

Proof. We start by showing that

I(Kk,n/K)NFk,n/Kk,n
(Θfpnp̄k) ⊆ CY,k,n.

Let σ be an element of G(Kk,n/K). Note that I(Kk,n/K) is generated by
the various 1 − σ with σ running over G(Kk,n/K). We have to show that
elements of the form

(NFk,n/Kk,n
Θ(τ ;L, a))1−σ,

where τ is an fpnp̄k-division point and a is an ideal of K prime to 6fpnp̄k,
belong to CY,k,n ⊗Z Zp. To see this, choose a prime ideal c of OK prime to
6fpnp̄k such that σ = (c,Kk,n/K). Let us define an element µ ∈ S by

µ(a) = 1, µ(c) = Na, µ(ac) = −1, and µ(b) = 0 ∀b 6= a, ac, c.

Using [dS87, II, Proposition 2.4(ii)], one can immediately verify that

(NFk,n/Kk,n
Θ(τ ;L, a))1−σ = NFk,n/Kk,n

Θ(τ ;L, µ).

We now turn to the other inclusion

CY,k,n ⊗Z Zp ⊆
(
I(Kk,n/K)NFk,n/Kk,n

(Θfpnp̄k)
)
⊗Z Zp.

Let µ ∈ S and choose an integral ideal c of K prime to 6pf such that
Nc − 1 ∈ Z×p (recall that p 6= 2, 3). For any integral ideal a of K we write

σa = (a, Fk,n/K). Using the identities Θ(τ ;L, b)Nc−σc = Θ(τ ;L, c)Nb−σb

from [dS87] and
∑

b(Nb− 1)µ(b) = 0 we get

Θ(τ ;L, µ)Nc−1 ·Θ(τ ;L, µ)1−σc =Θ(τ ;L, µ)Nc−σc =
∏
b

(Θ(τ ;L, b)Nc−σc)µ(b)

=
∏
b

(Θ(τ ;L, c)Nb−σb)µ(b)

=
∏
b

(Θ(τ ;L, c)1−σb)µ(b),

whence it follows that Θ(τ ;L, µ)Nc−1 ∈ I(Fk,n/K)Θfpnp̄k . Taking the norm
from Fk,n to Kk,n and recalling that Nc− 1 ∈ Z×p finishes the proof.

3.2. Comparison of Rubin’s and de Shalit’s elliptic units. In this
subsection we compare Rubin’s elliptic units CR := lim←−k,n(C(Kk,n) ⊗Z Zp)
for the fields Kk,n to de Shalit’s units, and hence, through Proposition 3.1,
to Yager’s units CY := lim←−k,n(CY,k,n ⊗Z Zp). We will show in Theorem 3.10

that the module CR/CY is S-torsion.
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In order to prove Theorem 3.10, we will determine in three steps a rel-
atively small set of generators of CR. First, for the fields Kk,n we prove the
following lemma, which says that in the definition of CKk,n

we can restrict
ourselves to certain integral ideals m dividing the conductor of Kk,n. The
conductor of Kk,n, for k, n ≥ 0, (k, n) 6= (0, 0), is given by fp̄kpn, where
f is the conductor of ψE , the Größencharacter of E/K (see [S14, Lemma
2.4.17]). As before, we assume that p 6= 2, 3. As a second step, we show that
when passing to the projective limit lim←−k,n(CKk,n

⊗ZZp) we can restrict to an

even smaller set of integral ideals m (compare Lemma 3.5). In a third step,
we show that for the tower K∞/K, K∞ =

⋃
n,kK(E[pnp̄k]), the projective

limit lim←−K⊆fL′⊂K∞
µp∞(L′) of p-power roots of unity, taken with respect to

norm maps, vanishes.
The three steps combined give us the desired description of CR in terms

of a smaller set of generators (Corollary 3.7). For elements x of this smaller
set of generators we can define an explicit element s belonging to S such
that the product sx belongs to CY , which proves Theorem 3.10.

Lemma 3.2. Let k, n ≥ 1 be such that O×K → OK/p̄k and O×K → OK/pn
are both injective. Let us write F = Kk,n = K(E[p̄kpn]). Then, as a
Zp[G(F/K)]-module, CF ⊗Z Zp is already generated by elements of the form

(NFK(m)/FΘ(τ ; a))σ−1,

where σ ranges over Gal(F/K), m over the integral ideals of K such that
either

m = f′p̄kpn or m = f′p̄k or m = f′pn for some divisor f′ of f,

a over integral ideals such that (a, 6m) = 1, and τ over primitive m-division
points.

Proof. First note that after extending scalars, since 12 is a unit in Zp,
we have

(NFK(m)/FΘ0(τ ; a))σ−1 ⊗ 1 = (NFK(m)/FΘ(τ ; a))σ−1 ⊗ 1

12
,

so clearly all elements of the form (NFK(m)/FΘ(τ ; a))σ−1, for general m, τ ,
a and σ as in (1), generate CF ⊗Z Zp as a Zp-module. Hence, from now on
it is sufficient to consider the function Θ(z; a) = Θ(z;L, a) (we omit the L
from the notation).

Let us now fix an integral ideal m of K such that O×K → OK/m is
injective. Write

x := NFK(m)/FΘ(τ ; a),

where a is an integral ideal such that (a, 6m) = 1 and τ is a primitive
m-division point. We will show that xσ−1, for any σ ∈ G(F/K), is already
contained in the module generated by the elements from the statement of
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the lemma. We will show step by step that we can impose more conditions
on m and still obtain a set of Zp[G(Kk,n/K)]-generators for CKk,n

⊗Z Zp.
Let us first make some general definitions. We define f′ = gcd(f,m). We

can then write

m = f′p̄k
′
pn
′
m′

for some m′ such that gcd(m′, p) = 1, so that n′, resp. k′, is precisely the
exponent of p, resp. p̄, in m. We need not have gcd(m′, f) = 1. Let us define
q = gcd(m, fp̄kpn), so that

F ∩K(m) ⊂ K(fp̄kpn) ∩K(m) = K(q),

where the last equality is a simple excercise in class field theory. Since f and
p are prime to each other, we have an equality

q = f′p̄min{k,k′}pmin{n,n′}.

For the norm map NFK(m)/F restricted to K(m) we can write

(4) NFK(m)/F = NK(m)/(F∩K(m)) = NK(q)/(F∩K(m)) ◦NK(m)/K(q),

where we note that F ∩ K(m) = F ∩ K(q). Let us now start with the
computations. We will show that we may exclude the following classes of m
and still be left with a set of Zp[G(Kk,n/K)]-generators for CKk,n

⊗Z Zp.

Case 1: gcd(m, p) = 1. In this case, since E/K has good reduction
at p and p̄, we also have gcd(mf, p) = 1. By [dS87, II, Proposition 1.6,
Corollary 1.7] we know that K(mf) = K(E[mf]) and that K(E[mf]) and
F = K(E[p̄kpn]) are linearly disjoint over K. Therefore,

F ∩K(m) ⊂ F ∩K(mf) = K,

which implies that G(FK(m)/F ) ∼= G(K(m)/K). This shows that if we
restrict the norm map NFK(m)/F to K(m), then NFK(m)/F = NK(m)/K . We
conclude that

xσ−1 = (NK(m)/KΘ(τ ; a))σ−1 = 1,

since σ fixes K. From now on, we may and will assume that gcd(m, p) 6= 1,
i.e., that p |m or p̄ |m.

Case 2: n′ > n or k′ > k. If n′ > n, then [dS87, II, Proposition 2.5] (see
also [Ru99, Corollary 7.7, p. 197] for a more detailed proof) shows that

NK(m)/K(m/p)Θ(τ ; a) = Θ(πτ ; a),

where πτ is now clearly a primitive m
p -division point. Here we use the fact

that pn | mp and O×K → OK/pn is injective, i.e., there is precisely one root of

unity in K that is congruent to 1 modulo pn. Since q | mp , we also have

F ∩K(m) = F ∩K(m/p).
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Using (4), this shows that x = NFK(m/p)/FΘ(πτ ; a). Proceeding inductively,
we may and will assume that n′ ≤ n. Analogously, we may assume k′ ≤ k.

Case 3: 1 ≤ n′ < n or 1 ≤ k′ < k. Without loss of generality, assume
that n′ ≥ 1 (if n′ = 0, then, by the first case, we may assume that k′ ≥ 1
and the following works precisely in the same way for k′). So p |m. While
we have used [dS87, II, Proposition 2.5] above to see that we may make the
exponent n′ of p in m smaller if n′ > n, we now use it to see that we may
make it bigger whenever n′ < n. In fact, by the above-cited proposition we
have

Θ(τ ; a) = NK(mp)/K(m)Θ

(
τ

π
; a

)
,

where, if we consider τ as an element of E(C), we write τ
π for some primitive

mp-division point in E(C) such that π τπ = τ (while if we consider τ as an
element of C/L then we can actually divide τ by π; this depends on whether
we view Θ as a function on E(C) or on C/L). Using (4) again, we get

x = NK(mp)/(F∩K(m))Θ

(
τ

π
; a

)
= N(F∩K(mp))/(F∩K(m)) ◦NK(mp)/(F∩K(mp))Θ

(
τ

π
; a

)
,

showing that x is just a product of G(F/K)-conjugates of the element
NK(mp)/(F∩K(mp))Θ

(
τ
π ; a
)
. Proceeding inductively, we may assume that

n′ = n.

We conclude that so far we may assume k′ ≤ k and n′ ≤ n and either
n = n′ or k = k′. If both k′ and n′ are greater than zero, then the last
argument shows that we may assume that k′ = k and n′ = n.

In the last step we made m larger so that pn |m (or p̄k |m). By our as-
sumption on n and k, it follows that there is only one root of unity in K that
is congruent to 1 modulo m

m′ . This enables us to use [dS87, II, Proposition
2.5] in the next step to eliminate m′.

Case 4: m′ 6= 1. Let l = (l) be a prime ideal of K dividing m′. In
particular, l is prime to p. First note that

q = gcd

(
m

l
, fp̄kpn

)
.

In fact, if gcd
(
m
l , fp̄

kpn
)

were equal to q
l (it certainly could not be anything

else), write lr for the exact power of l in q. We then see that lr | fp̄kpn, and
hence lr | f. Moreover, lr |m, so that lr | f′. By the assumption gcd(ml , fp̄

kpn) =

q/l, we have lr - m
l . On the other hand, lr | f′m′l and f′m

′

l |
m
l . This is a con-

tradiction, showing that q = gcd
(
m
l , fp̄

kpn
)
.
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By [dS87] we have

NK(m)/K(m/l)Θ(τ ; a) =

{
Θ(lτ ; a) if l | ml ,

Θ(lτ ; a)1−σ−1
l if l - m

l ,

where σl =
(
l,K(ml )/K

)
in the case l - m

l . We conclude that

x = NK(m)/(F∩K(q))Θ(τ ; a) =

{
NK(m/l)/(F∩K(q))Θ(lτ ; a) if l | ml ,

NK(m/l)/(F∩K(q))(Θ(lτ ; a)1−σ−1
l ) if l - m

l .

In the latter case, as all of the Galois groups involved are abelian, we see that

NK(m/l)/(F∩K(q))(Θ(lτ ; a)1−σ−1
l ) = (NK(m/l)/(F∩K(q))Θ(lτ ; a))1−σ̃−1

l ,

where we write σ̃l for any lift to F of the restriction of σl to F ∩K(q). In
any case, we find that x is a product of G(F/K)-conjugates of the element
NK(m/l)/(F∩K(q))Θ(lτ ; a). Therefore we may assume that m′ is trivial.

We have shown that we may restrict to m of the form m = f′p̄kpn or
m = f′p̄k or m = f′pn for some divisor f′ of f and still get a generating set; in
any case m | fp̄kpn.

We now split the set of Zp[G(F/K)]-generators of CF ⊗Z Zp determined
in Lemma 3.2 (F = Kk,n as in the lemma) and define two new modules.

Definition 3.3. Let the setting be as in Lemma 3.2. Let F = Kk,n,
k, n ≥ 1.

(i) We define C ′F to be the subgroup of CF generated by elements of the
form

(NFK(m)/FΘ(τ ; a))σ−1,

where σ ranges over Gal(F/K), m over the integral ideals of K such that

m = f′p̄kpn for some divisor f′ of f,

a over integral ideals such that (a, 6m) = 1, and τ over primitive m-division
points.

(ii) Moreover, we define DF to be the subgroup of CF generated by
elements of the form

(NFK(m)/FΘ(τ ; a))σ−1,

where σ ranges over Gal(F/K), m over the integral ideals of K such that

m = f′p̄k or m = f′pn for some divisor f′ of f,

a over integral ideals such that (a, 6m) = 1, and τ over primitive m-division
points.

Remark 3.4. (i) First note that, by definition and Lemma 3.2, we
have (C ′FDF )⊗Z Zp = CF ⊗Z Zp. Also, C ′F and DF are G(F/K)-stable (see
[dS87, II, Proposition 2.4]). Moreover, it is not a difficult exercise to show
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that the norm maps NKk,n/Kk′,n′
, k ≥ k′ ≥ 1, n ≥ n′ ≥ 1, restrict to maps

C ′Kk,n
→ C ′Kk′,n′

and DKk,n
→ DKk′,n′ , respectively.

(ii) For any m and any primitive m-division point τ the elementΘ(τ ; a)σ−1

belongs to O×K(m) for any σ ∈ G(K(m)/K) (see [S14, Remark 2.4.10]). It

follows that (NFK(m)/FΘ(τ ; a))σ−1 belongs to O×F for F = Kk,n and any
σ ∈ G(F/K).

With the above definitions, Lemma 3.2 implies that for all k, n ≥ 1 as in
the lemma, we have surjections of Zp[G(Kk,n/K)]-modules

DKk,n
⊗Z Zp � (CKk,n

/C ′Kk,n
)⊗Z Zp.

The next lemma shows that the natural inclusions C ′Kk,n
↪→ CKk,n

induce

isomorphisms of Λ(G)-modules

(5) lim←−
k,n

(C ′Kk,n
⊗Z Zp) ∼= lim←−

k,n

(CKk,n
⊗Z Zp).

Lemma 3.5. We have

lim←−
k,n

(DKk,n
⊗Z Zp) = 0,

where the limit is taken with respect to the norm maps.

Proof. In Remark 3.4 we have explained that DKk,n
⊂ O×Kk,n

. This in-

clusion induces

DKk,n
⊗Z Zp ↪→ O×Kk,n

⊗Z Zp,

and we note that by Dirichlet’s unit theorem the group on the right is given
by the direct sum of a finite number of copies of Zp and the finite group of
p-power roots of unity in Kk,n.

Let us make a few more observations. For any integral ideal a of K we
always have K(a) ⊂ K(E[a]) (see [Si99, II, Theorem 5.6]). It follows from
[S14, Proposition A.6.3] that, for all k, n ≥ 1,

(6) Kk,n ∩K(f′p̄k) ⊂ Kk,n ∩K(E[f′p̄k]) = Kk,0.

Likewise, for all k, n ≥ 1 we have

(7) Kk,n ∩K(f′pn) ⊂ Kk,n ∩K(E[f′pn]) = K0,n.

For any r ≥ 1, let us consider dk+r,n+r=(NKk+r,n+rK(m)/Kk+r,n+r
Θ(τ ; a))σ−1,

an arbitrary element of the set of generators of DKk+r,n+r
given in Defini-

tion 3.3, where

m = f′p̄k+r or m = f′pn+r for some divisor f′ of f.

First assume that m = f′p̄k+r. Note that for k, n ≥ 1 the Galois group
G(Kk+r,n+r/Kk+r,n) is of order pr, which follows from [dS87, II, Corollary
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1.7], and any g ∈ G(Kk+r,n+r/Kk+r,n) fixes Kk+r,0. Then (6) shows that for
k, n ≥ 1 we have

NKk+r,n+r/Kk,n
(dk+r,n+r)

= (NKk+r,n+r/Kk,n
◦NK(f′p̄k+r)/(Kk+r,0∩K(f′p̄k+r))Θ(τ ; a))σ−1

= (NKk+r,n/Kk,n
◦NKk+r,n+r/Kk+r,n

◦NK(f′p̄k+r)/(Kk+r,0∩K(f′p̄k+r))Θ(τ ; a))σ−1

= (NKk+r,n/Kk,n
◦NK(f′p̄k+r)/(Kk+r,0∩K(f′p̄k+r))Θ(τ ; a))p

r(σ−1).

By a similar argument for m = f′pn+r, for k, n ≥ 1 we have

NKk+r,n+r/Kk,n
(dk+r,n+r)

= (NKk,n+r/Kk,n
◦NK(f′pn+r)/(K0,n+r∩K(f′pn+r)Θ(τ ; a))p

r(σ−1),

which follows from (7). These two cases imply that for any element d of
DKk+r,n+r

we have

(8) NKk+r,n+r/Kk,n
(d) = cp

r

for some unit c in O×Kk,n
.

Now, let (ak,n)k,n be an element of lim←−k,nDKk,n
⊗Z Zp. Let k, n ≥ 1 be

large enough so that they satisfy the conditions of Lemma 3.2, i.e., so that
both O×K → OK/p̄k and O×K → OK/pn are injective. For any r ≥ 1 the
element ak+r,n+r ∈ DKk+r,n+r

⊗Z Zp is of the form

ak+r,n+r =
m∑
i=1

di ⊗ bi

for some di ∈ DKk+r,n+r
and bi ∈ Zp, i = 1, . . . ,m. Using (8), we can find

c1, . . . , cm in O×Kk,n
such that

ak,n = (NKk+r,n+r/Kk,n
⊗ idZp)(ak+r,n+r) =

m∑
i=1

cp
r

i ⊗ bi =
( m∑
i=1

ci ⊗ bi
)
pr,

and we see that as an element of O×Kk,n
⊗ZZp, ak,n is divisible by an arbitrar-

ily large power of p since we can choose any r ≥ 1. By the remark made at
the beginning of the proof, only the trivial element satisfies this divisibility
property.

According to the definition we gave, elliptic units of an abelian extension
F of K contain the roots of unity of F . Eventually, we will be interested in
projective limits of elliptic units and need the following vanishing result for
p-power roots of unity for Z2

p-extensions of K.

Lemma 3.6. Let L be a number field and M/L an extension containing
a Zp-extension L∞/L that is independent of the cyclotomic Zp-extension
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Lcyc/L of L. Then
lim←−

L⊆fL′⊂M
µp∞(L′) = 1,

where µp∞(L′) denotes the group of p-power roots of unity in L′, and the
limit is taken over the finite extensions L′ of L contained in M and with
respect to norm maps.

Proof. Let (ζL′)L′ be an element of lim←−L⊆fL′⊂M
µp∞(L′). Let us show

that ζL′ = 1 for any finite extension L′ of L. For any such extension the
composite L′L∞ contains only finitely many p-power roots of unity since
L∞/L is independent of the cyclotomic Zp-extension Lcyc/L.

Let ζpn be a primitive pnth root of unity belonging to L′L∞ such that n
is maximal with respect to this property. Write L′m for the mth layer of the
Zp-extension L′L∞/L

′ (note that G(L′L∞/L
′) embedds into G(L∞/L) ∼= Zp

and the image is the continuous image of a compact set in a Hausdorff
space and therefore closed in G(L∞/L), hence of the form pnZp ⊂ Zp, and
it follows that G(L′L∞/L

′) is a Zp-extension). Then G(L′m/L
′) has order

pm. Let k be large enough so that ζpn belongs to L′k (such a k exists since
L′L∞ =

⋃
m L

′
m). Then

ζL′ = NL′k+n/L
′(ζL′k+n

) = NL′k/L
′(NL′k+n/L

′
k
(ζL′k+n

)) = NL′k/L
′(ζp

n

L′k+n
) = 1,

since ζL′k+n
∈ µp∞(L′L∞) = µpn ⊂ L′k.

Let us now recall that Rubin’s elliptic units for an abelian finite extension
F of K were defined by C(F ) = µ∞(F )CF , where µ∞(F ) is the group of all
roots of unity in F . Tensoring with Zp kills the roots of unity of order prime
to p, so that as subgroups of O×F ⊗Z Zp,

C(F )⊗Z Zp = (µp∞(F )CF )⊗Z Zp,
where µp∞(F ) is the group of p-power roots of unity in F . The exten-
sion K∞/K, K∞ =

⋃
n,kK(E[pnp̄k]), contains the cyclotomic and the anti-

cyclotomic Zp-extension, so that Lemma 3.6 implies

lim←−
k,n

(CKk,n
⊗Z Zp) = lim←−

k,n

(C(Kk,n)⊗Z Zp) = CR.

Together with (5) this proves the following result.

Corollary 3.7. The natural inclusions induce the equalities

lim←−
k,n

(C ′Kk,n
⊗Z Zp) = lim←−

k,n

(CKk,n
⊗Z Zp) = lim←−

k,n

(C(Kk,n)⊗Z Zp) = CR.

Let us record one more technical lemma stating that multiplication with
the augmentation ideal commutes with passage to the projective limit. We
will write Fk,n = K(fp̄kpn) for the ray class field of K modulo fp̄kpn. Recall
the definition of Θm from (2) and Remark 2.6.
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Lemma 3.8. Let p be a prime number (p, 6) = 1 that splits in K into
distinct primes p and p̄. Then as subgroups of lim←−n,k(O

×
Kk,n
⊗Z Zp),

(9) I lim←−
k,n

((NFk,n/Kk,n
Θfpnp̄k)⊗Z Zp)

= lim←−
n,k

((I(Kk,n/K)NFk,n/Kk,n
Θfpnp̄k)⊗Z Zp),

where we write I for the augmentation ideal I(K∞/K).

Proof. This follows from the fact that the norm maps on the groups
Θfpnp̄k are surjective (see [dS87, II, 2.3 and proof of Proposition 2.4(iii)]).

Before proving the next theorem, we need to make one more definition.

Definition 3.9. For any prime ideal l dividing f we define a Galois
automorphism σl in G(K∞/K) as follows. Write nl for the exact exponent
of l in f. Then we can consider the arithmetic Frobenius(

l,K

(
p∞

f

lnl

)
/K

)
at l in G(K(p∞ f

lnl )/K),

take a lift of it toG(K(p∞f)/K) and write σl for the restriction toG(K∞/K).

Theorem 3.10. Fix any prime ideal c of OK such that (c, 6pf) = 1. The
quotient CR/CY , where

CY = I lim←−
k,n

((NFk,n/Kk,n
Θfpnp̄k)⊗Z Zp),

is annihilated by the element

(σc −Nc) ·
∏
l|f

(1− σ−1
l ),

where σc = (c,K∞/K) and the product is taken over the primes dividing the
conductor f. In particular, the quotient is S-torsion.

Proof. For the last statement about S-torsion, we refer to [S14, Lemmata
A.9.2 and A.9.5] for the fact that choosing c to be equal to a prime q such that
N(q) is congruent to 1 modulo p makes the element (σc−Nc) ·

∏
l|f(1−σ

−1
l )

belong to S. Let us now prove the first part of the theorem.

Let us write C ′′Kk,n
for the subgroup I(Kk,n/K)NFk,n/Kk,n

Θfpnp̄k of C ′Kk,n
.

By Corollary 3.7 and Lemma 3.8 the statement we are proving is equivalent
to the assertion that the quotient of

lim←−
n,k

(C ′′Kk,n
⊗Z Zp) ⊂ lim←−

k,n

(C ′Kk,n
⊗Z Zp)

is annihilated by (σc − Nc) ·
∏

l|f(1 − σ
−1
l ). It is clearly sufficient to show

that, for all k, n ≥ 1 as in Lemma 3.2 (i.e. such that both O×K → OK/p̄k
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and O×K → OK/pn are injective),

(C ′Kk,n
/C ′′Kk,n

)⊗Z Zp

is annihilated by (σc − Nc) ·
∏

l|f(1 − σ
−1
l ). Take an arbitrary generator of

C ′Kk,n
, which is of the form

(NKk,nK(f′p̄kpn)/Kk,n
Θ(τ ; a))σ−1,

where σ belongs to Gal(Kk,n/K), f′ is some divisor of f, a is an integral
ideal such that (a, 6f′p) = 1, and τ is a primitive f′p̄kpn-division point. We
will show that this generator multiplied by (σc−Nc) ·

∏
l|f(1−σ

−1
l ) belongs

to C ′′Kk,n
.

Recall that we write

f =
∏
l|f

lnl ,

where nl ≥ 0 is the exponent of the prime l in the decomposition of f.

If l | f′, then we may assume that lnl | f′. This can be shown just as the
third case in the proof of Lemma 3.2. In fact, if l is an OK-generator of l and
ml, with ml < nl, is the exact exponent of l in f′, then by [Ru99, Corollary
7.7], we have

NK(lnl−ml f′p̄kpn)/K(f′p̄kpn)Θ

(
τ

lnl−ml
; a

)
= Θ(τ ; a),

which yields

(NKk,nK(f′p̄kpn)/Kk,n
Θ(τ ; a))σ−1

=

(
NK(lnl−ml f′p̄kpn)/(K(f′p̄kpn)∩Kk,n)Θ

(
τ

lnl−ml
; a

))σ−1

,

showing that our arbitrary generator is a product of Galois conjugates of(
NK(lnl−ml f′p̄kpn)/(K(lnl−ml f′p̄kpn)∩Kk,n)Θ

(
τ

lnl−ml
; a

))σ−1

.

This shows that we may assume that the exponent of l in f′ is equal to nl
whenever l already divides f′.

We now turn our attention to primes l dividing f but not dividing f′. It
is now, that the element (σc−Nc) ·

∏
l|f(1− σ

−1
l ) comes into play. The next

observation will explain why we need the factor σc −Nc. For our arbitrary
generator

(NKk,nK(f′p̄kpn)/Kk,n
Θ(τ ; a))σ−1

of C ′Kk,n
we allow any a prime to 6pf′. In particular, l might divide a. But we

want to use [Ru99, Corollary 7.7] again, which we can only do for a prime
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to l. Writing σc also for the lift (c, F∞/K) to G(F∞/K), we see that [dS87,
II, Proposition 2.4] shows

Θ(τ ; a)σc−Nc =
Θ(τ ; ac)

Θ(τ ; c)Na ·Θ(τ ; a)Nc
= Θ(τ ; c)σa−Na,

so that

(NKk,nK(f′p̄kpn)/Kk,n
Θ(τ ; a))(σc−Nc)(σ−1)

= (NKk,nK(f′p̄kpn)/Kk,n
Θ(τ ; c))(σa−Na)(σ−1).

Therefore it is sufficient to show that

(10) (NKk,nK(f′p̄kpn)/Kk,n
Θ(τ ; c))(σa−Na)(σ−1)·

∏
l|f(1−σ

−1
l )

belongs to C ′′Kk,n
. Now, for a prime l dividing f but not dividing f′, we deduce

from [Ru99, Corollary 7.7] that

NK(lf′p̄kpn)/K(f′p̄kpn)Θ

(
τ

l
; c

)
= Θ(τ ; c)(1−σ−1

l ),

where we write σl also for the lift of(
l,K

(
p∞

f

lnl

)
/K

)
to G(K(p∞f)/K) as in the definition of σl. Applying this to all the primes
l1, . . . , lr dividing f but not dividing f′ we see that the element from (10) is
equal to

(11)(
NK(l1...lrf′p̄kpn)/(Kk,n∩K(f′p̄kpn))Θ

(
τ

l1 . . . lr
; c

))(σa−Na)(σ−1)·
∏

l|f′ (1−σ
−1
l )

,

where we write li for generators of li. Now we can proceed as in the first
step, when we showed that if l | f′, then we may assume that lnl | f′, proving
that the element from (11) belongs to C ′′Kk,n

.

3.3. Description of Yager’s units via the Coleman map. For any
prime ideal P of Kk,n above the prime p of K we write Kk,n,P for the
completion of Kk,n at P, O1

Kk,n,P
for the subgroup of principal units in the

group of units O×Kk,n,P
, and Ô×Kk,n,P

for the p-adic completion of O×Kk,n,P
.

We canonically have O1
Kk,n,P

∼= Ô×Kk,n,P
. We will write

Uk,n =
∏
P|p

O1
Kk,n,P

∼=
∏
P|p

Ô×Kk,n,P
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for the group of principal units, which is a subgroup of the semilocal units∏
P|pO

×
Kk,n,P

, and set

U∞ = lim←−
k,n

Uk,n,

where the projective limit is taken with respect to norm maps. We write
E∞ = lim←−k,n(O×Kk,n

⊗Z Zp) for the global units, where the projective limit is

taken with respect to norm maps, and note that since Leopoldt’s conjecture
holds for finite abelian extensions of K, we have an embedding

E∞ ↪→ U∞.
In the following we will write Λ(G, Ẑurp ) for the Iwasawa algebra of G with

coefficients in Ẑurp , and W (F̄p) for the ring of Witt vectors of a fixed algebraic

closure F̄p of Fp. Next we remind the reader that there is a semilocal version

L : U∞ ↪→ Λ(G, Ẑurp )

of the Coleman map for the formal group Ê associated to a fixed Weierstraß
equation of E, which we briefly explain in the following remark and refer
to [S14, Theorem 2.4.25 and Corollary 2.4.26] for more details regarding its
construction and its injectivity.

Remark 3.11. (i) We note that L is obtained as the limit lim←−k Lk of

maps Lk : lim←−n Uk,n → Λ(Gk, Ẑurp ) for k ≥ 1, where Gk = Gal(Kk,∞/K),

Kk,∞ =
⋃
nKk,n.

(ii) The Lk are given in the following way. Write D̂ for the completion
of OK∞,0 ⊗OK

OKp . There is an isomorphism of formal groups θ : Ĝm
∼= Ê,

θ ∈ D̂[[X]]. We write φ = σp for the arithmetic Frobenius element at p in
G(K∞,0/K) and note that G(K∞,0/K) acts on K∞,0⊗KKp via the action on
the first factor and that, by continuity, this action extends to the completion.
Let us also fix a generator (ζn)n of lim←−n µpn(K̄), i.e., a compatible system
of primitive p-power roots of unity, and write

ωn = θφ
−n

(ζn − 1).

The semilocal version of Coleman’s theorem (compare [dS87, II, Proposition
4.5]) says that for every

u = (un)n ∈ Uk,∞ := lim←−
n

Uk,n

there exists a unique power series gu(T ) ∈ Ok,0,p[[T ]]× such that

un = (φ−ngu)(ωn).

Moreover (compare [dS87, I, Section 3.4 and II, Proposition 4.6]), there is a
unique Gk-homomorphism

(12) ik : Uk,∞ → Λ(Gk, D̂), ik(u) = λu
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such that

(13) l̃og gu ◦ θ(X) =
�

Gk,0

(1 +X)κ(σ) dλu(σ),

where Gk,0 = Gal(Kk,∞/Kk,0), κ denotes the Z×p -valued character defined
by the action of Gk,0 on E[p∞], and

˜log g(T ) = log g(T )− 1

p

∑
ω∈Ê[p]

log g(T [+]ω),

where, in turn, Ê[p] denotes the set of division points of level 1 in Ê and
[+] is addition induced by the formal group. The map Lk is now defined to
be the composition of iK with a map Λ(Gk, D̂) → Λ(Gk, Ẑurp ) induced by

an embedding Q̄ ⊂ Cp.
Definition 3.12. Assume that p is prime to 6 and fix an OK-generator

f of the conductor f of E, i.e., f = (f). For k, n ≥ 1 and an integral ideal a,
(a, fp̄p) = 1, we set

ek,n(a) := NFk,n/Kk,n

(
Θ

(
Ω

fπ̄kπn
, L, a

))
∈ O×Kk,n

,

which defines a norm-compatible system e(a) = (ek,n(a))k,n ∈ lim←−k,nO
×
Kk,n

of global units. We write u(a) for the image of e(a) in E∞ and also denote
by u(a) the image in U∞ = lim←−k,n Uk,n under E∞ ↪→ U∞. We define

λa := λ0
u(a) = L(u(a)),

as the p-adic integral measure on G corresponding to u(a) under L. We
moreover define

λ :=
1

12
· λa
xa
∈ Q(Λ(G, Ẑurp )),

where xa := σa −Na, σa = (a,K∞/K) ∈ G. It can be shown that λ is inde-
pendent of a and actually an integral measure, i.e., λ ∈ Λ(G, Ẑurp ) (compare
[dS87, II proof of Theorem 4.12], where this is shown at the level of each

Λ(Gk, Ẑurp )).

Proposition 3.13. The map L defines an isomorphism of Λ(G)-modules

lim←−
n,k

((NFn,k/Kn,k
Θfpnp̄k)⊗Z Zp) ∼= Jλ,

where J is the annihilator in Λ(G) of µp∞(K∞), the module of p-power roots
of unity in K∞.

Proof. The elements u(a), (a, fp̄p) = 1, from Definition 3.12, generate

(14) lim←−
n,k

((NFn,k/Kn,k
Θfpnp̄k)⊗Z Zp)
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as a Λ(G)-module, which follows from a simple compactness argument. By
definition, the image of u(a) under L is given by

L(u(a)) = 12xaλ.

Note that 12 is a unit in Zp since p 6= 2, 3. The statement now follows
from the fact that the elements xa = σa − Na for varying a, (a, fpp̄) = 1,
generate J , which we prove in Lemma 3.15 below.

Using Proposition 3.1 and Lemma 3.8 we immediately get the following
description of Yager’s units CY := lim←−k,n(CY,k,n ⊗Z Zp).

Corollary 3.14. The map L induces an isomorphism

CY ∼= IJλ,

where, we recall, I denotes the augmentation ideal I(K∞/K) in Λ(G).

Lemma 3.15. The annihilator J = AnnΛ(G)(µp∞(K∞)) of µp∞(K∞) in
Λ(G) is generated by σa −Na, a and (a, 6fpp̄) = 1, where σa = (a,K∞/K).

Proof. For each n we denote by ln the greatest number such that Kn,n =
K(E[pn]) contains a primitive plnth root of unity. Let us write Gn,n =
G(Kn,n/K). Then for each n ≥ 1 we consider the Zp/(pln)[Gn,n]-module
µp∞(Kn,n). Let

∑
g agg be an element of Zp/(pln)[Gn,n] that annihilates

µp∞(Kn,n). By Chebotarev’s density theorem, for all g ∈ Gn,n we can find a
prime ideal qg prime to 6fp such that g = (qg,Kn,n/K). We can then write∑

g

agg =
∑
g

ag(g −Nqg) +
∑
g

agNqg.

Clearly,
∑

g ag(g −Nqg) belongs to the annihilator of µp∞(Kn,n) (since
g = (qg,Kn,n/K) acts as multiplication by Nqg on µp∞(Kn,n)) and we
see that

∑
g agNqg, which is just the residue class of an integer, must be

congruent to 0 modulo (pkn); this implies that
∑

g agg =
∑

g ag(g − Nqg)

in Zp/(pln)[Gn,n]. We see that AnnZp/(pln )[Gn,n](µp∞(Kn,n)) is generated by

elements of the form (a,Kn,n/K)−Na, (a, 6fpp̄) = 1.
For each n ≥ 1 we can now consider the exact sequence

0→ AnnZp/(pln )[Gn,n](µp∞(Kn,n))→ Zp/(pln)[Gn,n]→ Zp/(pln)(1)→ 0.

Passing to the projective limit, we get

J = lim←−
n

AnnZp/(pln )[Gn,n](µp∞(Kn,n)).

Writing J0 for the ideal of Λ(G) generated by elements of the form σa−Na,
(a, 6fpp̄) = 1, we have shown above that for each n ≥ 1 the natural projection
Λ(G) � Zp/(pln)[Gn,n] induces a surjection

J0 � AnnZp/(pln )[Gn,n](µp∞(Kn,n)).
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Since Λ(G) is compact and Noetherian, J0 is also compact. Therefore, by
passing to the limit we get the desired surjection J0 � J .

3.4. Description of Rubin’s units via the Coleman map in the
prime power conductor case. If E is already defined over Q and E is a
representative with minimal discriminant and conductor in its Q̄-isomorphism
class as in [Si99, Appendix A, §3], then

f = lr, r ≥ 1,

i.e., the conductor f of the Größencharacter of E/K is a prime power for
some prime ideal l (see [S14, Theorem A.6.8 and Proposition A.6.9]). It is
precisely this condition that we want to impose on a general elliptic curve
E/K with CM by OK in this subsection.

Assumption 3.16. We assume that the conductor f of the Größen-
character ψ over K is a prime power

f = lr

for some prime ideal l and some r ≥ 1.

In the previous subsection we determined the image of Yager’s ellip-
tic units CY under the semilocal version L of the Coleman map. In this
subsection we will determine the image under L of Rubin’s elliptic units
CR := lim←−k,n(C(Kk,n)⊗ZZp) under the above Assumption 3.16. Let us write

Lk,n = K(p̄kpn) for the ray class field of K modulo p̄kpn, so that we have
Lk,n ⊂ Kk,n ⊂ Fk,n. We also set L∞ =

⋃
k,n Lk,n.

Definition 3.17. Assume that p is prime to 6 and prime to #(OK/f)×.
For k, n ≥ 1 and an integral ideal a, (a, p̄p) = 1, we write

ẽk,n(a) := Θ

(
Ω

π̄kπn
, L, a

)
∈ O×Lk,n

,

which defines a norm-compatible system ẽ(a) = (ẽk,n(a))k,n ∈ lim←−k,nO
×
Lk,n

of global units. Now take k, n ≥ 1 such that O×K → (OK/p̄k−1pn−1)× is injec-
tive. Since the natural maps (induced by restriction) G(Kk,n/Kk−1,n−1) →
G(Lk,n/Lk−1,n−1) are bijections (see [S14, Corollary A.6.6]), ẽ(a) is also a
norm-compatible system in lim←−k,nO

×
Kk,n

.

We write ũ(a) for the image of ẽ(a) in E∞ and also denote by ũ(a) the
image in U∞ = lim←−k,n Uk,n under E∞ ↪→ U∞. We define

λ̃a := λ̃0
u(a) = L(ũ(a)),

as the p-adic integral measure on G corresponding to ũ(a) under L. We also
define

λ̃ :=
1

12
· λ̃a
xa
∈ Q(Λ(G, Ẑurp )),
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where xa := σa − Na, σa = (a,K∞/K) ∈ G. As in the case of λ, the
definition of λ̃ is independent of a (see [dS87, II, Proposition 2.4(ii)]), and
λ̃ is an integral measure, so that λ̃ ∈ Λ(G, Ẑurp ).

Theorem 3.18. The map L gives an isomorphism of Λ(G)-modules

CR ∼= IJλ+ IJλ̃,

where, we recall, I denotes the augmentation ideal I(K∞/K) in Λ(G) and
J is the annihilator of µp∞(K∞) in Λ(G).

Proof. We know that lim←−k,n(C ′Kk,n
⊗Z Zp) = CR by Corollary 3.7. We

therefore look at C ′Kk,n
for k, n ≥ 1 and note that, due to Assumption 3.16,

it is generated by elements

(15) (NKk,nK(lr′ p̄kpn)/Kk,n
Θ(τ ; a))σ−1,

where σ ranges over Gal(Kk,n/K), 0 ≤ r′ ≤ r, a over integral ideals such

that (a, 6lr
′
p̄p) = 1, and τ over primitive lr

′
p̄kpn-division points. If r′ is

greater than or equal to 1 (in which case a is prime to l), then by [dS87, II,
Proposition 2.5] we have

NKk,nK(lr′ p̄kpn)/Kk,n
Θ(τ ; a) = NK(lr p̄kpn)/(K(lr′ p̄kpn)∩Kk,n)Θ

(
τ

lr−r′
; a

)
.

This shows that in (15) we may restrict to r′ = 0 and r′ = r and still
obtain a set of Z[Gal(Kk,n/K)]-generators of C ′Kk,n

. We also may restrict to

primitive division points of the form

Ω

π̄kπn
and

Ω

lrπ̄kπn

since the values of Θ(−; a) at other primitive division points are Galois
conjugates (see Remark 2.6 for the case r′ = r). The case r′ = 0 follows
from [dS87, II, Proposition 2.4(ii)], whose proof uses, without mentioning
it, [dS87, II, Lemma 1.4, p. 41]; see also [Ru99, Theorem 7.4]. So we have
shown that

C ′Kk,n
= I(Kk,n/K)(NFk,n/Kk,n

Θfp̄kpn) + I(Kk,n/K)Θp̄kpn ,(16)

= I(Kk,n/K)((NFk,n/Kk,n
Θfp̄kpn) +Θp̄kpn)

where, for two subgroups A,B of a group C, we write A+B for the subgroup
of C generated by A and B, even though we are dealing with subgroups of
the multiplicative group O×Kk,n

above.

It is not difficult to prove that the norm maps

(17) NKk′,n′/Kk,n
: ((NFk′,n′/Kk′,n′

Θfp̄k
′
pn
′ ) +Θp̄k

′
pn
′ )

→ ((NFk,n/Kk,n
Θfp̄kpn) +Θp̄kpn)
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are surjective (compare [dS87, II, 2.3 and proof of Proposition 2.4(iii)]).
Similarly to Lemma 3.8, one can show that this implies

I lim←−
k′,n′

([(NFk′,n′/Kk′,n′
Θfp̄k

′
pn
′ ) +Θp̄k

′
pn
′ ]⊗Z Zp) ∼= lim←−

k,n

(C ′Kk,n
⊗Z Zp)

by compactness. Another compactness argument shows that

lim←−
k′,n′

([(NFk′,n′/Kk′,n′
Θfp̄k

′
pn
′ ) +Θp̄k

′
pn
′ ]⊗Z Zp)

is generated over Λ(G) by u(a) and ũ(b), where a, b range through the
integral ideals of K such that (a, lp) = 1 and (b, p) = 1. We have

L(u(a)) = 12xaλ,

and likewise
L(ũ(b)) = 12xbλ̃,

where, in the last line, xb = σb − Nb with σb = (b,K∞/K) as usual if
(b, 6pl) = 1. In case l | b we can consider (b, L∞/K) and then define σb to
be a lift to G(K∞/K). Note that µp∞(K̄) ⊂ L∞ (because for any primitive
pnth root of unity ζpn the extension K(ζpn)/K is unramified outside the
primes above p so the conductor of K(ζpn)/K divides a power of p, i.e.,
K(ζpn) is contained in a field Lm,m for some m ≥ 1). It follows that even
if l | b the element xb = σb −Nb belongs to J . In combination with Lemma
3.15, this concludes the proof.

3.5. Relations in K0(S-tor). Let the setting be as in the previous
subsection. In particular, we keep Assumption 3.16 that the conductor of ψ
is a prime power f = lr for some prime l and r ≥ 1. We know from Theorem
3.10 that the quotient CR/CY is S-torsion. The aim of this subsection is
to determine its class in K0(S-tor), the K0-group of the category S-tor
of finitely generated Λ(G)-modules which are S-torsion. We will prove the
following theorem.

Theorem 3.19. In K0(S-tor) we have

[CR/CY ] = [Λ(G/Dl)],

where we write Dl for the decomposition group of l in G = G(K∞/K).

Before giving the proof, we introduce some notation. Recall that we write
L∞ =

⋃
k,n Lk,n, Lk,n = K(p̄kpn). The extension K∞/L∞ is a Galois exten-

sion of degree ωK = #µ(K), the number of roots of unity of K (compare
[S14, (A.6.3), (A.6.4) and Lemma A.6.4]). Note that ωK is a unit in Zp since
p 6= 2, 3 and 2, 3 are the only prime numbers that can possibly divide ωK .
We define the norm element

N := NK∞/L∞ :=
∑

g∈G(K∞/L∞)

g ∈ Λ(G).
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Let us write Λ = Λ(G) and Λ̃ = Λ(G, Ẑurp ) and recall σl from Definition 3.9.

Proof of Theorem 3.19. We will prove the theorem in two steps. First,
we will show that

[CR/CY ] = [ΛN
/

(Λ(1− σ−1
l )N )].

Then, we will prove that ΛN/(Λ(1− σ−1
l )N ) is isomorphic to Λ(G/Dl).

Step 1. From Corollary 3.14 and Theorem 3.18, we know that

(18) [CR/CY ] = [(IJλ+ IJλ̃)/IJλ] = [IJλ̃/(IJλ̃ ∩ IJλ)],

where we consider IJλ and IJλ̃ as Λ-submodules of Λ̃. Next, we have

(19) Nλ = (1− σ−1
l )λ̃ and N λ̃ = ωK λ̃,

which follows from the corresponding equations for the elliptic units ek,n(a)
and ẽk,n(a), for all k, n ≥ 1 such that O×K → (OK/p̄kpn)× is injective
(compare [dS87, II, Proposition 2.5] for the first equation). One easily de-
rives

(20) N · (IJλ̃ ∩ IJλ) = (1− σ−1
l )IJλ̃.

Since multiplication with N induces an isomorphism of IJλ̃ and therefore
also of IJλ̃ ∩ IJλ, equation (20) shows that the class on the right of (18)
is

(21) [IJλ̃/(IJλ̃ ∩ IJλ)] = [IJλ̃/((1− σ−1
l )IJλ̃)].

It follows from [S14, Lemmata A.9.2 and A.9.5] that all of the modules in
the two exact sequences

(22) IJλ̃/((1− σ−1
l )IJλ̃) ↪→ Λλ̃/((1− σ−1

l )IJλ̃) � Λλ̃/IJλ̃

and

(23)
((1− σ−1

l )Λλ̃)/((1− σ−1
l )IJλ̃) ↪→ Λλ̃/((1− σ−1

l )IJλ̃) � Λλ̃/(Λ(1− σ−1
l )λ̃)

are S-torsion, where by ↪→ and � we denote injective and surjective maps,
respectively. Since 1 − σ−1

l is not a zero-divisor in Λ(G, Ẑurp ), i.e., for any

Λ(G)-submodule M of Λ(G, Ẑurp ) multiplication with 1 − σ−1
l defines an

isomorphism M ∼= (1− σ−1
l )M , the two exact sequences show that

(24) [IJλ̃/((1− σ−1
l )IJλ̃)] = [Λλ̃/(Λ(1− σ−1

l )λ̃)].

Moreover, the class on the right of (24) is equal to

(25) [Λ(1− σ−1
l )λ̃/(Λ(1− σ−1

l )2λ̃)] = [ΛNλ/(Λ(1− σ−1
l )Nλ)].

Equations (18), (21), (24) and (25) show that

[CR/CY ] = [ΛNλ/(Λ(1− σ−1
l )Nλ)]
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and since λ is not a zero-divisor in Λ(G, Ẑurp ), by [S14, Proposition 2.4.28],
we see that the class on the right is equal to

[ΛN/(Λ(1− σ−1
l )N )],

as desired.

Step 2. We remark that ΛN and Λ(1 − σ−1
l )N are now already sub-

modules of Λ and not only of Λ̃. Let us write H ′ for the closed subgroup
G(K∞/L∞) of G and pr : Λ(G) � Λ(G/H ′) for the canonical projection.
Then we have an exact sequence

(26) 0→ ker(pr|Λ(G)N )→ Λ(G)N → Λ(G/H ′)→ 0,

which is exact because under pr the element N maps to ωK ∈ Z×p . Now, we
claim that ker(pr|Λ(G)N ) = 0. In fact, let xN , x ∈ Λ(G), belong to ker(pr).
Then

0 = pr(xN ) = pr(x)ωK ,

from which we conclude that x ∈ ker(pr), because ωK ∈ Z×p . But ker(pr) is
generated over Λ(G) by elements of the form 1 − g, g ∈ H ′, and for such
elements, (1− g)N = 0 and therefore xN = 0. It follows from (26) that

Λ(G)N ∼= Λ(G/H ′).

We get

(27) Λ(G)N/(Λ(G)(1− σ−1
l )N ) ∼= Λ(G/H ′)/(Λ(G/H ′)(1− σ̄−1

l )),

where we write σ̄l for the restriction of σl to L∞. Note that, by definition,
σ̄l = (l, L∞/K) is the arithmetic Frobenius element at l for the extension
L∞/K, in which l is unramified. In particular, σ̄l topologically generates the
decomposition group D′l of l in G/H ′ ∼= G(L∞/K). It follows that

(28) Λ(G/H ′)/(Λ(G/H ′)(1− σ̄−1
l )) ∼= Λ(G(L∞/K)/D′l).

Next, we claim that no place L of L∞ above l splits in K∞/L∞, i.e., for L
there is a unique extension L′ to K∞. We also write vq for a non-archimedean
place q in order to stress that we think of it as a valuation. This means that
we have to show that if L′ is a place of K∞ above L, then

(29) vL′ ◦ g = vL′

for all g ∈ G(K∞/L∞). But for any g ∈ G(K∞/L∞) and any k, n ≥ 1,
Lemma 3.21 below applied to m = p̄kpn shows that (vL′)|Kk,n

, the restriction
of vL′ to Kk,n, is the unique place of Kk,n above (vL′)|Lk,n

, which implies
that

(vL′)|Kk,n
◦ g|Kk,n

= (vL′)|Kk,n
.

This equation holds for all k, n ≥ 1 and therefore implies (29).
Having shown that for any place L of L∞ above l there is a unique

extension L′ to K∞, we can conclude that the canonical restriction map
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induces an isomorphism

(30) G/Dl
∼→ G(L∞/K)/D′l,

where we write Dl for the decomposition group of l in G = G(K∞/K).
All in all, equations (27), (28) and (30) show that we have an isomor-

phism of Λ-modules

(31) ΛN/(Λ(1− σ−1
l )N ) ∼= Λ(G/Dl).

Before proving the lemma we have referred to above, let us record one
immediate consequence of (31) and of the fact that 1 − σ−1

l belongs to S
(see [S14, Lemma A.9.5]).

Corollary 3.20. The Λ(G)-module Λ(G/Dl) is S-torsion.

Lemma 3.21. Let m be an integral ideal of K and let l be a prime of K
such that (l,m) = 1. For any integer r ≥ 1 and any prime L of K(m) above l,
L cannot split in the extension K(lrm)/K(m). In particular, L cannot split
in any subextension L/K(m) of K(lrm)/K(m).

Proof. Let L be a prime of K(m) above l. Assume that L splits in the
extension K(lrm)/K(m). Then the fixed field Z of the decomposition group
of L in G(K(lrm)/K(m)) is strictly greater than K(m), and L is unramified
in the extension Z/K(m) (see [N07, I, §9, Proposition 9.3(iii)] for the last
fact). Since l is unramified in K(m)/K, this implies that there is one prime
of Z above l which has ramification index 1 in Z/K. But then, since Z/K is
Galois, all primes of Z above l have ramification index 1, which means that
l is unramified in the extension Z/K. In particular, l does not divide the
conductor of the extension Z/K. But the conductor of Z/K divides lrm and
therefore must divide m, which contradicts the fact that Z is strictly greater
than K(m). Therefore, L cannot split in the extension K(lrm)/K(m).
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