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1. Introduction. Let F (X,Y ) be an irreducible binary form with in-
teger coefficients. Let r and D denote the degree and discriminant of F ,
respectively. Suppose that r ≥ 3. Let k be a positive integer. In a pioneering
work in 1909, Thue proved that the equation

F (X,Y ) = k

has only finitely many solutions in integers x and y. Such equations are
now called Thue equations. A pair (x, y) of integers is said to be primitive if
gcd(x, y) = 1. In 1983, Evertse [6] obtained an upper bound for the number
of primitive solutions of the above equation, which depended only on r and k
and was otherwise independent of F , thereby proving a conjecture of Siegel.
Later, the upper bound of Evertse was greatly improved by Bombieri &
Schmidt [3].

Let NF (k) denote the number of primitive integer solutions of the in-
equality

(1) |F (X,Y )| ≤ k.
Here, (x, y) and (−x,−y) are counted as one solution. Therefore if (x, y) is
a solution of (1) with y 6= 0, we can assume that y > 0. Hence if (x, y) is a
primitive solution of (1), then either

(2) gcd(x, y) = 1, y > 0 or (x, y) = (1, 0).

Throughout this paper, we assume (2) without further mention.
Many mathematicians have considered inequality (1) when k is small in

comparison with |D| and obtained bounds for NF (k) which involve only r.
(See [7] and [8].) For instance, in [10, p. 253], we showed that if

|D(F )| ≥ (127rk4.41)r−1,
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then

NF (k) ≤ 27r.

In fact, if r is large, better bounds were found by Győry [7, Corollary 3 and
remarks after Theorem 2]. He showed that if

|D(F )| ≥ rr(3.5rk2)2(r−1)/(1−ϑ) with 0 < ϑ < 1,

then

NF (k) ≤ 5r +
r + 2

ϑ

for r sufficiently large.

We now restrict to the case r = 3. Further, suppose that the discriminant
D of F is positive. (We refer to Wakabayashi [12] for the case of negative
discriminant.) By the result of Evertse mentioned above, we know that there
is an absolute constant C such that NF (1) ≤ C for all such forms F . In
fact, Evertse [5] developed the method of Siegel [9] and Gel’man (see [4,
Chapter 5]) to show that

NF (1) ≤ 12.

To prove this, he first showed the following theorem.

Theorem E. Let H(X,Y ) be the Hessian of the form F . The number
of solutions (x, y) of (1) with

(3) H(x, y) ≥ 3
√

3D

2
k3

is at most 9.

(See Section 2 for the definition of Hessian.) When k = 1, Evertse showed
that there are at most three solutions satisfying

H(x, y) < 3
√

3D/2.

Recently, using Theorem E, Akhtari [1, Theorem 1.1] showed that if k is a
positive integer satisfying

(4) k <
(3D)1/4

2π
,

then (1) has at most

9 +
log
(
3
8ε + 1

2

)
log 2

solutions in coprime integers x and y with y 6= 0, where

ε =
1

4
− log(2πk)

log(3D)
.



Number of solutions of cubic Thue inequalities 83

We point out here that by following her argument of [1, p. 737], the above
bound must be corrected to

9 + 3

⌈
log
(
3
8ε −

1
2

)
log 2

⌉
.

(Here and elsewhere, dxe denotes the smallest integer greater than or equal
to the real number x.) If we add 1 to this corrected estimate for the possible
solution (1, 0), Akhtari’s result yields

NF (k) ≤ 10 + 3

⌈
log
(
3
8ε −

1
2

)
log 2

⌉
(5)

= 10 + 3

⌈
1

log 2
log

(
log(3D) + 2 log k + 2 log(2π)

log(3D)− 4 log k − 4 log(2π)

)⌉
.

In 2001, Bennett [2] used extensive computation and made the work of
Evertse more precise in the case k = 1 to show that

NF (1) ≤ 10.

In fact, according to [2, Sections 8 & 9],

NF (1) ≤ 9 if D ≤ 106.

Since the smallest positive discriminant of an irreducible cubic form is 49,
we will assume from now onwards that

(6) D ≥
{

106 if k = 1,

49 if k ≥ 2.

We shall use the calculations of Bennett to obtain the following result anal-
ogous to Theorem E.

Theorem 1.1. Let F (X,Y ) be an irreducible binary cubic form with
integer coefficients and positive discriminant D. Let k be a positive integer.
Then there are at most six solutions (x, y) of (1) with

(7) H(x, y) ≥ 1.8(3D)5/6k4.

Complementing Theorem 1.1, we show the next result.

Theorem 1.2. Let F (X,Y ) be an irreducible binary cubic form with
integer coefficients and positive discriminant D. Let k be a positive integer
satisfying (4). Then the number of solutions (x, y) of (1) with y 6= 0 and

H(x, y) < 1.8(3D)5/6k4

is at most

3

⌈
1

log 2
log

(
5 log(3D) + 12 log k + 2.13

3 log(3D)− 12 log k − 5.56

)⌉
.

As an immediate consequence of Theorems 1.1, 1.2 and including the
possible solution (1, 0), we get the following corollary.
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Corollary 1.3. Let F (X,Y ) be an irreducible binary cubic form with
integer coefficients and positive discriminant D. Let k be a positive integer
satisfying (4). Then

(8) NF (k) ≤ 7 + 3

⌈
1

log 2
log

(
5 log(3D) + 12 log k + 2.13

3 log(3D)− 12 log k − 5.56

)⌉
.

Remark 1.4. (i) Note that NF (1) ≤ 10, thus retrieving Bennett’s result.
(ii) We now show that the upper bound for NF (k) in (8) is better than

the bound in (5). Put

Υ =
5 log(3D) + 12 log k + 2.13

3 log(3D)− 12 log k − 5.56
, χ =

log(3D) + 2 log k + 3.67

log(3D)− 4 log k − 7.35
.

Now

Υ =
5 log(3D) + 12 log k + 2.13

3 log(3D) + 6 log k + 1.05
· 3 log(3D) + 6 log k + 1.05

3 log(3D)− 12 log k − 5.56
≤ 2χ.

By (8), we have

NF (k) ≤ 7 + 3

⌈
log Υ

log 2

⌉
≤ 7 + 3

⌈
1 +

logχ

log 2

⌉
≤ 10 + 3

⌈
logχ

log 2

⌉
,

proving the claim.
(iii) Our proof of Theorem 1.1 depends on the method given in the papers

of Evertse and Bennett. They assumed that there were at least four solutions
of (1) related to any pair of resolvent forms (see Section 2 for definition).
This enabled them to get a good gap principle and derive a contradiction.
To obtain Theorem 1.1, we assume that there are at least three solutions
of (1) related to any pair of resolvent forms. To get a good gap principle,
we need to assume that (7) is valid, which is weaker than (3). In fact, if k
satisfies (4), then it is enough to assume that

H(x, y) ≥ 1.8(3D)5/6k7/2,

and this leads to an estimate

(9) NF (k) ≤ 7 + 3

⌈
1

log 2
log

(
5 log(3D) + 9 log k + 2.13

3 log(3D)− 12 log k − 5.56

)⌉
in Corollary 1.3. It is possible to carry this method further to deduce that
there are at most three primitive solutions (x, y) of (1) satisfying

H(x, y) ≥ 3(3D)5/3k6.

This yields

NF (k) ≤ 4 + 3

⌈
1

log 2
log

(
10 log(3D) + 24 log k + 5.22

3 log(3D)− 12 log k − 5.56

)⌉
.

One can easily see that this bound is no better than (9). Thus it may not
be possible to significantly improve (9) by this method.
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Corollary 1.3 readily yields an estimate for the number of all integer
solutions (primitive and non-primitive) to (1). When k = 1, all the solutions
are primitive. So we assume that k ≥ 2.

Corollary 1.5. Suppose that

2πk = (3D)1/4−δ with 0.1 < δ < 1/4.

Then the number of integer solutions to (1) is at most 18k1/3.

Remark 1.6. In [11], Thunder considered the inequality (1) for any pos-
itive integer k and discriminant of F positive or negative. Using a different
method, he showed that the number of integer solutions is at most

9 +
16k2/3

|D|1/6
+

2008k1/2

|D|1/12
+ 3156k1/3.

Under the assumptions of Corollary 1.5, the above bound can be majorized
by 3770k1/3.

2. Preliminaries. We refer to [5] for the ensuing facts on cubic forms.
Write

F (X,Y ) = aX3 + bX2Y + cXY 2 + dY 3.

The quadratic covariant, or Hessian, and the cubic covariant of F are defined
as

H(X,Y ) = −1

4

(
∂2F

∂X2

∂2F

∂Y 2
−
(

∂2F

∂X∂Y

)2)
,

G(X,Y ) =
∂F

∂X

∂H

∂Y
− ∂F

∂Y

∂H

∂X
,

respectively. It can be checked that

H(X,Y ) = AX2 +BXY + CY 2

where

A = b2 − 3ac, B = bc− 9ad and C = c2 − 3bd.

Further,

B2 − 4AC = −3D,

where D is the discriminant of F , and

(10) 4H(X,Y )3 = G(X,Y )2 + 27DF (X,Y )2.

The form F is said to be reduced if

C ≥ A ≥ |B|.
Since every cubic form of positive discriminant is GL(2,Z)-equivalent to a
reduced form and NF1(k) = NF2(k) for equivalent forms F1 and F2, we can
assume that F is reduced.
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Let
√
−3D be a fixed choice of the square root of −3D, let M =

Q(
√
−3D) and let OM denote the ring of integers in M . Then

OM =

{
m+ n

√
−3D

2
: m,n ∈ Z, m ≡ nD (mod 2)

}
.

Set

U(X,Y ) =
G(X,Y ) + 3

√
−3DF (X,Y )

2
,

V (X,Y ) =
G(X,Y )− 3

√
−3DF (X,Y )

2
.

Observe that U(X,Y ) and V (X,Y ) are cubic forms in M [X,Y ] having no
common factor. Also, the corresponding coefficients of U(X,Y ) and V (X,Y )
are complex conjugates. The relation (10) implies that

U(X,Y )V (X,Y ) = H(X,Y )3.

Hence

U(X,Y ) = ξ(X,Y )3, V (X,Y ) = η(X,Y )3,

where ξ(X,Y ) and η(X,Y ) are linear forms whose corresponding coefficients
are complex conjugates. Further,

(11)

ξ(X,Y )3 − η(X,Y )3 = 3
√
−3DF (X,Y )

ξ(X,Y )3 + η(X,Y )3 = G(X,Y )

ξ(X,Y )η(X,Y ) = H(X,Y )

ξ(X,Y )

ξ(1, 0)
,
η(X,Y )

η(1, 0)
∈M [X,Y ].

Therefore for all integers x and y, we have

(12) |ξ(x, y)|2 = |η(x, y)|2 = |H(x, y)|.
A pair (ξ, η) of forms satisfying the properties (11) is called a pair of

resolvent forms. If (ξ, η) is such a pair, then there are precisely two others,
namely, (ρξ, ρ2η) and (ρ2ξ, ρη), where ρ is a primitive cube root of unity.
A pair (x, y) of integers is said to be related to a pair of resolvent forms
(ξ, η) if

(13)

∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ = min
0≤`≤2

∣∣∣∣e2`πi/3 − η(x, y)

ξ(x, y)

∣∣∣∣.
We need the following lemma.

Lemma 2.1 ([2, Lemma 5.1]). Let F be an irreducible, reduced binary cu-
bic form with positive discriminant D and Hessian H. Then for all integers
x, y with y 6= 0, we have

H(x, y) ≥
√

3D/2.
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Lemma 2.2. Let (x, y), y 6= 0, be a solution of (1) related to (ξ, η). Put

(µ, ν) =

{
(1, π/3) if |ξ(x, y)| ≥ 1.81/2(3D)5/12k2,

(3
√

2/π, 1.1) if (4) holds.

Then ∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ < µ and

∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ < ν
√

3Dk

|ξ(x, y)|3
.

Proof. Lemma 2.1 and equation (12) imply that

(14) |ξ(x, y)| ≥ (3D)1/4/
√

2.

If (4) holds, then using (11) and (6) we obtain∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ ≤ 3
√

3Dk

|ξ(x, y)|3
≤ 3
√

3Dk × 23/2

(3D)3/4
<

3
√

2

π
.

Similarly, if |ξ(x, y)| ≥ 1.81/2(3D)5/12k2, then∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ ≤ 3

1.83/2(3D)3/4k5
< 1.

This proves the first assertion of the lemma. Let

θ = arg(η(x, y)/ξ(x, y)).

Since |η(x, y)/ξ(x, y)| = 1 and equation (13) holds, we have

arg(η(x, y)3/ξ(x, y)3) = 3θ.

-1.0 -0.5 0.0 0.5 1.0

Θ

0.34

0.36

0.38

0.40

y

Fig. 1. y = |θ|√
2−2 cos(3θ)
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In view of the fact that

2− 2 cos(3θ) =

∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣2 < µ2,

we get

|θ| <
{
π/9 if |ξ(x, y)| ≥ 1.81/2(3D)5/12k2,

0.495 if (4) holds.

Now∣∣∣∣1− η(x, y)

ξ(x, y)

∣∣∣∣ ≤ |θ| = |θ|√
2− 2 cos(3θ)

∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣ < ν

3

∣∣∣∣1− η(x, y)3

ξ(x, y)3

∣∣∣∣.
(See also Figure 1 for an approximate value of ν.) Using (11), we obtain the
second assertion of the lemma.

3. Gap principle. Let (x1, y1), (x2, y2) be two distinct solutions of (1)
related to (ξ, η) with |ξ(x2, y2)| ≥ |ξ(x1, y1)|. In this section, we will establish
certain results regarding the gaps between such solutions. For i = 1, 2, we
denote ξ(xi, yi) by ξi and η(xi, yi) by ηi. Since the determinant of the linear
transformation (x, y)→ (ξ, η) is ±

√
−3D, we have

ξ1η2 − ξ2η1 = ±
√
−3D(x1y2 − x2y1).

This implies that

√
3D ≤ |ξ1η2 − ξ2η1| ≤ |ξ1| |ξ2|

(∣∣∣∣1− η1
ξ1

∣∣∣∣+

∣∣∣∣1− η2
ξ2

∣∣∣∣).
By Lemma 2.2, we obtain

√
3D < νk|ξ1| |ξ2|

√
3D

(
1

|ξ1|3
+

1

|ξ2|3

)
.

Thus

(15) |ξ1|3 + |ξ2|3 >
1

νk
|ξ1ξ2|2

implying that

|ξ2| >
1

2νk
|ξ1|2.

We obtain a better gap principle in the following lemma.

Lemma 3.1. Let (x1, y1), (x2, y2) be two solutions of (1) related to (ξ, η)
with |ξ2| ≥ |ξ1| and y1, y2 6= 0. Then

|ξ2| ≥
τ

k
|ξ1|2,

where

τ =

{
0.95 if |ξ(x, y)| ≥ 1.81/2(3D)5/12k2,

0.89 if (4) holds.
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Proof. Let

φ = k|ξ2| |ξ1|−2 and h(z) = z3 − 1

ν
z2 +

(
k

|ξ1|

)3

.

From equation (15), we have h(φ) > 0. Observe that h(0) > 0. Using (6)
and (14), respectively, we obtain

k

|ξ1|
<

{
0.047 if |ξ(x, y)| ≥ 1.81/2(3D)5/12k2,

1/
√

2π if (4) holds.

Hence h(2/(3ν)) < 0. Further h(z) assumes a local maximum at z = 0 and
a local minimum at z = 2/(3ν). Hence h(z) has two positive zeros, say φ1
and φ2, with φ1 < φ2; and h(z) is negative for φ1 < z < φ2 and positive
for 0 < z < φ1, z > φ2. If φ ≤ φ1 then we must have h(k/|ξ1|) > 0 as
φ ≥ k/|ξ1|. But h(k/|ξ1|) < 0. Therefore φ > φ1. This, together with the
fact that h(φ) > 0, implies that φ > φ2. Since h(τ) < 0, we have φ ≥ τ .

4. Proof of Theorem 1.2. Let (x, y) be a solution of (1) with y 6= 0
and

(16) |ξ(x, y)|2 = H(x, y) < 1.8(3D)5/6k4.

Enumerate the solutions (x, y) of (1) with y 6= 0 as (x1, y1), (x2, y2), . . . with
ξi = ξ(xi, yi) and

|ξ1| ≤ |ξ2| ≤ · · · .
Applying inductively the gap principle stated in Lemma 3.1 and using (14),
we obtain

|ξt| ≥
(

0.89

k

)2t−1−1

|ξ1|2
t−1 ≥

(
0.89

k

)2t−1−1(
(3D)1/4√

2

)2t−1

for all t ≥ 1.

Let t be the least integer such that

(17)

(
0.89

k

)2t−1−1(
(3D)1/4√

2

)2t−1

≥ 1.81/2(3D)5/12k2.

Then there are at most t − 1 solutions (x, y) of (1) with y 6= 0 and satis-
fying (16). Taking logarithms twice in (17), we obtain the assertion of the
theorem.

5. Padé approximation. In this section, we introduce some auxiliary
polynomials used in the proof of Theorem 1.1. Let α, β and γ be complex
numbers. The standard hypergeometric function F (α, β, γ, z) is represented
as

F (α, β, γ, z) = 1 +
∞∑
n=1

α(α+ 1) · · · (α+ n− 1)β(β + 1) . . . (β + n− 1)

γ(γ + 1) . . . (γ + n− 1)n!
zn.
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Let r be a positive integer and let g ∈ {0, 1}. Define

Ar,g =

(
2r − g
r

)
F

(
−1

3
− r + g,−r,−2r + g, z

)
Br,g =

(
2r − g
r − g

)
F

(
1

3
− r,−r + g,−2r + g, z

)
.

See [5, Lemma 3] for the proof of the following lemma on Padé approxima-
tion.

Lemma 5.1.

(i) There exists a power series Fr,g(z) such that for all complex numbers
z with |z| < 1, we have

Ar,g(z)− (1− z)1/3Br,g(z) = z2r+1−gFr,g(z),(18)

|Fr,g(z)| ≤
(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) 1

(1− |z|)(2r+1−g)/2 .(19)

(ii) For all complex numbers z with |1− z| ≤ 1, we have

(20) |Ar,g(z)| ≤
(

2r − g
r

)
.

(iii) Let z be a non-zero complex number and let h ∈ {0, 1}. Then

Ar,0(z)Br+h,1(z)−Ar+h,1(z)Br,0(z) 6= 0.

Let Cr,g denote the greatest common divisor of the numerators of the
coefficients of Ar,g. Note that Cr,g is also the greatest common divisor of the
numerators of the coefficients of Br,g. See Table 1 in the next section for the
values of Cr,g for some choices of r and g.

6. Proof of Theorem 1.1. In this section, we will show that there are
at most two solutions (x, y) of (1) with

(21) |ξ(x, y)|2 = H(x, y) ≥ 1.8(3D)5/6k4

which are related to a given pair of resolvent forms. Since there are exactly
three pairs of resolvent forms, Theorem 1.1 will follow.

Assume that there are three solutions (x−1, y−1), (x0, y0), (x1, y1) of (1)
satisfying (21) and related to (ξ, η). As before, we denote ξ(xi, yi) by ξi and
η(xi, yi) by ηi for i = −1, 0, 1. Set

z0 = 1−η30/ξ30 , Σr,g =
η1
ξ1
Ar,g(z0)−

η0
ξ0
Br,g(z0), Λr,g =

1

Cr,g
ξ3r+1−g
0 ξ1Σr,g.

From (6), (11) and Lemma 3.1, it follows that

(22) 0 < |z0| < 10−6.
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Hence for any primitive cube root of unity ρ, we have

|1− (1− z0)1/3| < |1− ρ(1− z0)1/3|.
This, together with (13), implies that

(23) η0/ξ0 = (1− z0)1/3.
It follows from the proof of [5, Lemma 5] that

Λr,0 ∈
√
−3DZ and Λ3

r,1 ∈ OM \ Z.
Therefore if Λr,g 6= 0, we have

|Λr,0| ≥
√

3D and |Λ3
r,1| ≥

√
3D/2,

i.e.

(24) |Λr,g| ≥ 2−g/3(3D)1/2−g/3.

Lemma 6.1. Let

c′1(r, g) =
1

Cr,g

(
2r

r

)
π

3
2−2g/3,

c′2(r, g) =
1

Cr,g

(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) 2g/3(3.001)2r+1−g,

Ξ(r, g) = c′1(r, g)(3D)g/3|ξ0|3r+1−g|ξ1|−2k,
Π(r, g) = c′2(r, g)(3D)r−g/6|ξ1| |ξ0|−(3r+2−2g)k2r+1−g.

If Σr,g 6= 0, then
Ξ(r, g) +Π(r, g) > 1.

Proof. Using (23), (18), (20), (19), Lemma 2.2 and (22), we obtain

|Λr,g| =
1

Cr,g
|ξ0|3r+1−g|ξ1|

∣∣∣∣(η1ξ1 − 1

)
Ar,g(z0) + z2r+1−g

0 Fr,g(z0)

∣∣∣∣
≤ 1

Cr,g
|ξ0|3r+1−g|ξ1|

((
2r − g
r

)∣∣∣∣1− η1
ξ1

∣∣∣∣
+

(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) |z0|2r+1−g

(1− |z0|)(2r+1−g)/2

)
≤ 1

Cr,g
|ξ0|3r+1−g|ξ1|

((
2r − g
r

)
π

3

√
3Dk

|ξ1|3

+

(
r−g+1/3
r+1−g

)(
r−1/3
r

)(
2r+1−g

r

) (
3
√

3Dk

(1− 10−6)1/2|ξ0|3

)2r+1−g)
< 2−g/3(3D)1/2−g/3

(
c′1(r, g)(3D)g/3|ξ0|3r+1−g|ξ1|−2k

+ c′2(r, g)(3D)r−g/6|ξ1| |ξ0|−(3r+2−2g)k2r+1−g).
Now the lemma follows from (24).
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For 1 ≤ r ≤ 7 and for certain choices of g, let c1(r, g) and c2(r, g) be
defined by Table 1. For r ≥ 8, set

c1(r, g) = 4r/
√
r and c2(r, g) = (2.252)r/

√
r.

Table 1

(r, g) Cr,g c1(r, g) c2(r, g) (r, g) Cr,g c1(r, g) c2(r, g)

(1, 1) 1 1.32 1.3 (5, 0) 28 9.425 0.7

(1, 0) 2 1.048 0.7 (6, 1) 14 43.54 2.4

(2, 0) 1 6.284 2.4 (6, 0) 14 69.116 2.7

(3, 0) 20 1.048 0.3 (7, 1) 4 566.017 16.9

(4, 0) 5 14.661 1.8 (7, 0) 88 40.841 0.9

The values of Cr,g and c2(r, g) are exactly as in [2]. The values of c1(r, g) are
different due to the gap principle in Lemma 3.1. We will now prove that

(25) c′1(r, g) ≤ c1(r, g) and c′2(r, g) ≤ c2(r, g).

(Then for these choices of r and g, we can use Lemma 6.1 with c′1(r, g)
and c′2(r, g) replaced by c1(r, g) and c2(r, g), respectively.) It can be easily
checked that (25) holds for the choices of r and g listed in Table 1. Further,
by [2, eq. (6.7)], we have (

2r

r

)
<

4r√
πr

for all positive integers r. Therefore

c′1(r, g) <
4r√
πr

π

3
<

4r√
r
∀r ∈ N.

By [2, proof of Lemma 6.2, last inequality],

c′2(r, g) <
3.001

√
3

π

(
r + 1

2r + 1

)
(2.252)r√

r
.

Hence

c′2(r, g) < (2.252)r/
√
r for r ≥ 5.

This completes the proof of (25).

The next two results are Lemmas 6.3 and 6.4 from [2].

Lemma 6.2. Σr,g 6= 0 for (r, g) = (1, 1), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0).

Lemma 6.3. Let r be a positive integer and let h ∈ {0, 1}. Then at least
one of Σr,0 and Σr+h,1 is non-zero.

The final step. Note that

(26) |ξ0| ≥
0.95

k
|ξ−1|2 ≥ 1.71(3D)5/6k3.
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We say that property P [a1, a2, a3, a4] holds if

|ξ1| >
a1|ξ0|a2

(3D)a3ka4
.

By Lemma 3.1, P [0.95, 2, 0, 1] holds. We shall show that

(27) P [2.6−r, 3r + 2, r, 2r + 1] holds for all r ≥ 1.

From this, by (26), we deduce that P [1, 0,−r,−7r] holds for any r ≥ 1. This
is not possible. Thus there can be at most two solutions related to (ξ, η).

Now we prove (27). In the calculations below, (6), (25) and the values of
c1(r, g), c2(r, g) will be repeatedly used. First we take (r, g) = (1, 1). Then
P [0.95, 2, 0, 1] and (26) yield

Ξ(1, 1) ≤ 1.32

0.952
(3D)1/3

|ξ0|
k3 ≤ 1.32

0.952 × 1.71(3D)1/2
< 0.0706.

Hence it follows from Lemmas 6.2 and 6.1 that

Π(1, 1) > 0.9294,

which shows that P [0.7149, 3, 5/6, 2] holds. We abbreviate this as

{P [0.95, 2, 0, 1], (1, 1)} → P [0.7149, 3, 5/6, 2].

Next, we fix (r, g) = (1, 0). Then arguing as above, we get

{P [0.7149, 3, 5/6, 2], (1, 0)} → P [0.4267, 5, 1, 3].

Proceeding thus we get the following sequence:

{P [0.95, 2, 0, 1], (1, 1)}→{P [0.7149, 3, 5/6, 2], (1, 0)}
→{P [0.4267, 5, 1, 3], (2, 0)}→{P [0.3573, 8, 2, 5], (3, 0)}
→{P [3.333, 11, 3, 7], (4, 0)}→{P [0.555, 14, 4, 9], (5, 0)}→P [1.428, 17, 5, 11].

Hence, (27) holds for 2 ≤ r ≤ 5. We now proceed by induction. Suppose
that (27) holds for some r ≥ 5. Then we fix (r, g) as (r + 1, 0). Suppose
Σr+1,0 6= 0. Then we argue as earlier to get

Ξ(r + 1, 0) < 0.001,

and hence

Π(r + 1, 0) > 0.999,

giving

|ξ1| ≥
0.999

√
r + 1

2.252r+1

|ξ0|3r+5

(3D)r+1k2r+3
≥ |ξ0|3r+5

2.6r+1(3D)r+1k2r+3
.

Thus we have

{P [2.6−r, 3r + 2, r, 2r + 1], (r + 1, 0)} → P [2.6−(r+1), 3r + 5, r + 1, 2r + 3],
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proving the claim. If Σr+1,0 = 0 then, by Lemma 6.3, both Σr+1,1 and Σr+2,1

are non-zero. First we fix (r, g) as (r + 1, 1). Then we get

{P [2.6−r, 3r + 2, r, 2r + 1], (r + 1, 1)} → P [2.252−r, 3r + 3, r + 5/6, 2r + 2].

Now we fix (r, g) as (r + 2, 1). Then

{P [2.252−r, 3r+3, r+5/6, 2r+2], (r+2, 1)} → P [2.6−(r+1), 3r+5, r+1, 2r+3].

This completes the induction.

7. Proof of Corollary 1.5. It is easy to see that the number of integer
solutions to (1) is

≤
k1/3∑
d=1

10 +
3

log 2
log

(
5 log(3D) + 12 log(k/d3) + 2.13

3 log(3D)− 12 log(k/d3)− 5.56

)
.

Since 2πk = (3D)1/4−δ and δ > 0.1, this can be estimated by

10k1/3 +
3k1/3

log 2
log

(
(8− 12δ) log(3D)− 12 log(2π) + 2.13

12δ log(3D) + 12 log(2π)− 5.56

)
≤ 18k1/3.
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[7] K. Győry, Thue inequalities with a small number of primitive solutions, Period.
Math. Hungar. 42 (2001), 199–209.
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