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On the first sign change in Mertens’ theorem
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1. Introduction. Mertens’ Theorem states that

∆M (x) :=
∑
p≤x

1

p
− log log(x)−M = O(log(x)−1)

for x→∞, where M = 0.26149 . . . denotes the Mertens constant [8]. Rosser
and Schoenfeld observed that ∆M (x) is positive for 1 ≤ x ≤ 108 and posed
the question whether this would always be the case [12, p. 72f]. This has
been answered by Robin who showed that ∆M (x) changes sign infinitely
often [10].

In this paper we show that the first sign change occurs before
exp(495.702833165) = 1.909875 . . .× 10215. More specifically, we prove

Theorem 1.1. There exists an

x0 ∈ [exp(495.702833109), exp(495.702833165)]

such that ∆M (x) < 0 for all x ∈ [x0 − exp(239.046541), x0].

This problem is similar to bounding the Skewes number, the number in
[2,∞) where the first sign change of ∆(x) = π(x) − li(x) occurs [14]; this
number is by now known to lie between 1019 (see [2]) and exp(727.951335792)
(see [13]). The functions ∆(x) and ∆M (x) are closely related and the Prime
Number Theorem, ∆(x) = o(li(x)) for x → ∞, is in fact equivalent to
∆M (x) = o(log(x)−1) for x→∞. But since ∆(x) and ∆M (x) are biased in
opposite directions, there is no correlation between the sign changes of the
two functions. On the Riemann Hypothesis, sign changes of ∆M (x) rather
occur at points where ∆(x) ≈ −2

√
x/log(x).

Theorem 1.1 is proven by an adaption of the Lehman method for bounding
the Skewes number [6], using explicit formulas and numerical approximations
to part of the zeros of the Riemann zeta function from [4]. In doing so, the
kernel function in Lehman’s method is replaced by the Logan function [7],
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which appears to be more suitable for this problem. This is done in such
generality that it can easily be reapplied to the original Lehman method.

2. Notation. As usual, ζ(s) denotes the Riemann zeta function and
zeros of ζ(s) are denoted by ρ = β + iγ with β, γ ∈ R. The Euler constant
is denoted by C0 = 0.57721 . . . and the Mertens constant by

(2.1) M = C0 −
∑
p

∞∑
m=2

1

mpm
= 0.26149 . . . .

We use the symbol
∑′ to define normalized summatory functions, i.e. we

define ∑′

x<n<y

an :=
1

2

∑
x<n<y

an +
1

2

∑
x≤n≤y

an.

Moreover, we define the Mertens prime-counting functions

πM (x) =
∑′

p<x

1

p
and π∗M (x) =

∞∑
m=1

πM (x1/m)

m
.

The Fourier transform of a function f is denoted by f̂ and defined by

f̂(x) =

∞�

−∞
f(t)e−itx dt.

Finally, we will use Turing’s big theta notation for explicit estimates and
write f(x) = Θ(g(x)) for |f(x)| ≤ g(x).

3. Description of the method. The method we use is similar to the
Lehman method for finding regions where π(x) − li(x) is positive [6]. We
aim to calculate upper bounds for a weighted mean value

(3.1)

ω+ε�

ω−ε
K(y − ω)yey/2[πM (ey)− log(y)−M ] dy,

where K(y) is a non-negative kernel function. By using explicit formulas
this mean value can be expressed as a sum over the non-trivial zeros of ζ(s),
which can be approximated numerically. Then, if an ω can be found for which
the value in (3.1) is negative, there must exist an x ∈ [exp(ω−ε), exp(ω+ε)]
such that πM (x)− log log(x)−M is negative.

Lehman’s method uses the Gaussian function as a kernel function but
we prefer to use dilatations of the function

Kc(y) :=

{ c

2 sinh(c)
I0(c

√
1− y2), |y| < 1,

0, otherwise,
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where I0(t) :=
∑∞

n=0(t/2)2n/(n!)2 denotes the 0th modified Bessel func-
tion. The Fourier transform of Kc is given by the Logan function (see [4,
Proposition 4.1])

K̂c(x) = `c(x) :=
c

sinh(c)

sin(
√
t2 − c2)√
t2 − c2

,

which satisfies an optimality property well-suited for this problem [7], and
which outperforms the Gaussian function in the similar context of calculat-
ing the prime-counting function analytically [4].

We define

Kc,ε(y) :=
1

ε
Kc(y/ε) and `c,ε(x) := K̂c,ε(x) = `c(εx).

Then our main result is

Theorem 3.1. Let 0 < ε < 10−3, c ≥ 3, ω − ε > 200, and let H ≥ c/ε
be a number such that β = 1/2 holds for all zeros ρ = β+ iγ of the Riemann
zeta function with 0 < γ ≤ H. Furthermore, let h = 0 if the Riemann
Hypothesis holds and h = 1 otherwise. Then

(3.2)

ω+ε�

ω−ε
Kc,ε(y − ω)yey/2[πM (ey)− log(y)−M ] dy

≤
∑
|γ|≤c/ε

e−iγω`c,ε(γ)

(
1

ρ
− 1

ωρ2

)
+ 1 + 5.4× 10−10 + E1 + E2 + E3,

where

E1 ≤ 0.33ehω/2
e0.71

√
cε

sinh c
log(3c) log

(
c

ε

)
,(3.3)

E2 ≤
3.36 + 126 ε

1000ω2
+ 2.8

(
e

2H

)ω/2−1
log(H),(3.4)

E3 ≤
eω/2

1.99H
log(H)

(
ce3.12

√
cε

ω sinh(c)
+

(
eε

ω

)ω/2)
.(3.5)

Moreover, if a ∈ (0, 1) satisfies ac/ε ≥ 103 in addition to the previous
conditions, then

(3.6)
∑

ac/ε<|γ|≤c/ε

∣∣∣∣e−iγω`c,ε(γ)

(
1

ρ
− 1

ωρ2

)∣∣∣∣
≤ 0.32 + 3.51cε

ca2
log

(
c

ε

)
cosh(c

√
1− a2)

sinh(c)
.

The proof needs some preparation.
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4. The explicit formula for π∗M (x). The first ingredient is the explicit
formula for π∗M (x). We define the auxiliary function

Ẽi(z) =

∞�

0

ez−t

z − t
dt,

which coincides with the exponential integral Ei(z) in R \ {0}, and which
occurs naturally in explicit formulas for prime-counting functions.

Lemma 4.1. Let x > 1. Then

(4.1) π∗M (x) = log log(x) + C0 −
∑∗

ρ

Ẽi(−ρ log(x)) +

∞�

x

dt

t2 log(t)(t2 − 1)
,

where
∑∗ means that the sum over zeros is calculated as

lim
T→∞

∑
|γ|<T

Ẽi(−ρ log(x)).

Proof. The argument is similar to the original proof of the Riemann
explicit formula [15]. Let

(4.2) ψ(x, r) =
∑′

pm<x

log(p)

pmr
.

Then we have

π∗M (x) =

∞�

1

ψ(x, r) dr.

From [5, (39)] we get the explicit formula

ψ(x, r) =
x1−r

1− r
−
∑∗

ρ

xρ−r

ρ− r
−
∞∑
n=1

x−2n−r

−2n− r
− ζ ′

ζ
(r).

Since Ei(−x) = log(x)+C0+o(x) for x↘ 0 [9, p. 40], and since log(ζ(1+ε))
= − log(ε) + o(1) for ε↘ 0, we have

∞�

1

(
x1−r

1− r
− ζ

′

ζ
(r)

)
dr = lim

ε↘0
[Ei(−ε log(x)) + log(ζ(1 + ε))] = log log(x) +C0.

The sum over zeros takes the form

∞�

1

∑∗

ρ

xρ−r

ρ− r
dr =

∑∗

ρ

Ẽi((ρ− 1) log(x)) =
∑∗

ρ

Ẽi(−ρ log(x)),
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and for the sum over the trivial zeros we find
∞�

1

∞∑
n=1

x−2n−r

2n+ r
dr =

∞�

1

∞∑
n=1

x−(2n+1)r dr

r
=

∞�

1

x−3r

1− x−2r
dr

=

∞�

x

dt

t2 log(t)(t2 − 1)
.

5. The difference π∗M (x) − πM (x). By definition of the Mertens con-
stant (2.1) we have

πM (x) = π∗M (x) +M − C0 + rM (x), where rM (x) =
∑′

pm>x
m≥2

1

mpm
.

The term rM (x) is responsible for the positive bias in Mertens’ Theorem
and needs to be bounded from above.

Lemma 5.1. Let log(x) > 200. Then

rM (x) ≤ 1 + 5.3× 10−10√
x log(x)

.

Proof. First we consider the contribution of the squares of prime num-
bers which yield the main term. Let r(t) = ψ(t)− t, where ψ(t) := ψ(t, 0) in
the sense of (4.2) denotes the normalized Chebyshev function, and assume
|r(t)| < εt for t ≥

√
x and some ε > 0. Then partial summation gives∑′

p>
√
x

1

p2
<

[
−r(t)
t2 log(t)

]∞
√
x

+

∞�
√
x

dt

t2 log(t)
−
∞�
√
x

r(t)
d

dt

(
1

t2 log(t)

)
dt(5.1)

< 2
1 + 3ε√
x log(x)

.

For 3 ≤ m ≤ log(x) we use∑
p≥x1/m

1

pm
≤ 1

x
+

∞�

x1/m

dt

tm
=

1

x
+

1

m− 1
x1/m−1,

which gives ∑
pm≥x

3≤m≤log(x)

1

mpm
≤ log(x)

x
+ (ζ(2)− 1)x−2/3 <

10−12√
x log(x)

.

For m > log(x) we estimate trivially:∑
p

1

pm
≤
∞∑
n=3

n−m + 2−m ≤ 2−m +

∞�

2

dt

tm
= 2−m

(
1 +

2

m− 1

)
.
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Therefore, we get∑
pm≥x
m>log x

1

mpm
≤ 1.01

log(x)

∑
m≥log(x)

2−m ≤ 2.02× 2− log(x)

log(x)
<

10−16√
x log(x)

.

By [3, Table 1], (5.1) holds with ε = 1.752× 10−10 and so the assertion
follows.

6. Evaluating the sum over zeros. The next problem is to approxi-
mate the following integral of the sum over zeros:

ε�

−ε
Kc,ε(y − ω)yey/2

∑∗

ρ

Ẽi(−ρy) dy.

Here, integral and sum may be interchanged, since the sum converges locally
in L1. Therefore, we may treat each summand individually.

6.1. Asymptotic expansion of the summands. Since the Logan
kernel should also be of interest for the question of finding regions where
π(x)− li(x) is positive, the following lemma is presented in a more general
version, which also covers the classical case.

Lemma 6.1. Let 0 < ε < ω, and let K ∈ L1([−ε, ε]) satisfy ‖K‖L1 = 1.
Let a ∈ [0, 1], let ρ = β + iγ, where 0 ≤ β ≤ 1 and γ ∈ R \ {0}, and let

Φω,ρ,a =

ω+ε�

ω−ε
K(y − ω)ye(1/2−a)y Ẽi((a− ρ)y) dy.

Then

(6.1) Φω,ρ,a =

k∑
j=1

(j − 1)!
F

(−j)
ω,ρ (0)

(ρ− a)j
+Θ

(
k!eε/2e(1/2−β)ω

(ω − ε)k|γ|k+1

)
,

where F
(−1)
ω,ρ (0) = −e(1/2−ρ)ωK̂

(ρ
i −

1
2i

)
and for j ≥ 2 and any m ≥ 0,

F (−j)
ω,ρ (0) = (−1)je(1/2−ρ)ω

m∑
n=0

(
n+ j − 2

n

)
(−i)nK̂(n)

(ρ
i −

1
2i

)
ωn+j−1

(6.2)

+Θ

(
ej−2+ε/2e(1/2−β)ω

ωj−1
(eε/ω)m+1

1− eε/ω

)
.
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Proof. By definition of Ẽi we have

Φω,ρ,a =

ω+ε�

ω−ε
K(y − ω)ye(1/2−a)y

∞�

0

e(a−ρ−r)y

a− ρ− r
dr dy(6.3)

=

∞�

0

1

a− ρ− r

ω+ε�

ω−ε
K(y − ω)ye(1/2−ρ−r)y dy dr.

Now let

F (−j)
ω,ρ (r) := (−1)j

ω+ε�

ω−ε
y1−jK(y − ω)e(1/2−ρ−r)y dy,

which is well defined since ω > ε, and satisfies d
drF

(−j)
ω,ρ = F

(1−j)
ω,ρ . Then

partial summation gives

Φω,ρ,a = −
∞�

0

F
(0)
ω,ρ(r)

r + ρ− a
dr =

k∑
j=1

(j − 1)!
F

(−j)
ω,ρ (0)

(ρ− a)j
− k!

∞�

0

F
(−k)
ω,ρ (r)

(r + ρ− a)k+1
dr.

Here, the trivial bound

|F (−k)
ω,ρ (r)| ≤

ε�

−ε

|K(y)|
(ω + y)k−1

e(1/2−β−r)(y+ω) dy ≤ eε/2

(ω − ε)k−1
e(1/2−β)ωer(ε−ω)

yields
∞�

0

∣∣∣∣ F
(−k)
ω,ρ (r)

(r + ρ− a)k+1

∣∣∣∣ dr ≤ eε/2e(1/2−β)ω

(ω − ε)k|γ|k+1
,

which confirms (6.1). It remains to evaluate F
(−j)
ω,ρ (0). For j = 1 we find

F (−1)
ω,ρ (0) = −e(1/2−ρ)ω

ε�

−ε
K(y)e−i(

ρ
i
− 1

2i
)y dy = −e(1/2−ρ)ωK̂

(
ρ

i
− 1

2i

)
.

For larger values of j we use the Taylor series expansion

1

(ω + y)u
=

∞∑
n=0

(
u+ n− 1

n

)
(−y)n

ωu+n

and

(6.4)

ε�

−ε
K(y)yne−i(

ρ
i
− 1

2i
)y dy = inK̂(n)

(
ρ

i
− 1

2i

)
,

which gives

F (−j)
ω,ρ (0) = (−1)je(1/2−ρ)ω

∞∑
n=0

(
j + n− 2

n

)
(−i)nK̂(n)

(ρ
i −

1
2i

)
ωn+j−1

.
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From (6.4) we also get ∣∣∣∣K̂(n)

(
ρ

i
− 1

2i

)∣∣∣∣ ≤ eε/2εn;

moreover the inequality
(
a
b

)
≤
(
ea
b

)b
, which follows from Stirling’s lower

bound for b!, implies(
j + n− 2

n

)
≤ en

(
1 +

j − 2

n

)n
≤ en+j−2.

Thus, we have
∞∑

n=m+1

(
j + n− 2

n

)∣∣K̂(n)
(ρ
i −

1
2i

)∣∣
ωn+j−1

≤ ej−2+ε/2

ωj−1

∞∑
n=m+1

(
eε

ω

)n
=
ej−2+ε/2

ωj−1
(eε/ω)m+1

1− eε/ω
,

which confirms the bound in (6.2).

6.2. Bounds for the kernel function. We need some bounds to es-
timate the tails of the sum over zeros. These are provided by the following
two lemmas from [1] and [3]:

Lemma 6.2 ([3, Lemma 2]). Let 0 < ε < 10−3 and c ≥ 3. Then

(6.5)
∑
|γ|>c/ε

∣∣`c,ε(ρi − 1
2i

)∣∣
|γ|

≤ 0.32
e0.71

√
cε

sinh(c)
log(3c) log

(
c

ε

)
.

Lemma 6.3 ([1, Lemma 5.5]). Let 0 < ε < 10−3 and c ≥ 3, and let
a ∈ (0, 1) satisfy ac/ε > 103. Then

(6.6)
∑

ac/ε<|γ|≤c/ε

|`c,ε(γ)|
|γ|

≤ 1 + 11cε

πca2
log

(
c

ε

)
cosh(c

√
1− a2)

sinh(c)
.

We also need bounds for the derivatives `
(n)
c,ε

(ρ
i −

1
2i

)
occurring in (6.2),

for calculations not assuming the Riemann Hypothesis.

Lemma 6.4. Let 0 < ε ≤ δ < c/100, and let z ∈ C satisfy |<(z)| ≥ c/ε
and |=(z)| ≤ 1/2. Then

|`(n)c,ε (z)| ≤ n!
ce1.56

√
δc

sinh(c)

(
2ε

δ

)n
.

Proof. The bound follows from the Cauchy formula

`(n)c,ε (z) =
n!

2πi

�

|z−ξ|=δ/(2ε)

`c,ε(ξ)

(z − ξ)n+1
dξ
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if we show that

(6.7) |`c,ε(ξ)| ≤
ce1.56

√
δc

sinh(c)

in the range of integration. By basic properties of `c,ε it suffices to prove
this bound for ε = 1 under the conditions <(ξ) ≥ c − δ, 0 ≤ =(ξ) ≤ δ, and
we may also assume δ < c/100. Since we have

|=(
√
ξ2 − c2)| ≤ |=(

√
(c− δ + iδ)2 − c2)|

≤
√

2|1 + i|δc sin

(
π

4
+

1

2
arctan

(
δc− δ2

δc

))
≤ 23/4 sin(1.181)

√
δc ≤ 1.56

√
δc

under these conditions, the desired bound follows from∣∣∣∣sin(z)

z

∣∣∣∣ ≤ e|=(z)|.
7. Proof of Theorem 3.1. By Lemmas 4.1 and 5.1 we have

πM (ey)− log(y)−M = π∗M (ey)− log(y)− C0 + rM (ey)

≤ −
∑∗

ρ

Ẽi(−ρy) +
1 + 5.4× 10−10

y
e−y/2

for y > 200, where we have estimated the integral in (4.1) trivially by e−3y.
Therefore

ω+ε�

ω−ε
Kc,ε(y − ω)yey/2[πM (ey)− log(y)−M ] dy

≤ −
∑
ρ

Φω,ρ,0 + 1 + 5.4× 10−10,

with Φω,ρ,0 as defined in Lemma 6.1 with K = Kc,ε and K̂ = `c,ε. We
subdivide the sum over zeros into two parts. For 0 < γ ≤ H we choose
k = 2 and m = 0 in Lemma 6.1, which gives

(7.1) −
∑
|γ|≤H

Φω,ρ,0 ≤
∑
|γ|≤c/ε

e−iγω`c,ε(γ)

(
1

ρ
− 1

ωρ2

)

+
∑

c/ε<|γ|≤H

∣∣∣∣`c,ε(γ)

γ

∣∣∣∣(1 +
ε

cω

)
+

1

ω2

∑
|γ|<H

(
2.72ε

γ2
+

2.01

|γ|3

)
,
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where we have used ε ≤ 10−3. For γ > H we have

(7.2)
∑
|γ|>H

|Φω,ρ,0| ≤ ehω/2
∑
|γ|>H

∣∣∣∣`c,ε(ρi − 1
2i)

γ

∣∣∣∣ k∑
j=1

(j − 1)!

ωj−1
H1−j

+ehω/2
∑
|γ|>H

k∑
j=2

(j − 1)!

|γ|j

( m∑
n=1

(
n+ j − 2

n

)∣∣`(n)c,ε (ρi −
1
2i)
∣∣

ωn+j−1
+
ej−2+ε/2(eε)m+1

ωj+m−1(ω − eε)

)

+ ehω/2
∑
|γ|>H

k!eε/2

(ω − ε)k|γ|k+1

for arbitrary k ≥ 2 and m ≥ 1, where h = 0 if the Riemann Hypothesis
holds and h = 1 otherwise. So the inequality in (3.2) holds with

E1 =
∑

c/ε<|γ|≤H

∣∣∣∣`c,ε(γ)

γ

∣∣∣∣(1 +
ε

cω

)
(7.3)

+ ehω/2
∑
|γ|>H

∣∣∣∣`c,ε(ρi − 1
2i)

γ

∣∣∣∣ k∑
j=1

(j − 1)!

ωj−1
H1−j ,

E2 =
1

ω2

∑
ρ

(
2.72ε

γ2
+

2.01

|γ|3

)
+ ehω/2

∑
|γ|>H

k!eε/2

(ω − ε)k|γ|k+1
,(7.4)

E3 = eω/2
∑
|γ|>H

k∑
j=2

(j − 1)!

|γ|j
(7.5)

×
( m∑
n=1

(
n+ j − 2

n

) |`(n)c,ε (ρi −
1
2i)|

ωn+j−1
+
ej−2+ε/2(eε)m+1

ωj+m−1(ω − eε)

)
.

We proceed by bounding Ek. To this end we choose k = m = bω/2c. In
(7.3) we take H = c/ε, which gives

(7.6) E1 ≤ ehω/2
∑

c/ε<|γ|

∣∣∣∣`c,ε(γ)

γ

∣∣∣∣ k−1∑
j=0

j!

ωj

(
ε

c

)j
,

where the inner sum is bounded by

∞∑
j=0

(
ε

2c

)j
≤
(

1− 1

6000

)−1
≤ 1.0002,

since c ≥ 3. Using this and (6.5) in (7.6) gives (3.3).

In (7.4) we use the bounds
∑

γ γ
−2 < 0.0463 and

∑
γ |γ|

−3 < 0.00167
from [11, Lemma 17], the bound



First sign change in Mertens’ theorem 193

(7.7)
∑
|γ|>T

|γ|−k ≤ T 1−k log(T )

for T ≥ 2πe and k ≥ 2 from [6, Lemma 2], and the inequality (ω − ε)k ≥
e−εωk, which follows from k ≤ ω/2, and get

E2 ≤
0.00336 + 0.126ε

ω2
+ eω/2

e2εk!

(ωH)k
log(H)

≤ 3.36 + 126ε

1000ω2
+ 2.8

(
e

2H

)ω/2−1
log(H).

In (7.5) we use (7.7) again and the bound from Lemma 6.4, where we
choose δ = 4ε, which gives

(7.8) E3 ≤ eω/2
k∑
j=2

H1−j log(H)

(
ce3.12

√
cε

sinh(c)

m∑
n=1

j − 1

ω

(n+ j − 2)!

ωn+j−2
2−n

+
1.002ej−1

e

(j − 1)!

ωj−1

(
eε

ω

)m+1)
.

Since n+ j − 2 ≤ ω we have (n+ j − 2)!/ωn+j−2 ≤ 1/ω, so the inner sum is
bounded by 1/(2ω). In the second summand, we use (j − 1)!/ωj−1 ≤ 21−j .
Since

∑∞
j=1H

−j ≤ 1.001/H,
∑∞

j=1(2H/e)
−j ≤ 1.001e/(2H), and m + 1

≥ ω/2, we obtain the bound in (3.5).

Finally, the estimate in (3.6) follows from (6.6) since∑
ac/ε<|γ|≤c/ε

∣∣∣∣`c,ε(γ)

ρ

(
1− 1

ωρ

)∣∣∣∣ ≤ (1 +
1

200× 1000

) ∑
ac/ε<|γ|≤c/ε

∣∣∣∣`c,ε(γ)

γ

∣∣∣∣.
8. Numerical results. To locate potential regions where the left hand

side of (3.2) should be small, the function

σT (y) =
∑
|γ|≤T

eiγy

1/2− iγ
.

has been evaluated for T = 106 at all points in 10−7Z ∩ [1, 2500]. Since
`c,ε(γ) = 1 +O((εγ)2/c) for γ → 0, this gives a reasonably good approxima-
tion to the first part of the sum in (3.2), and the objective is thus to find
regions where σT (y) is smaller than −1.

The evaluation has been done using the method for fast multiple eval-
uation of trigonometric sums from [4]. A more detailed search with T =
108 around 495.7028078, the first point where σ106(y) turned out to be
promisingly small, revealed a short region of length ≈ 2.8 × 10−8 about
495.702833137 where σ108(y) < −1.
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Proof of Theorem 1.1. The assertion now follows by an application of
Theorem 3.1 with ω = 495.702833137, c = 280, ε = 2.8 × 10−8, H = 1011

(which has been reported in [4]) and a = 0.4.

Table 1. Values of y ∈ [1, 2500] for which σ106(y) < −0.95

y σ106(y)

495.7028078 −0.9972 . . .

1423.957207 −0.9740 . . .

1623.9204309 −0.9807 . . .

1859.1291846 −1.0511 . . .

2107.5263606 −1.0214 . . .

2285.3917834 −1.0454 . . .

2430.3039554 −1.0172 . . .

2447.6661764 −1.0028 . . .

The sum over zeros was calculated using approximations to the zeros with
imaginary part up to 4× 109 which were given within an absolute accuracy
of 2−64. The sum was evaluated using multiple precision arithmetic, which
gave the bound

(8.1)
∑

|γ|≤4×109
e−iγω`c,ε(γ)

(
1

ρ
− 1

ωρ2

)
≤ −1.00015419.

The sum in (3.6) is then bounded by 1.2× 10−11 and we have

E1 + E2 + E3 ≤ 1.2× 10−12 + 1.37× 10−8 + 1.6× 10−24 ≤ 1.38× 10−8.

Thus, the left hand side of (3.2) is bounded by

−1.00015419 + 1.2× 10−11 + 1 + 5.4× 10−10 + 1.38× 10−8 < −0.000154.

Consequently, there exists an x ∈ [exp(w − ε), exp(w + ε)] such that

πM (x)− log log(x)−M < −0.000154/(
√
x log(x)).

Obviously, we have

πM (x− y)− log log(x− y)−M ≤ πM (x)− log log(x)−M +

x�

x−y

dt

t log t

≤ − 0.000154√
x log(x)

+
y

(x− y) log(x− y)
,

which is negative for y ≤ 0.00015
√
x. Since 0.00015

√
x > exp(239.046541),

the theorem follows.
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Ph.D. thesis, Bonn Univ., 2015.
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[4] J. Franke, Th. Kleinjung, J. Büthe, and A. Jost, A practical analytic method for

calculating π(x), Math. Comp., to appear.
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