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1. Introduction. Quasimodular forms generalize classical modular
forms, and they were introduced by Kaneko and Zagier in [3]. For a discrete
subgroup Γ of SL(2,R) commensurable with SL(2,Z) and for nonnegative
integers m and λ, a quasimodular form φ of weight λ and depth at most m
for Γ corresponds to holomorphic functions φ0, φ1, . . . , φm on the Poincaré
upper half-plane H satisfying

1

(cz + d)λ
φ

(
az + b

cz + d

)
= φ0(z) + φ1(z)

(
c

cz + d

)
+ · · ·+ φm(z)

(
c

cz + d

)m
for all z ∈ H and

(
a b
c d

)
∈ Γ . The functions φk are also quasimodular forms

and are determined uniquely by φ. Thus φ determines the corresponding
polynomial

Φ(z,X) =

m∑
r=0

φr(z)X
r

of degree at most m in X. Such a polynomial is called quasimodular, and to
study various aspects of quasimodular forms it is often convenient to work
with quasimodular polynomials.

Jacobi-like forms for Γ are formal power series which generalize Jacobi
forms, and they were studied by Cohen, Manin and Zagier [2], [6]. It is
known that there is a one-to-one correspondence between Jacobi-like forms
and certain sequences of modular forms. In particular, for a modular form f ,
there is a Jacobi-like form f̃(z,X) corresponding to the sequence whose only
nonzero term is f , which is known as the Cohen–Kuznetsov lifting of f .

Although the coefficient functions of a Jacobi-like form are not modular
forms in general, they are in fact quasimodular forms. There is a surjective
map from the space of Jacobi-like forms to the space of quasimodular poly-
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nomials, and it was proved in [1] that this surjective map has a right inverse.
This result shows the existence of liftings of quasimodular polynomials to
Jacobi-like forms. For a quasimodular polynomial, the proof of the existence
of its lifting in the above-mentioned paper was carried out by induction on
the degree of the given quasimodular polynomial, and therefore the proof
does not provide a formula for this lifting. The goal of the present paper
is to obtain an explicit formula for such a lifting, which can be regarded
as the Cohen–Kuznetsov lifting of the given quasimodular polynomial or of
the corresponding quasimodular form. Indeed, when the degree of a quasi-
modular polynomial or the depth of the corresponding quasimodular form is
zero, the quasimodular polynomial or form can be identified with a modular
form, and the lifting coincides with the usual Cohen–Kuznetsov lifting of
that modular form.

2. Jacobi-like forms and quasimodular forms. In this section we
review certain properties of Jacobi-like forms studied by Cohen, Manin and
Zagier (see [2] and [6] for details) and their connections with modular forms
and quasimodular forms. We also describe quasimodular polynomials, which
correspond to quasimodular forms.

Let H be the Poincaré upper half-plane, and let F be the ring of holo-
morphic functions on H that are bounded by powers of

(2.1)
|z|2 + 1

Im(z)
.

We denote by F [[X]] the complex algebra of formal power series in X with
coefficients in F . If δ is a nonnegative integer, we set

(2.2) F [[X]]δ = XδF [[X]],

so that an element Φ(z,X) ∈ F [[X]]δ can be written in the form

(2.3) Φ(z,X) =
∞∑
k=0

φk(z)X
k+δ

with φk ∈ F for each k ≥ 0. Given such Φ(z,X) ∈ F [[X]]δ and a nonnegative
integer λ, we consider two other formal power series

(Sλ,δΦ)(z,X), (Tλ,δΦ)(z,X) ∈ F [[X]]δ

defined by

(Sλ,δΦ)(z,X) =

∞∑
k=0

φSk (z)Xk+δ,(2.4)

(Tλ,δΦ)(z,X) =
∞∑
k=0

φTk (z)Xk+δ,(2.5)
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where

φSk =
k∑
r=0

1

r!(2k + 2δ + λ− r − 1)!
φ
(r)
k−r,(2.6)

φTk = (2k + 2δ + λ− 1)
k∑
r=0

(−1)r
(2k + 2δ + λ− r − 2)!

r!
φ
(r)
k−r

for each k ≥ 0.

We now turn to the usual action of the group SL(2,R) on H by linear
fractional transformations, so that

γz =
az + b

cz + d

for all z ∈ H and γ =
(
a b
c d

)
∈ SL(2,R). For the same z and γ, by setting

J(γ, z) = cz + d, K(γ, z) =
c

cz + d
,

we obtain the maps J,K : SL(2,R)×H → C which satisfy

J(γγ′, z) = J(γ, γ′z)J(γ′, z), K(γ, γ′z) = J(γ′, z)2(K(γγ′, z)− K(γ′, z))

for all z ∈ H and γ, γ′ ∈ SL(2,R).

Given a function f ∈ F , a formal power series Φ(z,X) ∈ F [[X]], a non-
negative integer λ, and an element γ ∈ SL(2,R), we set

(f |λγ)(z) = J(γ, z)−λf(z),

(Φ|Jλγ)(z,X) = J(γ, z)−λe−K(γ,z)XΦ(γz, J(γ, z)−2X),(2.7)

(Φ|Mλ γ)(z,X) = J(γ, z)−λΦ(γz, J(γ, z)−2X)(2.8)

for z ∈ H.

Proposition 2.1. The maps Sλ,δ,Tλ,δ : F [[X]]δ → F [[X]]δ given by
(2.4) and (2.5) are complex linear isomorphisms with

(2.9) (Tλ,δ)
−1 = Sλ,δ.

Proof. This is a slightly modified version of a result that follows from
the equivalence of (4) and (5) in Proposition 2 of [2] and can be proved in
a straightforward manner.

If α and ν are integers with ν > 0, we note that a function f ∈ F satisfies

(2.10)
dν

dzν
(f |αγ)(z) =

ν∑
r=0

(−1)ν−r
ν!

r!

(
α+ ν − 1

ν − r

)
K(γ, z)ν−r

J(γ, z)α+2r
f (r)(γz)

for z ∈ H and γ ∈ SL(2,R) (see [2, (1.9)]). The next proposition shows the
SL(2,R)-equivariance of the maps Sλ,δ and Tλ,δ.
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Proposition 2.2. The isomorphisms Sλ,δ,Tλ,δ : F [[X]]δ → F [[X]]δ
satisfy

(Sλ,δΦ)|Jλγ = Sλ,δ(Φ|Mλ γ),(2.11)

(Tλ,δΦ)|Mλ γ = Tλ,δ(Φ|Jλγ)

for each γ ∈ SL(2,R) and Φ(z,X) ∈ F [[X]]δ.

Proof. Since Tλ,δ is the inverse of Sλ,δ by (2.9), it suffices to prove the
relation (2.11). Given γ ∈ SL(2,R) and Φ(z,X) ∈ F [[X]]δ as in (2.3), using
(2.4) and (2.7), we have

((Sλ,δΦ)|Jλγ)(z,X)

= J(γ, z)−λ
( ∞∑
r=0

(−1)r

r!
K(γ, z)rXr

)( ∞∑
`=0

φS` (γz)J(γ, z)−2`−2δX`+δ
)

=
∞∑
r=0

∞∑
`=0

(−1)r

r!
J(γ, z)−λ−2`−2δK(γ, z)rφS` (γz)X`+r+δ

=
∞∑
k=0

k∑
r=0

(−1)r

r!
J(γ, z)−λ−2k+2r−2δK(γ, z)rφSk−r(γz)X

k+δ.

Thus we may write

((Sλ,δΦ)|Jλγ)(z,X) =
∞∑
k=0

ξSk (z)Xk+δ

with

ξSk (z) =
k∑
r=0

(−1)r

r!
J(γ, z)−λ−2k+2r−2δK(γ, z)rφSk−r(γz)(2.12)

=

k∑
r=0

k−r∑
`=0

(−1)rJ(γ, z)−λ−2k+2r−2δK(γ, z)rφ
(`)
k−r−`(γz)

r!`!(2k − 2r + 2δ + λ− `− 1)!
,

where we used (2.6). On the other hand, from (2.8) we obtain

(Φ|Mλ γ)(z,X) = J(γ, z)−λ
∞∑
k=0

φk(γz)J(γ, z)−2k−2δXk+δ

=
∞∑
k=0

(φk|λ+2k+2δγ)(z)Xk+δ;

hence we see that

(Sλ,δ(Φ|Mλ γ))(z,X) =
∞∑
k=0

ηSk (z)Xk+δ,
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where

ηSk (z) =
k∑
r=0

1

r!(λ+ 2k + 2δ − r − 1)!
(φk−r|λ+2k−2r+2δγ)(r)(z).

However, using (2.10), we have

(φk−r|λ+2k−2r+2δγ)(r)(z)

=

r∑
`=0

(−1)r−`
r!

`!

(
λ+ 2k − r + 2δ − 1

r − `

)
K(γ, z)r−`

J(γ, z)λ+2k−2r+2δ+2`
φ
(`)
k−r(γz).

Thus it follows that

ηSk (z) =
k∑
r=0

r∑
`=0

(−1)r−`

`!(r − `)!(2k − 2r + 2δ + λ+ `− 1)!

× K(γ, z)r−`

J(γ, z)λ+2k−2r+2δ+2`
φ
(`)
k−r(γz)

=

k∑
`=0

k∑
r=`

(−1)r−`

`!(r − `)!(λ+ 2k − 2r + 2δ + `− 1)!

× K(γ, z)r−`

J(γ, z)λ+2k−2r+2δ+2`
φ
(`)
k−r(γz).

Changing the index r to r + `, we get

ηSk (z) =
k∑
`=0

k−∑̀
r=0

(−1)r

`!r!(λ+ 2k − 2r + 2δ − `− 1)!

× K(γ, z)r

J(γ, z)λ+2k−2r+2δ
φ
(`)
k−`−r(γz).

Comparing this with (2.12), we see that

ξSk = ηSk

for each k ≥ 0, and therefore (2.11) follows.

We now consider a discrete subgroup Γ of SL(2,R) commensurable with
SL(2,Z). Then a modular form of weight λ for Γ is a holomorphic function
f ∈ F satisfying

f |λγ = f

for all γ ∈ Γ . We denote by Mλ(Γ ) the space of such modular forms.

Remark 2.3. For the growth condition at the cusps we note that the
functions belonging to F are bounded by powers of the quotient in (2.1).
This condition was suggested by Cohen, Manin and Zagier [2].
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Definition 2.4.

(i) A formal power series Φ(z,X) ∈ F [[X]] is a Jacobi-like form of
weight λ for Γ if it satisfies

(Φ|Jλγ)(z,X) = Φ(z,X)

for all z ∈ H and γ ∈ Γ .
(ii) A formal power series Φ(z,X) ∈ F [[X]] is a modular series of weight

λ for Γ if it satisfies

(Φ|Mλ γ)(z,X) = Φ(z,X)

for all z ∈ H and γ ∈ Γ .

We denote by Jλ(Γ ) and Mλ(Γ ) the spaces of Jacobi-like forms and
modular series, respectively, of weight λ for Γ . We see easily that Φ(z,X)
in (2.3) belongs to Mλ(Γ ) if and only if

φk ∈M2k+2δ+λ(Γ )

for each k ≥ 0. Given a nonnegative integer δ, let Jλ(Γ )δ and Mλ(Γ )δ
denote the subspaces of Jλ(Γ ) and Mλ(Γ ), respectively, defined by

Jλ(Γ )δ = Jλ(Γ ) ∩ F [[X]]δ, Mλ(Γ )δ =Mλ(Γ ) ∩ F [[X]]δ,

where F [[X]]δ is as in (2.2). Then by Proposition 2.2 the automorphisms
Sλ,δ and Tλ,δ of F [[X]]δ induce the isomorphisms

(2.13) Sλ,δ :Mλ(Γ )δ → Jλ(Γ )δ, Tλ,δ : Jλ(Γ )δ →Mλ(Γ )δ

with

(2.14) Sλ,δ = T−1λ,δ.

We note that this result provides a slight variation of the correspondence
between Jacobi-like forms and sequences of modular forms established by
Cohen, Manin and Zagier in [2, Proposition 2].

We now fix a nonnegative integer m and denote by Fm[X] the complex
vector space of polynomials in X over F of degree at most m. If λ is a
nonnegative integer and

(2.15) Ψ(z,X) =

m∑
r=0

ψr(z)X
r ∈ Fm[X],

we set

(Ψ |Xλ γ)(z,X) =
m∑
r=0

(ψr|λ+2rγ)(z)Xr,(2.16)

(Ψ‖λγ)(z,X) = J(γ, z)−λΨ(γz, J(γ, z)2(X − K(γ, z)))(2.17)

for all z ∈ H and γ ∈ SL(2,R).
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If a polynomial Ψ(z,X) ∈ Fm[X] is as in (2.15) and if λ > 2m, we
introduce two additional polynomials

(Ξm
λ Ψ)(z,X), (Λmλ Ψ)(z,X) ∈ Fm[X]

defined by

(2.18) (Ξm
λ Ψ)(z,X) =

m∑
r=0

ψm,Ξr (z)Xr, (Λmλ Ψ)(z,X) =
m∑
r=0

ψm,Λr (z)Xr,

where

ψm,Ξr =
1

r!

m−r∑
j=0

1

j!(λ− 2r − j − 1)!
ψ
(j)
m−r−j ,

ψm,Λr = (λ+ 2r − 2m− 1)(2.19)

×
r∑
j=0

(−1)j

j!
(m− r + j)!(2r + λ− 2m− j − 2)!ψ

(j)
m−r+j ,

for each r ∈ {0, 1, . . . ,m}. These formulas determine isomorphisms

(2.20) Ξm
λ , Λ

m
λ : Fm[X]→ Fm[X]

with

(Λmλ )−1 = Ξm
λ ,

and they are known to satisfy

((Ξm
λ Ψ)‖λγ)(z,X) = Ξm

λ (Ψ |Xλ−2mγ)(z,X),(2.21)

((Λmλ Ψ)|Xλ−2mγ)(z,X) = Λmλ (Ψ‖λγ)(z,X)(2.22)

for all Ψ(z,X) ∈ Fm[X] and γ ∈ SL(2,R) (see [4]).

Definition 2.5. Let Γ be a discrete subgroup of SL(2,R) commensu-
rable with SL(2,Z) as before.

(i) A modular polynomial for Γ of weight λ and degree at most m is an
element F (z,X) ∈ Fm[X] satisfying

F |Xλ γ = F

for all γ ∈ Γ .
(ii) An element Ψ(z,X) ∈ Fm[X] is a quasimodular polynomial for Γ of

weight λ and degree at most m if it satisfies

Ψ‖λγ = Ψ

for all γ ∈ Γ .

We denote by MPmλ (Γ ) and QPmλ (Γ ) the spaces of, respectively, modular
polynomials and quasimodular polynomials for Γ of weight λ and degree at
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most m. From (2.21) and (2.22) we see that the maps Ξm
λ and Λmλ induce

the isomorphisms

(2.23) Ξm
λ : MPmλ−2m(Γ )→ QPmλ (Γ ), Λmλ : QPmλ (Γ )→ MPmλ−2m(Γ )

for each integer λ > 2m.

Definition 2.6. An element ψ ∈ F is a quasimodular form for Γ of
weight λ and depth at most m if there are functions ψ0, . . . , ψm ∈ F satisfy-
ing

(2.24) (ψ|λγ)(z) =

m∑
r=0

ψr(z)K(γ, z)r

for all z ∈ H and γ ∈ Γ . We denote by QMm
λ (Γ ) the space of such quasi-

modular forms.

If ψ ∈ QMm
λ (Γ ) satisfies (2.24), it can be shown that the functions ψr

are uniquely determined; hence we can consider the map

Qmλ : QMm
λ (Γ )→ Fm[X]

defined by

(2.25) (Qmλ ψ)(z,X) =

m∑
r=0

ψr(z)X
r.

In fact, it is also known that this map determines an isomorphism

(2.26) Qmλ : QMm
λ (Γ )→ QPmλ (Γ ),

whose inverse is given by

(2.27) (Qmλ )−1Ψ(z,X) = ψ0

for Ψ(z,X) ∈ QPmλ (Γ ) as in (2.15) (see [1]).

3. Liftings of quasimodular forms. In this section we obtain an
explicit formula for a lifting of a quasimodular polynomial to a Jacobi-like
form whose existence was proved in [1]. Since quasimodular forms correspond
to quasimodular polynomials, the same formula also determines a lifting of
a quasimodular form to a Jacobi-like form, which generalizes the Cohen–
Kuznetsov lifting of a modular form.

Let F [[X]]δ and Fm[X] with δ,m ≥ 0 be as in Section 2, and consider
two surjective complex linear maps

(3.1) Πδ
m, Π̂

δ
m : F [[X]]δ → Fm[X]
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defined by

(Πδ
mΦ)(z,X) =

m∑
r=0

1

r!
φm−r(z)X

r,(3.2)

(Π̂δ
mΦ)(z,X) =

m∑
r=0

φr(z)X
r(3.3)

for a formal power series of the form

(3.4) Φ(z,X) =
∞∑
k=0

φk(z)X
k+δ ∈ F [[X]]δ.

Proposition 3.1. For each nonnegative integer λ the diagram

F [[X]]δ
Tλ,δ−−−−→ F [[X]]δ

Πδ
m

y yΠ̂δ
m

Fm[X]
Λmλ+2δ+2m−−−−−−→ Fm[X]

commutes, where Tλ,δ and Λmλ+2δ+2m are the isomorphisms in Proposition
2.1 and (2.20).

Proof. Given a formal power series Φ(z, x) ∈ F [[X]]δ as in (3.4), from
(2.5) and (3.3) we obtain

((Π̂δ
m ◦ Tλ,δ)Φ)(z,X) =

m∑
r=0

φTr (z)Xr,

where

φTr = (2r + λ+ 2δ − 1)

r∑
j=0

(−1)j
(2r + λ+ 2δ − j − 2)!

j!
φ
(j)
r−j

for 0 ≤ r ≤ m. On the other hand, if we set

φ̂k =
1

k!
φm−k

for 0 ≤ k ≤ m, from (2.18) and (3.2) we see that

((Λmλ+2δ+2m ◦Πδ
m)Φ)(z,X) =

m∑
r=0

φm,Λr (z)Xr,

where

φm,Λr = (λ+2δ+2r−1)
r∑
j=0

(−1)j

j!
(m+r+j)!(2r+λ+2δ−j−2)!φ̂

(j)
m−r+j

with

φ̂
(j)
m−r+j =

1

(m− r + j)!
φ
(j)
r−j
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for 0 ≤ j ≤ r ≤ m. Thus we have

φTr = φm,Λr

for 0 ≤ r ≤ m, which implies that

(3.5) Π̂δ
m ◦ Tλ,δ = Λmλ+2δ+2m ◦Πδ

m;

hence the proposition follows.

The surjective maps Πδ
m and Π̂δ

m in (3.1) are in fact equivariant with
respect to the SL(2,R)-actions in (2.7), (2.8), (2.16) and (2.17) in such a
way that

Πδ
m(Φ|Jλγ) = Πδ

m(Φ)‖λ+2m+2δγ, Π̂δ
m(Φ|Mλ γ) = Πδ

m(Φ)|Xλ+2δγ

for all Φ(z,X) ∈ F [[X]] and γ ∈ SL(2,R) (cf. [1]). Thus, if Γ is a discrete
subgroup of SL(2,R) considered in Section 2, they induce the complex linear
maps

(3.6) Πδ
m : Jλ(Γ )δ → QPmλ+2m+2δ(Γ ), Π̂δ

m :Mλ(Γ )δ → MPmλ+2δ(Γ ).

Hence we obtain the commutative diagram

Jλ(Γ )δ
Tλ,δ−−−−→ Mλ(Γ )δ

Πδ
m

y yΠ̂δ
m

QPmλ+2δ+2m(Γ )
Λmλ+2δ+2m−−−−−−→ MPmλ+2δ(Γ )

for each nonnegative integer λ.
We now consider the natural embedding

Emδ : Fm[X]→ F [[X]]δ

defined by

(3.7) (Emδ Ψ)(z,X) =

∞∑
k=0

ψ̃k(z)X
k+δ

for

(3.8) Ψ(z,X) =

m∑
r=0

ψr(z)X
r ∈ Fm[X],

where

ψ̃k =

{
ψk for 0 ≤ k ≤ m,

0 for k > m.

Then we easily see that it induces an embedding

(3.9) Emδ : MPmλ (Γ )→Mλ−2δ(Γ )δ

of modular polynomials into modular series satisfying

(3.10) (Π̂δ
m ◦ Emδ )Ψ(z,X) = Ψ(z,X)
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for all Ψ(z,X) ∈ MPmλ (Γ ). Given λ > 2m, we now define the linear map

Lmδ,λ : Fm[X]→ F [[X]]δ

by setting

(Lmδ,λΨ)(z,X) =

∞∑
k=0

ψ∗k(z)X
k+δ

for Ψ(z,X) ∈ Fm[X] as in (3.8), where

(3.11) ψ∗k =
k∑

r=max(k−m,0)

k−r∑
j=0

(λ+ 2k − 2r − 2m− 1)

× (−1)j(m− k + r + j)!(2k − 2r + λ− 2m− j − 2)!

j!r!(2k + λ− 2m− r − 1)!
ψ
(j+r)
m−k+r+j

for each k ≥ 0.

Theorem 3.2. The map Lmδ,λ induces a lifting

(3.12) Lmδ,λ : QPmλ (Γ )→ Jλ−2δ−2m(Γ )δ

of quasimodular polynomials to Jacobi-like forms such that

((Πδ
m ◦ Lmδ,λ)Ψ)(z,X) = Ψ(z,X)

for all Ψ(z,X) ∈ QPmλ (Γ ).

Proof. From (2.13), (2.23) and (3.9) we obtain the following sequence of
maps:

QPmλ (Γ )
Λmλ−−→ MPmλ−2m(Γ )

Emδ−−→Mλ−2δ−2m(Γ )δ
Sλ−2δ−2m,δ−−−−−−−→ Jλ−2δ−2m(Γ )δ.

We shall first show that the composite of these maps coincides with Lmδ,λ.
Given a quasimodular polynomial

Ψ(z,X) =
m∑
r=0

ψr(z)X
r ∈ QPmλ (Γ ),

using (2.18) and (3.7), we have

((Emδ ◦ Λmλ )Ψ)(z,X) =

∞∑
k=0

ηk(z)X
k+δ ∈Mλ−2δ−2m(Γ )δ

with

ηk =

{
ψm,Λk for 0 ≤ k ≤ m,

0 for k > m,

where ψm,Λk is as in (2.19). From this and (2.4) we see that(
(Sλ−2δ−2m,δ ◦ Emδ ◦ Λmλ )Ψ

)
(z,X) =

∞∑
k=0

ψ∗k(z)X
k+δ ∈ Jλ−2δ−2m(Γ )δ,
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where

ψ∗k =
k∑
r=0

1

r!(2k + λ− 2m− r − 1)!
η
(r)
k−r

=
k∑

r=max(k−m,0)

1

r!(2k + λ− 2m− r − 1)!
(ψm,Λk−r )(r)

for each k ≥ 0. Noting that

ψm,Λk−r = (λ+ 2k − 2r − 2m− 1)

×
k−r∑
j=0

(−1)j

j!
(m− k + r + j)!(2k − 2r + λ− 2m− j − 2)!ψ

(j)
m−k+r+j

by (2.19), we obtain

Lmδ,λ = Sλ−2δ−2m,δ ◦ Emδ ◦ Λmλ .
On the other hand, from (3.5) we see that

Π̂δ
m ◦ Tλ−2δ−2m,δ = Λmλ ◦Πδ

m.

Using this, (2.14) and (3.10), we have

((Πδ
m ◦Lmδ,λ)Ψ)(z,X)

=
(
((Λmλ )−1 ◦ Π̂δ

m ◦Tλ−2δ−2m,δ ◦Lmδ,λ)Ψ
)
(z,X)

=
(
((Λmλ )−1 ◦ Π̂δ

m ◦Tλ−2δ−2m,δ ◦Sλ−2δ−2m,δ ◦ Emδ ◦Λmλ )Ψ
)
(z,X) = Ψ(z,X)

for all Ψ(z,X) ∈ QPmλ (Γ ); hence the proof of Theorem 3.2 is complete.

In order to describe the lifting in the previous theorem in terms of quasi-
modular forms, we consider the map

πδn : Jλ(Γ )δ → F
for each nonnegative integer n defined by

πδn(Φ) = φn

if Φ(z,X) ∈ Jλ(Γ )δ is given by (3.4). Then πδn(Φ) is the constant term in
the quasimodular polynomial (Πδ

nΦ)(z,X) ∈ QPnλ+2δ+2n(Γ ) and therefore

is a quasimodular form belonging to QMn
λ+2δ+2n(Γ ) by (2.27). Thus πδn

determines the map

πδn : Jλ(Γ )δ → QMn
λ+2δ+2n(Γ ).

Given a nonnegative integer m, we now introduce the map L̃mδ,λ defined by

L̃mδ,λ = Lmδ,λ ◦ Qmλ : QMm
λ (Γ )→ F [[X]]δ,

where Qmλ is the isomorphism in (2.26).
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Corollary 3.3. The map L̃mδ,λ induces a lifting

L̃mδ,λ : QMm
λ (Γ )→ Jλ−2δ−2m(Γ )δ

of quasimodular forms to Jacobi-like forms such that

(πδm ◦ L̃mδ,λ)(ψ) = ψ

for all ψ ∈ QMm
λ (Γ ).

Proof. This follows from Theorem 3.2 and the fact that the coefficient
of Xm in the Jacobi-like form

(L̃mδ,λψ)(z,X) = ((Lmδ,λ ◦ Qmλ )ψ)(z,X) ∈ Jλ−2δ−2m(Γ )δ

coincides with the constant term in the quasimodular polynomial

(Qmλ ψ)(z,X) ∈ QPmλ (Γ ),

which is equal to ψ(z).

Example 3.4. (i) We consider the lifting (3.12) for m = 0. First, we note
that QP0

λ(Γ ) can be identified with Mλ(Γ ). Thus we have Ψ(z,X) = ψ0(z)
with ψ0 ∈ Mλ(Γ ), and we see in formula (3.11) that r = k and j = 0, so
that

ψ∗k =
(λ− 1)!

k!(k + λ− 1)!
ψ
(k)
0 ,

(L0δ,λΨ)(z,X) = (λ− 1)!
∞∑
k=0

ψ
(k)
0 (z)

k!(k + λ− 1)!
Xk+δ ∈ Jλ−2δ(Γ )δ.(3.13)

Thus the Jacobi-like form (L0δ,λΨ)(z,X)/(λ− 1)! is the well-known Cohen–
Kuznetsov lifting of the modular form f0 (see e.g. [2]).

(ii) We now consider the case of m = 1. First, for k = 0 we have r = j = 0
in the sum in (3.12), and therefore

ψ∗0 = (λ− 3)
(λ− 4)!

(λ− 3)!
ψ1 = ψ1.

On the other hand, using (3.12) for k ≥ 1, we obtain

ψ∗k =

k∑
r=k−1

k−r∑
j=0

(λ+ 2k − 2r − 3)

×(−1)j(1− k + r + j)!(2k − 2r + λ− j − 4)!

j!r!(2k + λ− r − 3)!
ψ
(j+r)
1−k+r+j
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= (λ− 1)
(λ− 2)!

(k − 1)!(k + λ− 2)!
ψ
(k−1)
0 − (λ− 1)

(λ− 3)!

(k − 1)!(k + λ− 2)!
ψ
(k)
1

+ (λ− 3)
(λ− 4)!

k!(k + λ− 3)!
ψ
(k)
1

= (λ− 1)
(λ− 2)!

(k − 1)!(k + λ− 2)!
ψ
(k−1)
0 − (λ− 2)!(k − 1)

k!(k + λ− 2)!
ψ
(k)
1

=
(λ− 2)!

k!(k + λ− 2)!

(
(λ− 1)kψ

(k−1)
0 − (k − 1)ψ

(k)
1

)
.

Thus it follows that

(3.14) (L1δ,λΨ)(z,X) = ψ1(z)X
δ

+

∞∑
k=1

(λ− 2)!

k!(k + λ− 2)!

(
(λ− 1)kψ

(k−1)
0 (z)− (k − 1)ψ

(k)
1 (z)

)
Xk+δ,

which belongs to Jλ−2δ−2(Γ )δ.

(iii) Let f be a modular form belonging to Mw(Γ ). Then it can be shown
that f ′ is a quasimodular form belonging to QM1

w+2(Γ ) which satisfies

(f ′|w+2γ)(z) = f ′(z) + wf(z)K(γ, z)

for all z ∈ H and γ ∈ Γ . Thus, if we set

Ψ(z,X) = (Q1
w+2(f

′))(z,X) = ψ0(z) + ψ1(z)X

with Q1
w+2 as in (2.25), by using (3.14) for λ = w + 2 we obtain

ψ0 = f ′, ψ1 = wf,

(λ− 1)kψ
(k−1)
0 − (k − 1)ψ

(k)
1 = (w + 1)kf (k) − (k − 1)wf (k) = (k + w)f (k).

Thus

(L1δ,w+2Ψ)(z,X) = wf(z)Xδ + w!

∞∑
k=1

(k + w)f (k)

k!(k + w)!
Xk+δ

= w!

∞∑
k=0

f (k)

k!(k + w − 1)!
Xk+δ,

which belongs to Jw−2δ(Γ )δ. Comparing this with (3.13), we see that the
lifting of the quasimodular polynomial (Q1

w+2(f
′))(z,X) corresponding to

the quasimodular form f ′ is equal to the lifting of the modular form f times
the weight of f .

4. Concluding remarks. We see easily that the kernel of the complex
linear map Πδ

m in (3.6) is equal to Jλ(Γ )δ+m+1. On the other hand, by
Theorem 3.2 the same map is surjective. Thus we obtain a short exact
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sequence of the form

(4.1) 0→ Jλ(Γ )δ+m+1 → Jλ(Γ )δ
Πδ
m−−→ QPmλ+2m+2δ(Γ )→ 0,

where the second arrow represents the inclusion map. Furthermore, from
(3.12) we obtain the map

Lmδ,λ+2δ+2m : QPmλ+2δ+2m(Γ )→ Jλ(Γ )δ

satisfying
(Πδ

m ◦ Lmδ,λ+2δ+2m)Ψ = Ψ

for all Ψ(z,X) ∈ QPmλ+2δ+2m(Γ ). Thus it follows that the short exact se-
quence (4.1) splits.

As we noted in Section 2, if ψ ∈ QMm
λ (Γ ) satisfies (2.24), the functions

ψr are uniquely determined. Since it is known that ψr ∈ QMm−r
λ−2r(Γ ) for

0 ≤ r ≤ m (see e.g. [5]), we can consider the complex linear map

Sr : QMm
λ (Γ )→ QMm−r

λ−2r(Γ )

with 0 ≤ r ≤ m defined by
Sr(ψ) = ψr

for ψ ∈ QMm
λ (Γ ) as in (2.24). Then the formula for the lifting map

L̃mδ,λ : QMm
λ (Γ )→ Jλ−2δ−2m(Γ )δ

in Corollary 3.3 can be written as

(L̃mδ,λψ)(z,X) =

∞∑
k=0

ψ#
k (z)Xk+δ

for ψ ∈ QMm
λ (Γ ), where

ψ#
k =

k∑
r=max(k−m,0)

k−r∑
j=0

(λ+ 2k − 2r − 2m− 1)

× (−1)j(m− k + r + j)!(2k − 2r + λ− 2m− j − 2)!

j!r!(2k + λ− 2m− r − 1)!
(Sm−k+r+jψ)(j+r)

for each k ≥ 0.
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http://dx.doi.org/10.1007/s00209-015-1441-8
http://dx.doi.org/10.4064/aa137-2-4


256 M. H. Lee

[5] F. Martin et E. Royer, Formes modulaires et périodes, in: Formes modulaires et
transcendance, S. Fischler et al. (eds.), Sémin. Congr. 12, Soc. Math. France, Paris,
2005, 1–117.

[6] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math.
Sci. 104 (1994), 57–75.

Min Ho Lee
Department of Mathematics
University of Northern Iowa
Cedar Falls, IA 50614, U.S.A.
E-mail: lee@math.uni.edu

Received on 19.3.2015 (8114)

http://dx.doi.org/10.1007/BF02830874

	1 Introduction
	2 Jacobi-like forms and quasimodular forms
	3 Liftings of quasimodular forms
	4 Concluding remarks
	References

