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Cohen—Kuznetsov liftings of quasimodular forms
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MiIN Ho LEE (Cedar Falls, TA)

1. Introduction. Quasimodular forms generalize classical modular
forms, and they were introduced by Kaneko and Zagier in [3]. For a discrete
subgroup I" of SL(2,R) commensurable with SL(2,Z) and for nonnegative
integers m and A, a quasimodular form ¢ of weight \ and depth at most m
for I' corresponds to holomorphic functions ¢q, ¢1, ..., ¢, on the Poincaré
upper half-plane H satisfying

ere(ia) me e () e ()

for all z € H and (‘; 3) € I'. The functions ¢y are also quasimodular forms
and are determined uniquely by ¢. Thus ¢ determines the corresponding
polynomial

B2, X) = 3 6(2)X"
r=0

of degree at most m in X. Such a polynomial is called quasimodular, and to
study various aspects of quasimodular forms it is often convenient to work
with quasimodular polynomials.

Jacobi-like forms for I" are formal power series which generalize Jacobi
forms, and they were studied by Cohen, Manin and Zagier [2], [6]. It is
known that there is a one-to-one correspondence between Jacobi-like forms
and certain sequences of modular forms. In particular, for a modular form f,
there is a Jacobi-like form f(z, X) corresponding to the sequence whose only
nonzero term is f, which is known as the Cohen—Kuznetsov lifting of f.

Although the coefficient functions of a Jacobi-like form are not modular
forms in general, they are in fact quasimodular forms. There is a surjective
map from the space of Jacobi-like forms to the space of quasimodular poly-

2010 Mathematics Subject Classification: 11F11, 11F50.
Key words and phrases: Cohen—Kuznetsov liftings, quasimodular forms, Jacobi-like forms,
modular forms.

DOI: 10.4064/aal171-3-3 [241] © Instytut Matematyczny PAN, 2015



242 M. H. Lee

nomials, and it was proved in [I] that this surjective map has a right inverse.
This result shows the existence of liftings of quasimodular polynomials to
Jacobi-like forms. For a quasimodular polynomial, the proof of the existence
of its lifting in the above-mentioned paper was carried out by induction on
the degree of the given quasimodular polynomial, and therefore the proof
does not provide a formula for this lifting. The goal of the present paper
is to obtain an explicit formula for such a lifting, which can be regarded
as the Cohen—Kuznetsov lifting of the given quasimodular polynomial or of
the corresponding quasimodular form. Indeed, when the degree of a quasi-
modular polynomial or the depth of the corresponding quasimodular form is
zero, the quasimodular polynomial or form can be identified with a modular
form, and the lifting coincides with the usual Cohen—Kuznetsov lifting of
that modular form.

2. Jacobi-like forms and quasimodular forms. In this section we
review certain properties of Jacobi-like forms studied by Cohen, Manin and
Zagier (see [2] and [6] for details) and their connections with modular forms
and quasimodular forms. We also describe quasimodular polynomials, which
correspond to quasimodular forms.

Let ‘H be the Poincaré upper half-plane, and let F be the ring of holo-
morphic functions on H that are bounded by powers of
|22 +1
Im(z)

We denote by F[[X]] the complex algebra of formal power series in X with
coefficients in F. If § is a nonnegative integer, we set

(2.2) FlIXNs = X FIIX]),
so that an element &(z, X) € F[[X ]]5 can be written in the form

(2.3) Z o (2) XFH0

with ¢ € F for each k > 0. Given such @(z, X) € F[[X]]s and a nonnegative
integer A\, we consider two other formal power series

(62.59)(2, X), (%25P)(2, X) € F[[X]ls

(2.1)

defined by
(2.4) (Gr5P)(2, X) Z¢S )X,

(2.5) (Tr5P) (2, X) Zgﬁ% DG
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where
- 1 (r)
6_ r
(2:6) Ok _;r!(2k+25+)\—7‘—1)!¢k_7"’
k
C(2k+204+A—r—2)!
oF = 2+ 2+ 2 - 1) (-1 - Lo,

r=0
for each k£ > 0.

We now turn to the usual action of the group SL(2,R) on H by linear
fractional transformations, so that

L az+b
= cz+d
for all z € H and v = (‘é fl) € SL(2,R). For the same z and =, by setting
J(v,2)=cz+d, R(v,2) = czid’

we obtain the maps J, 8 : SL(2,R) x H — C which satisfy

I, 2) =31 Y230 2),  R(A2) =3, 22RO, 2) — (Y, 2))
for all 2 € H and ~,+ € SL(2,R).

Given a function f € F, a formal power series #(z, X) € F[[X]], a non-
negative integer A, and an element v € SL(2,R), we set

(fIan)(2) =3, ) f(2),

(2.7) (D137) (2, X) = J(v, 2) e M0 XD(y2, 3 (v, 2) 72 X),
(2.8) (@13 V) (2, X) =3(7,2) D(v2,3(v,2)*X)
for z € H.

PROPOSITION 2.1. The maps Sy 5,%ns : Fl[X]ls = F[[X]]s given by
(2.4) and (2.5) are complex linear isomorphisms with

(2.9) (Ths) ' =Gy

Proof. This is a slightly modified version of a result that follows from
the equivalence of (4) and (5) in Proposition 2 of [2] and can be proved in
a straightforward manner. u

If o and v are integers with v > 0, we note that a function f € F satisfies

dv - ! <a +v— 1> Ay, 2)V "

(2.10) dzy(flw)(Z)ZZ(—l)y r\ v—r )3y, z)ot
r=0 ’

for z € H and v € SL(2,R) (see [2, (1.9)]). The next proposition shows the
SL(2, R)-equivariance of the maps & 5 and T 5.

FO(v2)
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PROPOSITION 2.2. The isomorphisms Sy s5,%xs :+ F[[X]ls = F[[X]]s
satisfy
(2.11) (GrsD) 37 = G s(P1A7),
(Trs@)N' Y = Tas(P[37)
for each v € SL(2,R) and &(z, X) € F[[X]]s.

Proof. Since T 5 is the inverse of &) 5 by (2.9), it suffices to prove the
relation (2.11)). Given v € SL(2,R) and &(z, X) € F[[X]]s as in (2.3)), using
(2.4) and (2.7), we have

((62,52)157)(2, X)
= 3y, 2) <Z (TI!)’“ TXT> (Z o8 2‘5*25X”5)

2 <_r!)r‘7 (7,2) R R(y, 2) 0F (v2) X

© k r
=33 E ey 2o () x4

Thus we may write

((6252)157) (2, X) Z&G )X F+o

I, 2) TRy, 2) B (2)

— r— r (€
kZT 30, &) a0y 2700 (r2)
o P02k —2r + 26+ A — £ — 1) ’

where we used On the other hand, from (2.8) we obtain

(P13 (2, X) =3(v, AZm y2)3(y, 2) 2 ROX

[oe)
= (Srlrsorsr2s7)(2) XY
k=0

hence we see that

o0
(Sr5( @11 (2, X) = 3 nS(2) X+,
k=0
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where
k

1
771?(2) = Zo " 1) (‘bkfr‘)\+2k72r+25'7)(r) (2).

A+ 2k + 26
However, using ([2.10]), we have

(¢k—r!A+2k art257) " (2)

_Z Tgr'()\+2k—7’+26—1> Ry, 2)"~

(0)
R 3(7, 2) 2k 2r+26+2€¢k r(72)-

Thus it follows that

Z Z ( 1)r—€
e N = 02k = 2r + 25+ A+ £ = 1)
r—{
J(, Z?’Ez;’j)%ﬂaﬁg ¢, (72)
oo =DM+ 2k —2r + 20+ £ 1))
ﬁ(% )7’ 14 ®

3(v, z) 2k srra57at Ph—r (17):

Changing the index r to r + ¢, we get
k—t ,
(1)
Ori(N+2k —2r +25 — 0 —1)!

R(v,2)"
x 3(7’2))\+2k72r+26¢k 0—r(72).

Comparing this with , we see that
& =y
for each k£ > 0, and therefore follows. =
We now consider a discrete subgroup I" of SL(2,R) commensurable with
SL(2,Z). Then a modular form of weight \ for I' is a holomorphic function
f € F satisfying
fvy=rf
for all v € I'. We denote by M, (I") the space of such modular forms.
REMARK 2.3. For the growth condition at the cusps we note that the

functions belonging to F are bounded by powers of the quotient in (2.1J).
This condition was suggested by Cohen, Manin and Zagier [2].
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DEFINITION 2.4.

(i) A formal power series ®(z,X) € F[[X]] is a Jacobi-like form of
weight X for I' if it satisfies

(P37)(2, X) = &(2, X)

forall z€ H and vy € I'.
(ii) A formal power series ¢(z, X) € F[[X]] is a modular series of weight
A for I' if it satisfies

(@13'7)(2, X) = &(z, X)
forall ze Hand ye I

We denote by Jy(I") and My(I") the spaces of Jacobi-like forms and
modular series, respectively, of weight A for I". We see easily that &(z, X)
in (2.3)) belongs to M (I") if and only if

O € Mopyosia(I)

for each k& > 0. Given a nonnegative integer ¢, let Jx(I")s and My(I")s
denote the subspaces of J)(I") and M (I"), respectively, defined by

H(D)s = (D) NF[[X]]s,  Ma(I)s = ML) N F[[X]]s,

where F[[X]]5 is as in (2.2]). Then by Proposition the automorphisms
G5 and T 5 of F[[X]]s induce the isomorphisms

(2.13) Gro : Ma(I)s = In(L)s,  Zas: In(I)s = Ma(I)s
with
(2.14) Grs =Ty s

We note that this result provides a slight variation of the correspondence
between Jacobi-like forms and sequences of modular forms established by
Cohen, Manin and Zagier in [2, Proposition 2].

We now fix a nonnegative integer m and denote by F,,,[X] the complex
vector space of polynomials in X over F of degree at most m. If X\ is a
nonnegative integer and

m

(2.15) U(z,X) =Y ¢n(2)X" € FnlX],

we set w

(2.16) (T3 7)(z X) = i(wrle)(z)Xﬁ

(2.17) (@ a7)(z, X) = f;i 2) (2, 3(7,2) (X — (7, 2)))

for all z € H and v € SL(2,R).
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If a polynomial ¥(z,X) € F,[X] is as in (2.15) and if A > 2m, we
introduce two additional polynomials

(X)) (2, X), (AX'WP) (2, X) € Fm[X]

defined by

(2.18) (EyW)(z, X) =) yi= ()X,  (AYW)(z Zw
r=0

where

m= 1 1 ()
e = Z SN —2r —j — 1)!%4*1’

(219) ™A= (A4 2r —2m —1)

xzr:(_,l)j( —r+)2r+X=2m—j—2)! w(j)

= e
for each r € {0,1,...,m}. These formulas determine isomorphisms
(2.20) EV AN Fol X — Fn [ X
with

(AX) ™ = =X,
and they are known to satisfy
(2.21) (EFD) )2, X) = ER (T R_om) (2, X),
(2.22) (AXD) Rz (2, X) = AT (P [A7) (2, X)

for all ¥(z, X) € F,,[X] and v € SL(2,R) (see [4]).

DEFINITION 2.5. Let I' be a discrete subgroup of SL(2,R) commensu-
rable with SL(2,Z) as before.

(i) A modular polynomial for I' of weight X\ and degree at most m is an
element F'(z, X) € F,,[X] satisfying

Fl{y=F
forally e I'.

(ii) An element ¥(z, X) € F,,[X] is a quasimodular polynomial for I" of
weight X\ and degree at most m if it satisfies

Py =¥
forall y € I'.

We denote by MPY'(I") and QPY'(I") the spaces of, respectively, modular
polynomials and quasimodular polynomials for I" of weight A and degree at
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most m. From (2.21) and (2.22) we see that the maps Z{* and A} induce
the isomorphisms

(2.23)  EX": MPYLL,,, (1) — QPYX(D),  AY: QPY'(I') — MPYL,,,(I')
for each integer A > 2m.

DEFINITION 2.6. An element ¢ € F is a quasimodular form for I' of
weight A and depth at most m if there are functions vy, ..., ¥,, € F satisfy-
ing

(2.24) () (= Zwr

for all z € H and v € I'. We denote by QMY'(I") the space of such quasi-
modular forms.

If ¢ € QMY (I") satisfies (2.24)), it can be shown that the functions ),
are uniquely determined; hence we can consider the map

QX - QMY(I) = Fim[X]
defined by

(2.25) (QF ) (2, X) lejr

In fact, it is also known that this map determines an isomorphism
(2.26) QX' : QMY'(I') — QPY'(I),

whose inverse is given by

(2.27) (QX) ' (2, X) = 4o

for ¥(z, X) € QPY(I") as in (see [I).

3. Liftings of quasimodular forms. In this section we obtain an
explicit formula for a lifting of a quasimodular polynomial to a Jacobi-like
form whose existence was proved in [I]. Since quasimodular forms correspond
to quasimodular polynomials, the same formula also determines a lifting of
a quasimodular form to a Jacobi-like form, which generalizes the Cohen—
Kuznetsov lifting of a modular form.

Let F[[X]]s and F,,[X] with d,7m > 0 be as in Section [2, and consider
two surjective complex linear maps

(3.1) I, I3, FI[X]ls — FulX]
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defined by

(32) (TS 8)(,X) = Zm ()X,
r=0

(33) (38)(2,X) = 3 6,(2)X"
r=0

for a formal power series of the form
(3.4) B(z,X) =Y dr(2) X" € F[X])s.
k=0

PROPOSITION 3.1. For each nonnegative integer \ the diagram

FIX, —%  FlX)s

) Jo¢

Am
]:m[X] M) Fm[X]

m

Ny25r2m are the isomorphisms in Proposition

commutes, where Ty 5 and A

and (2:20).
Proof. Given a formal power series &(z,z) € F[[X]]s as in (3.4), from
(2.5) and (3.3) we obtain

(1, 0 Tr5)P) (2, X) =Y ¢ (2) X",

r=0
where
: (2r 4+ AN+20—5—2)
6% = (2r+A+25—1)Z(—1)J( rrarse sy ) o
’ 4!
7=0
for 0 < r < m. On the other hand, if we set
~ 1
¢k = Hﬁbm—kz
for 0 < k < m, from (2.18)) and (3.2)) we see that
(A 9512m 0 TT)®) (2, X) = > ¢ (2) X7,
r=0
where
m,/A . (_1)j . . 7(7)
ot = (A4+26+2r—1) S (m+r+)12r+A+20—37-2)l¢,,7,
; J!
7=0
with

() _ 1 G
m=rti (m—r+j)! =i
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for 0 < j <r < m. Thus we have

&y = o
for 0 < r < m, which implies that
(3.5) ]AL‘; °0%Ths = AT+25+2m o Hfm

hence the proposition follows. =

The surjective maps 1T, and 1%, in (3.1) are in fact equivariant with

respect to the SL(2,R)-actions in (2.7]), (2.8), (2.16) and (2.17) in such a

way that

15, (D[37) = II3,(®)lrs2m2s7, 3PN ) = I3, (D)X, 057
for all &(z,X) € F[[X]] and v € SL(2,R) (cf. [1]). Thus, if I" is a discrete
subgroup of SL(2,R) considered in Section they induce the complex linear
maps
(3.6) I, : Ta(I)s = QPYyonuas(I),  If, s MA(I)5 — MPY ().
Hence we obtain the commutative diagram

A 2 M)

H’V&TL J/ l 7TL

AP s
QP g5 g (I') —222 MPY, os(I)

for each nonnegative integer \.
We now consider the natural embedding

&' FmlX] = FIX]]s

defined by

(3.7) (EMw)(z, X) Zwk yXxk+o
for

(3.8) U(z,X)= iwr(z)XT € FnlX],
where ~

~ [y for 0 <k <m,
Vi = { 0 fork>m.

Then we easily see that it induces an embedding
(3.9) &' MPY (1) — Mi_25(I")s
of modular polynomials into modular series satisfying
(3.10) (II? 0 EF)W (2, X) = ¥(z, X)
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for all ¥(z, X) € MPY'(I"). Given A > 2m, we now define the linear map
L5y - Fm[X] = F[[X]l5
by setting

(E Z qu Xk+5

for ¥(z,X) € Fi[X] as in (3.8)), Where

k k—r
(311) Yp= > > (A+2%k—2r—2m—1)
r=max(k—m,0) j=0
(1) (m—k+r+ )12k —2r+Xx—2m—j—2)! (jir
X . Uk
g2k 4+ X =2m —r—1)! m=Rk+r+]

for each k£ > 0.

THEOREM 3.2. The map Eg:g\ induces a lifting
(3.12) L5 2 QPY(I) = Tr—26-2m(I)s
of quasimodular polynomials to Jacobi-like forms such that

(T2, 0 L)) (2, X) = W (2, X)

for all ¥(z,X) € QPY(I).

Proof. From , and we obtain the following sequence of
maps:

Sr—25—2m,s

Am gm
QPY(I) =2 MPY" 5, (') = My _25_2m(I)s In—26—2m(I)s.

We shall first show that the composite of these maps coincides with L.
Given a quasimodular polynomial

U(z,X) = ¢(2)X" € QPY(D),

r=0

using (2.18)) and (3.7)), we have

(&0 AYD) (2, X) =D () XM € Ma_as_om(D)s
k=0
with
e = {wzn’/l for 0 <k <m,
0 for k > m,

where w;n’/l is as in (2.19). From this and ( we see that

((Gr—25-2ms0 & 0 AT 21/1 )XHH0 € Ty_a5—am(I)s,
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where
k

v _ 1 (r)
Vi = rz:;] r!2k+A=2m—r— 1)!77]“_7“

k
- Y 1 ()
rl(2k + X —2m —r — 1)1 kT

r=max(k—m,0)
for each k£ > 0. Noting that
O = (N + 2k — 2r — 2m — 1)

k—r i
—1)J , . j
% § 0: ( i (m—k+r+)!2k—2r+X—2m—j— 2)!¢££lk+r+j
j:

by (2.19)), we obtain
L5 = 625 2ms 0 & o A"
On the other hand, from (3.5 we see that
113, 0 Ty _95-9ms = AV o IT3,.
Using this, (2.14]) and (3.10)), we have
(I, 0 LEN)P) (2, X)
= (((Ag\n)—l o an (e] z)\_g(;_gm’(g (o] [{{L)\)W) (Z, X)
= (A5t o I, 0 Tr 252, © Gr-25-2m,5 0 &5 0 AT W) (2, X) = ¥ (2, X)
for all ¥(z, X) € QPY'(I"); hence the proof of Theorem 3.2 is complete. m

In order to describe the lifting in the previous theorem in terms of quasi-
modular forms, we consider the map

70 IND)s = F
for each nonnegative integer n defined by
712(@) = ¢n
if ®(z,X) € J\(I)s is given by (3.4). Then 7 (P) is the constant term in
the quasimodular polynomial (II;®)(z, X) € QPY, 95,5,(I") and therefore

is a quasimodular form belonging to QM4 95,0, (I") by ([2:27). Thus =)
determines the map

é
T = )5 = QM3 o510, (1)
Given a nonnegative integer m, we now introduce the map Zg”b)\ defined by
o = L5 0 QX - QMY'(I") — F[[X]]s,
where QY is the isomorphism in (2.26]).
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COROLLARY 3.3. The map Eg’f)\ induces a lifting

L5 = QME(T) = Tr-as-am(D)s
of quasimodular forms to Jacobi-like forms such that
(0 LT (W) = ¢
for all p € QMY'(I).

Proof. This follows from Theorem [3.2] and the fact that the coefficient
of X™ in the Jacobi-like form

(LEA) (2 X) = (L 0 QX)) (2 X) € Ta-25-2m(D)s

coincides with the constant term in the quasimodular polynomial

(QX')(z, X) € QPY (D),
which is equal to 1 (z). =

EXAMPLE 3.4. (i) We consider the lifting (3.12) for m = 0. First, we note
that QP (I") can be identified with M (I"). Thus we have ¥(z, X) = 1 (z)
with ¢y € M,(I"), and we see in formula (3.11)) that » = k and j = 0, so
that

e (A=DYwy
k= El(k+ A — 1)!1”0 ’
(3.13)  (L3,\P)(z X) —1)! Z o k+A_ ol 0 Xk e Ty 9s(D)s.

Thus the Jacobi-like form (£g7/\y7)(z, X)/(A—1)!is the well-known Cohen—
Kuznetsov lifting of the modular form fy (see e.g. [2]).

(ii) We now consider the case of m = 1. First, for k = 0 we have r = j = 0

in the sum in (3.12)), and therefore

(A —4)!
(A—3)!

On the other hand, using (3.12)) for £ > 1, we obtain

Yo =(A=3) 1 = 1.

o

k
= > Y (A +2k—2r-3)
=k—1j

<3

T

<.
Il
o

= DI(1—k+r+)2k—2r+X—j— )wm)
2k + A —r — 3)! I—ktr+j
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=A== ()'A(k +)A - (- ) 1()?(;3); S_—
+ (A - 3)}% (")
R Ee e U e
N kﬂ(]g;):)?z!z)!(()‘ — DY — (k= 1),

Thus it follows that
(3.14)  (L5,0)(2,X) =1(2)X°

2 M (= Dkl (2) = (b = D)y (2)) X4,
k=1

which belongs to Jx_25—2(I")s.
(iii) Let f be a modular form belonging to M,,(I"). Then it can be shown
that f is a quasimodular form belonging to QM,,,,(I") which satisfies

(flwr2m)(2) = f'(2) + wf(2)R(7, 2)
for all z € H and v € I'. Thus, if we set
¥(z, ) (Quoa(f ))(z,X) = tho(z) + 1 (2) X
with Q}HQ as in , by using for A = w + 2 we obtain
wo = f,a ¢1 = wfa
A= Dk = (k= 19" = (w+ DRF® — (k= Dwf® = (k +w)f®.
Thus

[e.e]

k‘—i-w k+5

e )
Xk+5
Zk'k—i—w—l ’

which belongs to J,_25(I")s. Comparing this with , we see that the
lifting of the quasimodular polynomial (QL . ,(f"))(z, X) corresponding to
the quasimodular form f’ is equal to the lifting of the modular form f times
the weight of f.

4. Concluding remarks. We see easily that the kernel of the complex
linear map I7%, in (3.6) is equal to Jx(I")ssmi1- On the other hand, by
Theorem the same map is surjective. Thus we obtain a short exact
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sequence of the form

(A1) 0= BDhsimin = s 725 QP gmyas(I) =0,
where the second arrow represents the inclusion map. Furthermore, from
we obtain the map
E%+25+2m s QP os0m (1) — Ia(I)s
satisfying
(ng ° Lg?)\+25+2m)gp =V
for all ¥(z,X) € QPY, 9549, (). Thus it follows that the short exact se-

quence splits.

As we noted in Section (2] ' if ¢ € QMY'(I") satisfies , the functions
1, are uniquely determined. Since it is known that ¢r € QMY (I') for
0 <r <m (see e.g. [5]), we can consider the complex linear map

S, - QMY (1) — QM (1)
with 0 < r < m defined by
S, (¥) =¥y
for ¢ € QMY (I") as in (2.24). Then the formula for the lifting map
L - QME(D) = Ta-as—am(D)s
in Corollary [3.3] can be written as

( 1/} z, X Z Q,Z) Xk+5
k=0

for ¢ € QMY (I"), where

k k—r
vit= Y Y O+2%—2r—2m-1)

r=max(k—m,0) j=0

(=) (m—k+r+ )2k —2r+X—2m—j—2)! (G+r)
8 2k + A —2m —r —1)! (Smtrsj )

for each k£ > 0.
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