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1. Introduction. We continue our study, initiated in [3], of the system
of equations

(1) xyz = 1 and x+ y + z = k,

with k ∈ Z and x, y, z algebraic integers in a field of degree at most four
over Q. Easily, the only solutions with x, y, z ∈ Q are (1, 1, 1) for k = 3
and (1,−1,−1) and its permutations for k = −1. In [3], we define, for each
k 6= 3, the related elliptic curve

(2) Ek : Y 2 = 1− 2kX + k2X2 − 4X3,

and determine all solutions to the system (1) with k ∈ Z such that |Ek(Q)|=3.

In this work, we extend the results to include k = −1 and k = 5, and
prove that this, then, solves the problem for all k with Ek(Q) finite. (Note
that k = 3 is excluded from consideration since, for each t ∈ Q, the point
(−t(t+ 1), t3 + (t+ 1)3) is in E3(Q), and thus E3(Q) is infinite.)

We begin with notation and some basic results from [3] and from Brem-
ner’s paper [2] that inspired this work. Let F be an algebraic number field
with [F : Q] ≤ 4. Let OF be its ring of integers. Fix k ∈ Z and let
(x, y, z) ∈ O 3

F be a solution to the system of equations given in (1). Without
loss of generality (permuting, if necessary), assume that x is of norm 1. As
explained in [3], letting xP = 1/x and yP = ±

√
1− 2k/x+ k2/x2 − 4/x3

(choosing either square root) yields a point P = (xP , yP ) on the curve (2),
with xP , yP ∈ OF and xP a unit of norm 1.

Conversely, given a point (xP , yP ) on Ek with xP , yP ∈ OF and xP a unit
of norm 1, letting
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x = 1/xP ,

y = (k − 1/xP + yP /xP )/2,(3)

z = (k − 1/xP − yP /xP )/2

yields a solution (x, y, z) to (1), with x, y, z ∈ OF and x a unit of norm 1.

As usual, two solutions given by permuting coordinates are considered
to be equivalent. Recall from [3] that the automorphism ϕ : Ek(F )→ Ek(F )
defined by ϕ(X,Y ) = (X,−Y ) fixes equivalence classes of solutions to (1).

In Section 2, we prove that for k ∈ Z, if Ek(Q) is finite, but not of or-
der 3, then k ∈ {−1, 5}. Thus, since [3] settled the case |Ek(Q)| = 3, in
order to completely solve the problem for all k with Ek(Q) finite, it suffices
to consider only the cases with k ∈ {−1, 5}.

In Section 3, we find all solutions to the system of equations (1) with
(x, y, z) ∈ O 3

F where [F : Q] ≤ 3 and k ∈ {−1, 5}. Finally, in Section 4, we
solve the case where [F : Q] = 4. In each of these sections, we again follow
the ideas set out by Bremner [2], but we focus on what is different from the
cases addressed in [3], quoting results from that work instead of reproving
what is already known.

2. Ek(Q) finite, but |Ek(Q)| 6= 3. A direct calculation using Magma [1]
shows that

E−1(Q) = {O, (0, 1), (0,−1), (−1, 2), (−1,−2), (1, 0)},(4)

E5(Q) = {O, (0, 1), (0,−1), (2, 7), (2,−7), (1/4, 0)}.(5)

In this section, we prove the following theorem.

Theorem 2.1. Let k∈Z−{−1, 5}. Then Ek(Q) is infinite or |Ek(Q)|=3.

Proof. Let k ∈ Z− {−1, 5} be such that Ek(Q) is finite. Since, as noted
in the introduction, this means that k 6= 3, Ek is an elliptic curve. Beginning
with equation (2), we multiply by 16 and substitute −X/4 for X and Y/4
for Y to obtain

(6) E∗k : Y 2 = 16 + 8kX + k2X2 +X3.

Clearly E∗k (Q) ∼= Ek(Q) and so E∗k (Q) is finite.

Note that S∗k = {(0, 4), (0,−4),O} is a cyclic subgroup of E∗k (Q) and
thus 3 | |E∗k (Q)|. By Mazur’s theorem, it follows that |E∗k (Q)| ∈ {3, 6, 9, 12}.

Suppose there is a point of order 2 in E∗k (Q), say (x, y). Then y = 0 and
so 16 + 8kx + k2x2 + x3 = 0. By the Nagell–Lutz theorem, x ∈ Z and so
x | 16. Evaluating at each factor of 16 and solving for k, we get values of k
not in Z, except when x = −1 and x = −4, for which k is 3 or 5 and 3
or −1, respectively. Since these values of k have been excluded, we see that
E∗k (Q) has no points of order 2. Thus |E∗k (Q)| ∈ {3, 9}.
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Suppose that |E∗k (Q)| 6= 3. Then, again by Mazur’s theorem, E∗k (Q)
∼= Z/9Z. Let P = (x, y) ∈ E∗k (Q) be a point of order 9. Since S∗k is the
only subgroup of E∗k (Q) of order 3, we have 3P ∈ {(0, 4), (0,−4)}. So, let-
ting 3P = (x3, y3) yields that x3 = 0.

Since P is of order 9, we know that P is a finite point with x 6= 0
(otherwise P is of order 3) and y 6= 0 (otherwise P is of order 2). Using the
duplication and addition formulas, we find that x3 = 0 if and only if either

64 + 16kx− 12x2 − 4kx2 + x3 = 0

or

4096 + 2048kx+ 768x2 + 256kx2 + 256k2x2 + 128x3 + 192kx3

+ 64k2x3 + 144x4 − 16kx4 + 16k2x4 + 12x5 + 4kx5 + x6 = 0.

Again, since x ∈ Z, there are a finite number of possible x-values for each
equation. Checking each possible x-value in the first equation and solving
for k, we find no values for k in Z, a contradiction. Doing the same for the
second equation, we find values for k that are not in Z, except for x = −4,
for which we get k = 3. Thus in no case under consideration do we get a
point of order 9.

Hence E∗k (Q) ∼= Z/3Z, and therefore Ek(Q) ∼= Z/3Z.

3. Solutions with [F : Q] ≤ 3. We begin by finding all elements of
Ek(F ) for F a quadratic number field and k ∈ Z with Ek(Q) finite. This
result will be used in the proofs of both Theorem 3.1 and Theorem 4.2.
The first two parts of the following lemma are from [3, Lemma 1], where
it is shown that, if |Ek(Q)| = 3, then these are the only solutions. Thus,
by Theorem 2.1, the only possible additional solutions are for k = −1 or
k = 5.

3.1. Solutions with [F : Q] = 2

Lemma 3.1. Let k ∈ Z be such that Ek(Q) is finite and let [F : Q] = 2.
If P = (xP , yP ) ∈ Ek(F ) is a finite point, then, for some t ∈ Q, at least one
of the following holds:

(i) xP = t and ±yP =
√

1− 2kt+ k2t2 − 4t3;
(ii) x2P + t(t− k)xP + t = 0 and ±yP = (2t− k)xP + 1;

(iii) k = −1 and either

(a) x2P +(t2−t−1)xP +t(t+1) = 0 and ±yP = (2t−1)xP +(2t+1),
t 6= 0,−1, or

(b) x2P +(t2−t+1)xP−t(t−1) = 0 and ±yP = (2t−1)xP−(2t−1),
t 6= 0, 1;
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(iv) k = 5 and either

(a) x2P +(t2+3t−2)xP−t(2t−1) = 0 and ±yP = (2t+3)xP−(4t−1),
t 6= 0, 1/2, or

(b) x2P +(t2−6)xP − (t2/4−1) = 0 and ±yP = 2txP − t/2, t 6= ±2.

The proof is similar in form to that of [3, Lemma 1], so we omit many
details, particularly where there is overlap.

Proof. If xP ∈ Q, then it is immediate that (i) holds. So we assume that
xP /∈ Q. Let P = (xP , yP ) be the conjugate of P over Q and let L be the line
passing through P and P . Since L is fixed under conjugation over Q, the
coefficients of its equation are rational. Let Q be the third point in Ek ∩ L.
Then Q ∈ Ek(Q) and, since xP /∈ Q, Q is a finite point.

If Q = (0, 1) or (0,−1), we get the solutions in (ii). The only other
possibilities are when k = −1, in which case, by equation (4), we have
Q = (−1,±2) or Q = (1, 0), and when k = 5, in which case, by equation (5),
we have Q = (2,±7) or Q = (1/4, 0).

If k = −1 and Q = (−1, 2), the x-coordinates of the points of E−1 ∩ L
satisfy the equation 1 + 2x + x2 − 4x3 = (mx + m + 2)2 for some m∈Q.
Simplifying and removing the factor of x + 1, we find that xP satisfies
4x2 + (m2 − 5)x + m2 + 4m + 3 = 0. Letting m = 2t − 1 yields (iii)(a).
The case Q = (−1,−2) yields these same solutions, up to equivalence.

Similarly, if k = −1 andQ = (1, 0), we get the equation 1+2x+x2−4x3 =
(mx−m)2 for some m ∈ Q, and so 4x2 + (m2 + 3)x+ (−m2 + 1) = 0. Again
letting m = 2t− 1, we get (iii)(b).

Following the same method, if k = 5 and Q = (2, 7), the x-coordinates
of the points of E−1 ∩ L satisfy 1− 10x+ 25x2 − 4x3 = (mx− 2m+ 7)2 for
some m ∈ Q. Letting m = 2t+ 3 leads to (iv)(a). If k = 5 and Q = (2,−7),
we obtain a permutation of (iv)(a), and if k = 5 and Q = (1/4, 0), then
(iv)(b) follows.

We now use Lemma 3.1 to find all solutions to (1) in rings of integers of
quadratic number fields.

Theorem 3.1. Let k ∈ Z be such that Ek(Q) is finite and let [F : Q] = 2.
The equations x + y + z = k and xyz = 1 have simultaneous solutions
(x, y, z) with x, y, z ∈ OF in exactly the following instances, allowing for
permutations of x, y, z:

(i) F = Q(ν) with ν2 = k2 − 2k − 3, and

(x, y, z) = (1, (k − 1 + ν)/2, (k − 1− ν)/2);

(ii) F = Q(ν) with ν2 = k2 + 2k + 5, and

(x, y, z) = (−1, (k + 1 + ν)/2, (k + 1− ν)/2);
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(iii) k = 5, F = Q(
√

2), and

(a) (x, y, z) = (3 + 2
√

2, 1−
√

2, 1−
√

2), or
(b) (x, y, z) = (3− 2

√
2, 1 +

√
2, 1 +

√
2).

Proof. It is easy to verify that each of these is a solution. Further, for
k /∈ {−1, 5}, Theorem 2.1 and [3, Theorem 2.2] show that (i) and (ii) give
all of the solutions. Thus, we assume that (x, y, z) ∈ O 3

F is a solution to (1),
with corresponding point P = (xP , yP ) ∈ Ek, and that k = −1 or k = 5.

If one of x, y, z, say x, is rational, then xP = x = ±1 and so yP =
±
√
k2 − 2k − 3 or ±

√
k2 + 2k + 5, yielding (i) and (ii). So now we assume

that none of x, y, z is rational and, without loss of generality, thatNF (x) = 1.
Note that P must have one of the forms given in (ii)–(iv) of Lemma 3.1.

If P is of the form in Lemma 3.1(ii), then t = 1 and a direct calculation
yields that y = 1 or z = 1, a contradiction. If P is as given in Lemma 3.1(iii)
or (iv)(a), it is impossible to have both N(xP ) = 1 and t ∈ Q.

Finally, if P is as given in 3.1(iv)(b), then k = 5 and, since N(xP ) = 1,
we have t = 0. So x2P − 6xP + 1 = 0 and yP = 0, yielding the solutions in
part (iii) of the theorem.

3.2. Solutions with [F : Q] = 3. Our results of this case are summa-
rized in the following theorem.

Theorem 3.2. Let k ∈ Z be such that Ek(Q) is finite and let [F : Q] = 3.
The equations x + y + z = k and xyz = 1 have simultaneous solutions
(x, y, z) with x, y, z ∈ OF in exactly the following instances, allowing for
permutations of x, y, z:

(i) F = Q(µ) with µ a fixed root of X3− (k+1)X2 +(k+2)X−1 = 0,
and

(x, y, z) = (µ2 − (k + 1)µ+ (k + 2), µ− 1,−µ2 + kµ− 1);

(ii) F = Q(µ) with µ a fixed root of X3 + (k+ 3)X2 + kX − 1 = 0, and

(x, y, z) = (µ2 + (k + 3)µ+ k,−µ− 1,−µ2 − (k + 2)µ+ 1);

(iii) for k = −1,

(a) (x, y, z) = (1,−1,−1);
(b) F = Q(ρ) with ρ a fixed root of X3 + 9X2 −X − 1 = 0, and

(x, y, z) = (ρ2 + 9ρ− 1,−(ρ2 + 10ρ+ 3)/2,−(ρ2 + 8ρ− 3)/2);

(iv) for k = 5,

(a) F = Q(σ) with σ a fixed root of X3 − 6X2 + 5X − 1 = 0, and

(x, y, z) = (σ2 − 6σ + 5,−2σ2 + 11σ − 3, σ2 − 5σ + 3);

(b) F = Q(σ) with σ a fixed root of X3 + 4X2 −X − 1 = 0, and

(x, y, z) = (σ2 + 4σ − 1,−2σ2 − 7σ + 5, σ2 + 3σ + 1).
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Proof. As before, it is straightforward to verify that each of these is a
solution. If x, y, z ∈ Q, then, since k 6= 3, the solution in (iii)(a) follows. As
in the proof of [3, Theorem 2.3], we can thus assume that (x, y, z) ∈ O 3

F is
a solution with x, y, z ∈ F −Q and NF (x) = 1.

Again, let P = (xP , yP ) be the point on Ek corresponding to the solution
(x, y, z). Let C : dy = px2 + qx + r be the quadratic curve going through
P and its two conjugates, with d, p, q, r ∈ Z, d 6= 0, and gcd(d, p, q, r) = 1.
Then the x-coordinates of the points of Ek(F ) ∩ C satisfy

(7) p2x4+(2pq+4d2)x3+(2pr+q2−k2d2)x2+(2qr+2kd2)x+(r2−d2) = 0.

The six elements of Ek(F ) ∩ C are P , its two other conjugates, two in-
finite points, and another point, Q. Since Q is fixed under conjugation,
its coordinates are rational. As shown in the proof of [3, Theorem 2.3], if
Q ∈ S = {O, (0, 1), (0,−1)}, we find the solutions in (i) and (ii) of this
theorem. It remains to consider each of the remaining points in Ek(Q) for
k = −1 and 5. Assume without loss of generality that p > 0.

• If k = −1 and Q = (−1,±2), evaluating equation (7) at x = −1 yields

(8) p2 − 2pq + 2pr + q2 − 2qr + r2 − 4d2 = 0.

Removing the factor of x + 1 from (7), we find that xP is a root of p2x3 +
(−p2 + 2pq + 4d2)x2 + (p2 − 2pq + 2pr + q2 − 5d2)x + (−p2 + 2pq − 2pr −
q2 + 2qr + 3d2) = 0. Since xp is an algebraic integer of norm 1, we have

p2 | (−p2 + 2pq + 4d2),(9)

p2 | (p2 − 2pq + 2pr + q2 − 5d2),(10)

p2 = −(−p2 + 2pq − 2pr − q2 + 2qr + 3d2).(11)

Combining (8) and (11) yields

(12) p2 + r2 − d2 = 0.

Suppose, for a contradiction, that p 6= 1. Let ` be a prime factor of p. If
` | d, then by (10), ` | q and so by (8), ` | r. But this contradicts the fact that
gcd(d, p, q, r) = 1. So ` - d. Thus, by (9), p | 4 and so ` = 2. Further, since
` = 2 does not divide d, (9) implies that p 6= 4. Hence, p = 2. Since d is odd,
considering (12) modulo 8 yields a contradiction.

Therefore, p = 1 and, by (12), r = 0 and d = ±1. From (11), q2− 2q− 3
= 0. If q = −1, then xP is rational, a contradiction. So q = 3 and the
solution in (iii)(b) follows.
• If k = −1 and Q = (1, 0), then evaluating (7) at x = 1 gives us

(13) p2 + 2pq + 2pr + q2 + 2qr + r2 = 0.

Removing the factor of x−1 from (7), we see that xP is a root of p2x3+(p2+
2pq+4d2)x2+(p2+2pq+2pr+q2+3d2)x+(p2+2pq+2pr+q2+2qr+d2) = 0.
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As in the previous case, since xP is an algebraic integer of norm 1, we have

p2 | (p2 + 2pq + 4d2),(14)

p2 | (p2 + 2pq + 2pr + q2 + 3d2),(15)

−p2 = p2 + 2pq + 2pr + q2 + 2qr + d2,(16)

and combining (13) and (16) yields

(17) r2 − d2 = p2.

Again, suppose that ` is a prime factor of p and note that if ` | d, then
by (15), ` | q and so by (13), ` | r, contradicting the fact that gcd(d, p, q, r)
= 1. So ` - d and, by (14), ` = 2 and 4 - p. Hence, p = 1 or 2. But this
contradicts (17), since d 6= 0.

• If k = 5 and Q = (2,±7), evaluating (7) at x = 2 yields

(18) 16p2 + 16pq + 8pr + 4q2 + 4qr + r2 − 49d2 = 0.

Removing the factor of x−2 from (7), we see that xP is a zero of p2x3+(2p2+
2pq+4d2)x2+(4p2+4pq+2pr+q2−17d2)x+(8p2+8pq+4pr+2q2+2qr−24d2),
and so

p2 | (2p2 + 2pq + 4d2),(19)

p2 | (4p2 + 4pq + 2pr + q2 − 17d2),(20)

p2 = −(8p2 + 8pq + 4pr + 2q2 + 2qr − 24d2),(21)

and combining (18) and (21) gives

(22) r2 − d2 = 2p2.

By (21), we have 2 | p. Then as in the previous cases, 2 - d and p = 2. By (22),
r = ±3 and d = ±1 (with independent signs). By (20), q must be odd. If
r = 3, then (18) simplifies to q2 + 11q+ 18 = 0, implying that q = −9. Thus
xP is a zero of x3 − 6x2 + 5x − 1. Alternatively, if r = −3, then q = 1 and
xP is a zero of x3 + 4x2 − x − 1. Using the equation for C to solve for yP ,
then using (3), we arrive at the solutions in (iv).

• Finally, if k = 5 and Q = (1/4, 0), we obtain

p2 + 8pq + 16q2 + 32pr + 128qr + 256r2 = 0,(23)

64p2 | (256d2 + 16p2 + 128pq),(24)

64p2 | (−1536d2 + 4p2 + 32pq + 64q2 + 128pr),(25)

64p2 = −(256d2 + p2 + 8pq + 16q2 + 32pr + 128qr).(26)

As above, 2 - d and if ` is a prime dividing p, then ` = 2. Since d is odd, (24)
implies that 8 - p. So by (23), p = 4. But, combining (23) and (26), we have
4(r2 − d2) = p2 = 16, which is impossible, since d 6= 0.
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4. Solutions with [F : Q] = 4. For the case of [F : Q] = 4, we begin
by recalling [3, Theorem 3.1], which gives all solutions for the values of k
for which |Ek(Q)| = 3:

Theorem 4.1. Let k ∈ Z and let [F : Q] = 4. The equations x+y+z = k
and xyz = 1 are simultaneously solvable with x, y, z ∈ OF in the following
instances, allowing for permutations of x, y, z. If |Ek(Q)| = 3, then these
are the only solutions.

(i) F ⊇ Q(γ, δ) where, for some t ∈ Z, δ is a fixed root of X2− tX − 1
= 0, γ is a fixed root of X2 = (δ − k)2 − 4(δ − t), and

(x, y, z) =

(
δ,
k − δ + γ

2
,
k − δ − γ

2

)
;

(ii) F ⊇ Q(γ, δ) where, for some t ∈ Z, δ is a fixed root of X2− tX + 1
= 0, γ is a fixed root of X2 = (δ − k)2 + 4(δ − t), and

(x, y, z) =

(
δ,
k − δ + γ

2
,
k − δ − γ

2

)
;

(iii) F ⊇ Q(ω) where, for some t ∈ Z − {1}, ω is a fixed root of X4 +
(t2− kt+ 2)X3 + (−kt+ 3t− k+ 1)X2 + (t− k+ 2)X + 1 = 0, and

x = −ω3 + (−t2 + kt− 2)ω2

+ (kt− 3t+ k − 1)ω + (−t+ k − 2),

(t− 1)y = −ω3 + (−t2 + kt− 1)ω2 + (t2 − 3t+ k)ω + (t− 2),

(t− 1)z = tω3 + (t3 − kt2 + 2t− 1)ω2 + (−kt2 + 2t2 + t− 1)ω + t2;

(iv) F ⊇ Q(ω) where, for some t ∈ Z − {1}, ω is a fixed root of X4 +
(t2 − kt− 2)X3 + (kt− t+ k + 1)X2 − (t+ k)X + 1 = 0, and

x = −ω3 + (−t2 + kt+ 2)ω2 + (−kt+ t− k − 1)ω + (t+ k),

(t− 1)y = −ω3 + (−t2 + kt+ 1)ω2 + (−t2 + t− k)ω + t,

(t− 1)z = tω3 + (t3 − kt2 − 2t+ 1)ω2 + (kt2 + t− 1)ω − t2.
By Theorem 2.1, the only other possible solutions are with k ∈ {−1, 5}.

We address these in the following theorem.

Theorem 4.2. Let k ∈ Z be such that Ek(Q) is finite and let [F : Q] = 4.
The equations x + y + z = k and xyz = 1 are simultaneously solvable with
x, y, z ∈ OF in exactly the cases given in Theorem 4.1 and in the following
instances, allowing for permutations of x, y, z:

(i) For k = −1,

(a) F ⊇ Q(υ) where, for some t ∈ Z− {1,−2}, υ is a fixed root of
X4 + (t2 − t− 1)X3 + (t2 − t+ 1)X2 − 2tX + 1 = 0, and
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x = −υ3 − (t2 − t− 1)υ2 − (t2 − t+ 1)υ + 2t,

y = (t+ 1)υ3 + (t3 − 2t)υ2 + (t3 + t2 − t)υ − (t2 + 2t),

z = −tυ3 − (t3 − t2 − t+ 1)υ2 − (t3 − 1)υ + (t2 − 1);

(b) F ⊇ Q(υ) where, for some t ∈ Z − {0, 1}, υ is a fixed root of
X4 + (t2 − 3t+ 1)X3 + (t2 + t− 3)X2 + 2tX + 1 = 0, and

x = −υ3 − (t2 − 3t+ 1)υ2 − (t2 + t− 3)υ − 2t,

y = (−t+ 1)υ3 − (t3 − 4t2 + 4t− 2)υ2

− (t3 − t2 − t+ 2)υ − (t2 − 2t+ 2),

z = tυ3 + (t3 − 3t2 + t− 1)υ2 + (t3 − 1)υ + (t2 + 1);

(c) F ⊇ Q(υ) where, for some t ∈ Z+ − {1}, υ is a fixed root of
X4 + (t2 − t+ 5)X3 − (t2 − t− 7)X2 + 4X + 1 = 0, and

x = −υ3 − (t2 − t+ 5)υ2 + (t2 − t− 7)υ − 4,

(2t− 1)y = (t− 1)υ3 + (t3 − 2t2 + 6t− 4)υ2

− (t3 − 3t2 − 5t+ 4)υ − (t2 − 4t+ 2),

(2t− 1)z = tυ3 + (t3 − t2 + 5t− 1)υ2 − (t3 − 8t+ 3)υ

+ (t2 + 2t− 1);

(d) F ⊇ Q(υ) where, for some t ∈ Z+ − {2}, υ is a fixed root of
X4 + (t2 − t− 3)X3 − (t2 − t− 1)X2 + 2X + 1 = 0, and

x = −υ3 − (t2 − t− 3)υ2 + (t2 − t− 1)υ − 2,

(2t− 1)y = tυ3 + (t3 − t2 − 3t+ 1)υ2 − (t3 − 2t2 + 1)υ − (t− 1)2,

(2t− 1)z = (t− 1)υ3 + (t3 − 2t2 − 2t+ 2)υ2 − (t3 − t2 − t)υ + t2.

(ii) For k = 5,

(a) F ⊇ Q(η) where, for some t ∈ Z, η is a fixed root of X4 + (t2 +
3t− 8)X3 − 2(t2 + 5t− 9)X2 + (t− 9)X + 1 = 0, and

x = −η3 − (t2 + 3t− 8)η2 + 2(t2 + 5t− 9)η − (t− 9),

(3t− 1)y = tη3 + (t3 + 3t2 − 8t+ 1)η2

+ (−2t3 − 9t2 + 21t− 5)η − (t2 + 6t− 2),

(3t− 1)z = (2t− 1)η3 + (2t3 + 5t2 − 19t+ 7)η2

+ (−4t3 − 19t2 + 43t− 13)η + (4t2 − 7t+ 2);

(b) F ⊇ Q(η) where, for some t ∈ Z, η is a fixed root of X4 + (t2 +
3t+ 4)X3 − 2t(t− 6)X2 − (t+ 7)X + 1 = 0, and



266 H. G. Grundman and L. L. Hall-Seelig

x = −η3 − (t2 + 3t+ 4)η2 + 2t(t− 6)η + (t+ 7),

(3t− 1)y = (2t− 1)η3 + (2t3 + 5t2 + 5t− 3)η2

+ (−4t3 + 27t2 − 9t+ 1)η − (4t2 − t),
(3t− 1)z = tη3 + (t3 + 3t2 + 4t− 1)η2

+ (−2t3 + 11t2 − 3t− 1)η + (t2 − 6t+ 2);

(c) F ⊇ Q(η) where, for some t ∈ Z+, η is a fixed root of X4 +
(4t2 − 4)X3 − (t2 + 10)X2 − 4X + 1 = 0, and

x = −η3 − (4t2 − 4)η2 + (t2 + 10)η + 4,

2ty = (t+ 1)η3 + (4t3 + 4t2 − 4t− 5)η2

− (t3 + 5t2 + 10t+ 5)η + (t2 + t+ 1),

2tz = (t− 1)η3 + (4t3 − 4t2 − 4t+ 5)η2

− (t3 − 5t2 + 10t− 5)η − (t2 − t+ 1);

(d) F ⊇ Q(η) where, for some t ∈ Z+, η is a fixed root of X4 +
(4t2 − 8)X3 − (t2 − 14)X2 − 8X + 1 = 0, and

x = −η3 − (4t2 − 8)η2 + (t2 − 14)η + 8,

2ty = (t+ 1)η3 + (4t3 + 4t2 − 8t− 7)η2

+ (−t3 + 3t2 + 14t+ 7)η + (−t2 − 3t− 1),

2tz = (t− 1)η3 + (4t3 − 4t2 − 8t+ 7)η2

+ (−t3 − 3t2 + 14t− 7)η + (t2 − 3t+ 1).

We note that in (i)(c)–(d) and (ii)(c)–(d), allowing for t ≤ 0 would simply
duplicate the solutions already listed. Certain other values are disallowed
because they would give solutions in fields of degree 3, not 4.

Proof of Theorem 4.2. As usual, it is easy to verify that each of these
is a solution. Suppose that (x, y, z) ∈ O 3

F is a solution that is not given in
Theorem 4.1.

If at least one of x, y, z, say x, is of degree strictly less than four over Q,
then by the proof of Theorem 4.1 (found in [3]), (x, y, z) is of the form in
Theorem 4.1(i) or (ii). Thus x, y, z are each of degree four over Q.

Still following the proof in [3], let P = (xP , yP ) be the point on Ek(F )
corresponding to the solution (x, y, z) and let

C : dy = px3 + qx2 + rx+ s

be the unique cubic curve through P and its three conjugates, with d, p, q, r, s
in Z, d 6= 0, and gcd(p, q, r, s, d) = 1. We assume, without loss of generality,
that p ≥ 0. As shown in [3], Ek ∩ C includes P and its conjugates and
exactly three infinite points (and so p 6= 0), leaving two finite points to be
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determined. Eliminating y and simplifying, the x-coordinates of the points
of Ek ∩ C satisfy

(27) p2x6 + 2pqx5 + (2pr + q2)x4 + (2ps+ 2qr + 4d2)x3

+ (2qs+ r2 − k2d2)x2 + (2rs+ 2kd2)x+ (s2 − d2) = 0.

We consider the possibility that the two points are rational, then, separately,
that they are irrational.

Case I: Two rational points. Since the two points to be determined
are on Ek, they must be elements of the sets given in (4) and (5). If the
two points are both (0,±1), then, as shown in [3], the solution (x, y, z) is
given in Theorem 4.1. So we now consider first the subcases where k =
−1 and at least one of the two points is in {(1, 0), (−1, 2), (−1,−2)}, and
then the subcases where k = 5 and at least one of the two points is in
{(1/4, 0), (2, 7), (2,−7)}.

Subcase: k = −1 and exactly one of the points is (1, 0) or (−1,±2).
Assume that the other point is (0, 1). (If instead the point is (0,−1), we
obtain the same solutions, up to equivalence.) Since (0, 1) ∈ C, s = d.
• If the two points are (0, 1) and (1, 0), then (27) implies that since

(1, 0) ∈ C, we have p + q + r + s = 0. Using this, substituting s for d, and
removing the factor of x(x− 1) from (27) yields

(28) p2x4 + (p2 + 2pq)x3 + (p2 + 2pq + q2 + 2pr)x2

+ (p2 + 2pq + q2 + 2pr + 2qr + 2ps+ 4s2)x+ 2s2 − 2rs = 0.

Since xP is a root of this equation, the left hand side must be the product
of p2 and the minimal polynomial of xP . Further, since the norm of xP is 1,
we have p2 = 2s2 − 2rs = 2s(s− r).

Suppose that ` is a prime such that ` | s. Then ` | p. Since p2 is a factor of
each coefficient in equation (28), we see that ` | q and ` | r. But this implies
that ` | gcd(d, p, q, r, s), a contradiction. So s = ±1.

Now suppose that ` is a prime such that ` | p. As above, it follows that
` | q and so, using the x-coefficient of equation (28), ` | 4. Thus ` = 2. Now,
if 4 | p, then using the x2-coefficient, 8 | q2 and thus 4 | q. But then the x-
coefficient of equation (28) implies that 8 | 4. Thus, since p2 = 2s(s− r) and
p > 0, we have p = 2. Now, if s = 1, then solving for the other variables
yields a minimal polynomial for xP that factors over Z, implying that xP
is rational or cubic, contrary to assumption. If s = −1, then solving for the
other variables yields the solution in (i)(a) with t = 0.
• If, instead, the points are (0, 1) and (−1,±2), then, recalling that s = d,

we find that q = p + r + s and p2 = 2s(r − s). As above, we conclude that
s = ±1 and p = 2. If s = 1, we obtain the solution in (i)(a) with t = −1. If
s = −1, we get the solution in (i)(d) with t = 1.
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Subcase: k = −1 and both points are in {(1, 0), (−1, 2), (−1,−2)}. Note
that the two points cannot be (−1, 2) and (−1,−2), since these points cannot
both lie on the curve C.
• If the two points are (1, 0) and (−1, 2), then by the definition of C,

p+ q+ r+ s = 0 and −p+ q− r+ s = 2d. So d = q+ s = −p− r. Removing
the factor of (x+1)(x−1) from (27) yields p2x4+2pqx3+(p2+q2+2pr)x2+
(4d2 + 2pq + 2qr + 2ps)x+ p2 + q2 + 2pr + r2 + 2qs− d2 = 0. Since xP is a
root of this equation, the left hand side must be the product of p2 and the
minimal polynomial of xP . Again, since the norm of xP is 1, q = d− s, and
r = −p− d, we have d2 − s2 = p2.

Suppose that ` is a prime such that ` | p. Then, since p2 divides each
of the coefficients above, ` | q and so ` | 4d2. If, in addition, ` | d, then ` | s
and, from the constant coefficient, ` | r. But this is a contradiction, since
gcd(d, p, q, r, s) = 1, and so ` - d. Hence ` | 4 and so ` = 2 and d is odd. As
before, if 4 | p, then 4 | q, and so 8 | 4d2, a contradiction. But if p = 2, then
d2 − s2 = p2 yields a contradiction, since d is odd. Thus, no such ` exists
and, hence, p = 1.

It follows from d2 − s2 = p2 that d = ±1 and s = 0. This leads to the
solutions in Theorem 4.1(iii) and (iv) with k = −1 and t = −1. As usual,
(1, 0) and (−1,−2) yield equivalent solutions.

• If (1, 0) is a double point on C ∩ Ek, then, dividing equation (27) by
(x−1)2, the remainder must be zero, implying that 6p2 +10pq+4q2 +8pr+
6qr+ 2r2 + 6ps+ 4qs+ 2rs+ 8d2 = 5p2 + 8pq+ 3q2 + 6pr+ 4qr+ r2 + 4ps+
2qs − s2 + 8d2 = 0, and the quotient is the product of p2 and the minimal
polynomial of xP . Hence, xP is a root of p2x4 + (2p2 + 2pq)x3 + (3p2 + 4pq+
q2 + 2pr)x2 + (4p2 + 6pq+ 2q2 + 4pr+ 2qr+ 2ps+ 4d2)x+ 5p2 + 8pq+ 3q2 +
6pr+4qr+r2+4ps+2qs+7d2 = 0 with the constant coefficient equal to p2.
Combining the second part of the remainder with the constant coefficient
yields s2 − d2 = p2.

As before, if ` is a prime dividing p, then ` = 2 and ` - d. Again, 4 | p
leads to a contradiction. So p = 1 or p = 2, but then s2 − d2 = p2 implies
that d = 0, a contradiction.

• Finally, if (−1, 2) or (−1,−2) is a double point, we obtain the polyno-
mial p2x4 + (−2p2 + 2pq)x3 + (3p2−4pq+ q2 + 2pr)x2 + (−4p2 + 6pq−2q2−
4pr+ 2qr+ 2ps+ 4d2)x+ 5p2− 8pq+ 3q2 + 6pr− 4qr+ r2− 4ps+ 2qs− 9d2

with 6p2 − 10pq + 4q2 + 8pr − 6qr + 2r2 − 6ps + 4qs − 2rs − 12d2 =
5p2 − 8pq + 3q2 + 6pr− 4qr + r2 − 4ps+ 2qs− s2 − 8d2 = 0, which leads to
a contradiction as in the previous case.

Subcase: k = 5 and exactly one of the points is (1/4, 0) or (2,±7).
Assume that one of the points is (0, 1) (or equivalently (0,−1)) and note
that, since (0, 1) is on C, s = d.
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• If the two points are (0, 1) and either (2, 7) or (2,−7), then factoring
x(x−2) out of (27) with s = d yields the polynomial p2x4 + (2p2 + 2pq)x3 +
(4p2 + 4pq + q2 + 2pr)x2 + (4s2 + 8p2 + 8pq + 2q2 + 4pr + 2qr + 2ps)x +
(−17s2 + 16p2 + 16pq+ 4q2 + 8pr+ 4qr+ r2 + 4ps+ 2qs) with 16p2 + 16pq+
4q2+8pr+4qr+r2+4ps+2qs+rs−12s2 = 0. Combining the final equation
with the constant coefficient, which is equal to p2, yields s(5s+ r) = −p2.

As usual, if p is divisible by an odd prime, we get a contradiction. Further,
if 4 | p, then, since p2 divides the x2-coefficient, 4 | q. From this it follows that
2 | s, and so 2 | r, again yielding a contradiction. Hence, p = 1 or 2.

If p = 1, then s(r + 5s) = −1 and so s = ±1 and r = ∓6. This leads to
the solutions in (ii)(c) and (ii)(d) with t = 1. If p = 2, then 2 | q and r and
s are odd. Hence s(r+ 5s) = −4 implies that s = ±1 and r = ∓9. Solutions
in (ii)(a) and (ii)(b), with t = 0, follow.
• Next, if the two points are (0, 1) and (1/4, 0), then since (1/4, 0) lies

on C, we have

(29) 0 = p+ 4q + 16r + 64s.

Removing the factor of x(x−1/4) from (27) and noting that the coefficients
must all be divisible by p2 in Z, we obtain

4p2 | (p2 + 8pq),(30)

16p2 | (p2 + 8pq + 16q2 + 32pr),(31)

64p2 | (256s2 + p2 + 8pq + 16q2 + 32pr + 128qr + 128ps),(32)

256p2 | (−6144s2 + p2 + 8pq + 16q2 + 32pr(33)

+ 128qr + 256r2 + 128ps+ 512qs).

Suppose ` is an odd prime such that ` | p. By (31), ` | q and so, by (32),
` | s and, by (33), ` | r. Since d = s, this contradicts gcd(p, q, r, s, d) = 1.
Thus p is a power of 2.

Let p = 2e, q = 2fq′, r = 2gr′, and s = 2hs′, with q′, r′, s′ odd integers
and e, f, g, h ≥ 0. Substituting this into (30), we find that 22e+2 | (22e +
2e+f+3q′). This is only possible if e = f + 3.

Combining (30), (31) gives p2 | (4q2+8pr), so 22e | (22e−4(q′)2+2e+g+3r′).
Thus g = e− 7.

By (29), 0 = p+ 4q + 16r + 64s = 2e + 2e−1q′ + 2e−3r′ + 2h+6s′. This is
only possible if e− 3 = h+ 6. Therefore, h = e− 9.

Combining (31) and (32), we get p2 | (8qr + 8ps+ 16s2), and so

22e | (22e−7q′r′ + 22e−6s′ + 22e−14(s′)2),

which is clearly impossible.

Subcase: k = 5 and both points are in {(1/4, 0), (2, 7), (2,−7)}. Note
that the two points cannot be (2, 7) and (2,−7), since we would then get an
immediate contradiction from the equation for C.
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• If the two points are (1/4, 0) and (2,±7), then removing the factor
of (x − 2)(x − 1/4) from (27) and noting that the coefficients must all be
divisible by p2 in Z, we obtain

4p2 | (9p2 + 8pq),(34)

16p2 | (73p2 + 72pq + 16q2 + 32pr),(35)

64p2 | (256d2 + 585p2 + 584pq + 144q2 + 288pr + 128qr + 128ps),(36)

256p2 | (4681p2 + 4680pq + 1168q2 + 2336pr(37)

+ 1152qr + 256r2 + 1152ps+ 512qs− 4096d2).

Further, since (1/4, 0) lies on C, (29) holds, and so 4 | p.
As in the previous case, we find that p is a power of 2. We again let

p = 2e, q = 2fq′, r = 2gr′, s = 2hs′, and d = 2id′, with q′, r′, s′, d′ all
odd integers and e, f, g, h, i ≥ 0. Substituting this into (34), we find that
22e+2 | (9 · 22e + 2e+f+3q′). This is possible only if f = e− 3.

Combining (34) and (35), we find that 4p2 | (64pq+ 16q2 + 32pr), and so
22e | (22e+1q′+ 22e−4(q′)2 + 2e+3+gr′). Thus 2e− 4 = e+ 3 + g, and therefore
g = e− 7.

Again, by (29), 0 = p+ 4q + 16r + 64s = 2e + 2e−1q′ + 2e−3r′ + 2h+6s′.
This is only possible if e− 3 = h+ 6. Hence h = e− 9.

Combining (35) and (36), we have 2p2 | (32d2− 9p2− 8pq+ 16qr+ 16ps),
and so 22e+1 | (22i+5(d′)2 − 22e · 9 − 22eq′ + 22e−6q′r′ + 22e−5s′). This is
only possible if 2i + 5 = 2e − 6, which is a contradiction, since i and e
are integers.

• If (1/4, 0) is a double point, then again equation (29) holds. Combining
this with the fact that (x − 1/4)2 is a factor of (27) yields a contradiction,
since d 6= 0.

• Finally, if (2, 7) (or (2,−7)) is a double point, then (x− 2)2 is a factor
of (27), yielding the quotient p2x4 + (4p2 + 2pq)x3 + (12p2 + 8pq + q2 +
2pr)x2 +(4d2 +32p2 +24pq+4q2 +8pr+2qr+2ps)x+80p2 +64pq+12q2 +
24pr + 8qr + r2 + 8ps + 2qs − 9d2, and the remainder (−42d2 + 192p2 +
160pq + 32q2 + 64pr + 24qr + 4r2 + 24ps + 8qs + 2rs)x + 35d2 − 320p2 −
256pq − 48q2 − 96pr − 32qr − 4r2 − 32ps− 8qs+ s2.

Since the constant coefficient of the quotient is equal to p2 and the con-
stant coefficient of the remainder is equal to zero, combining these yields

(38) s2 − d2 = 4p2.

As usual, we find that p has no odd prime factors and 4 - p. If p = 1,
then (38) implies that d = 0, which is impossible. Thus, p = 2. By (38),
s = ±5 and d = ±3 (with independent signs). This leads to the solutions in
Theorem 4.1(iii) and (iv) with k = 5 and t = 4.
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Case II: Two conjugate quadratic points. Finally, we consider the pos-
sibility that the two points of Ek ∩ C to be determined are not rational.
Since Ek ∩ C is closed under conjugation, the two points must be quadratic
conjugates. The possible values are given in Lemma 3.1.

If the two points are of the form in Lemma 3.1(i), then the x-coordinates
are rational and so, by the definition of the curve C, y is also rational,
contrary to assumption.

If the points are of the form in Lemma 3.1(ii), then the arguments in the
proof of Theorem 4.1 (found in [3]) apply to show that t ∈ Z and the solution
is as in Theorem 4.1(iii) or (iv), unless we have k = −d2 = t. But in this
case, the polynomial for x in Lemma 3.1(ii) is reducible and the additional
points are rational, again contrary to assumption.

If the two points are of one of the forms in Lemma 3.1(iii) and (iv), then
the x-coordinates satisfy an equation of the form x2+Px+Q with P,Q ∈ Q.
Equation (27) then factors as

(39) p2x6 + 2pqx5 + (2pr + q2)x4 + (2ps+ 2qr + 4d2)x3

+ (2qs+ r2 − k2d2)x2 + (2rs+ 2kd2)x+ (s2 − d2)
= p2(x2 + Px+Q)(x4 + ax3 + bx2 + cx+ 1) = 0,

with a, b, c ∈ Z.
By Gauss’s lemma, since the other coefficients are integers, the coeffi-

cients of p2(x2 + Px+Q) must be integers. Thus, p2P, p2Q ∈ Z.
Equating the coefficients in (39) yields

ap2 + p2P − 2pq = 0,(40)

bp2 + ap2P − q2 + p2Q− 2pr = 0,(41)

−4d2 + cp2 + bp2P + ap2Q− 2qr − 2ps = 0,(42)

d2k2 + p2 + cp2P + bp2Q− r2 − 2qs = 0,(43)

−2d2k + p2P + cp2Q− 2rs = 0,(44)

d2 + p2Q− s2 = 0.(45)

By (40), p | p2P . Since each possible value of P in Lemma 3.1(iii) and (iv)
is a monic quadratic with integral coefficients in the variable t ∈ Q, p | p2P
implies that p | p2t2. Thus, for Q in Lemma 3.1(iii) and (iv)(a), we have
p | p2Q and for Q in Lemma 3.1(iv)(b) we have p | 4p2Q.

Suppose that ` is an odd prime dividing p. Then ` | p2P and ` | p2Q.
By (41), ` | q, and so, by (42), ` | d. Further, by (43), ` | r and by (45), ` | s.
But then ` | gcd(p, q, r, s, d), contrary to assumption. Thus p is a power of 2.

Now, if the two points are as in Lemma 3.1(iii) or (iv)(a) and 4 | p,
then (40) implies that 8 | p2P . Then, from the definition of Q in Lemma 3.1,
8 | p2Q. Hence equation (41) implies that 4 | q. But then, by (42), 2 | d, and
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we get a contradiction as above. Thus for these cases, we have p = 1 or 2,
which then implies that t ∈ Z, since pP ∈ Z.

If the two points are as in Lemma 3.1(iv)(b), we use a similar argument:
If 16 | p, then by (40), 32 | p2P and from the definition of Q, 8 | p2Q, leading
again to a contradiction. Further, if p = 8, then 8 | p2P and 2 | p2Q, imply-
ing that 2 | q and, since gcd(p, q, r, s, d) = 1, the numbers d, r, s are odd. But
then, by (45), 8 | p2Q, and so (41) and (42) imply that d is even, a contra-
diction. Thus, p ∈ {1, 2, 4} and since p | p2t2, 2t ∈ Z. But if u = 2t is odd,
then p = 4, and reducing (40) modulo 8 yields a contradiction. Thus t ∈ Z.

Again, considering all four of the cases in Lemma 3.1(iii) and (iv), we
use (45) to eliminate d2, (40) to eliminate q, and (44) to eliminate r, then
simplify to obtain

(46) 4p2P + 4cp2Q+ 8kp2Q+ a2ps− 4bps− 2apPs+ pP 2s

− 4pQs− 8ks2 = 0,

(47) ap3P + p3P 2 + acp3Q+ 2akp3Q+ cp3PQ+ 2kp3PQ− 2cp2s

− 2bp2Ps− 8p2Qs− 2ap2Qs+ 4ps2 − 2akps2 − 2kpPs2 + 8s3 = 0,

(48) p3P 2 + 2cp3PQ+ 4kp3PQ+ c2p3Q2 + 4ckp3Q2 + 4k2p3Q2

− 4ps2 − 4cpPs2 − 4kpPs2 − 4bpQs2 − 4ckpQs2 − 4k2pQs2

+ 4as3 + 4Ps3 = 0.

Using (46) to eliminate b in the other two equations, and letting

A = pQa− pPQ− 2s,(49)

C = p2c+ 2kp2 − 2ps+
p2P − 2ks2

Q
− 2Ps2

Q2
,(50)

we obtain

2QAC − P/QsA2 + 4s(p2Q− s2)(P/Q+ 2k − 4Q) = 0,

s2A2 −Q3C2 − 4s2(p2Q− s2)(P 2/Q− 1 + 2kP + k2Q) = 0.

Using the first equation to eliminate C in the second and recalling that
s2 = d2 + p2Q yields

(51) −s2
(
A4(P 2 − 4Q)− 4d2A2((2kQ+ P )2 + (P 2 − 4Q) + 8PQ2)

+ 16d4(P + 2kQ− 4Q2)2
)

= 0.

To complete the proof of Case II, we now consider each of the remaining
four cases of Lemma 3.1 separately.

Subcase: Lemma 3.1(iii)(a). If the two additional points are of the form
in this part of the lemma, then k = −1, P = t2 − t − 1, and Q = t2 + t,
with t 6= 0 or −1. Since t ∈ Z, for each value of t, P is odd and Q is even.
Reducing (44) modulo 2, we see that p 6= 1. Thus, p = 2.
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Further, by (41), q is even and so, by (40), since P is odd, a is odd.
Returning to equation (51), we now have

(52) s2(A2 − 4d2(2t+ 1)2)(4d2(1 + t+ 3t2 + 2t3)2 −A2(P 2 − 4Q)) = 0.

If the first factor of (52) is equal to zero, then s = 0 and by (45), d2 =
−4t(t+ 1). But this implies that −t(t+ 1) is a square, which is impossible,
since t 6= 0 or −1.

If the third factor is equal to zero, then

4d2(1 + t+ 3t2 + 2t3)2 = A2(P 2 − 4Q),

implying that P 2 − 4Q is a square. But then, since x2 + Px + Q = 0, we
have x ∈ Q, contrary to assumption.

Therefore, the second factor, A2 − 4d2(2t+ 1)2, is equal to zero and the
other two factors are nonzero. So for some fixed ε = ±1,

A = 2dε(2t+ 1).

Combining this with (49), we get

(53) Q(a−P ) = s+dε(2t+1) = (s+dε)+2dtε = (s−dε)+2d(t+1)ε,

and therefore, since Q = t(t+1), we see that t | (s+dε) and (t+1) | (s−dε).
Let c1, c2 ∈ Z be such that

c1t = s+ dε and c2(t+ 1) = s− dε.
Then, multiplying, we obtain c1c2Q = s2 − d2 = 4Q and thus c1c2 = 4.

If c1 = ±4 and c2 = ±1, then s = ±(5t+1)/2 and dε = ±(3t−1)/2, with
the leading signs in agreement. By (53), a−P = ±3. But this is impossible,
since, as noted above, a and P are both odd. Similarly, if c1 = ±1 and
c2 = ±4, we arrive at a contradiction.

Thus c1 = c2 = ±2, and so s = ±(2t+ 1) and dε = ∓1. By (53), a = P .
Using (40)–(45), we obtain the remaining solutions in part (i)(a) and (after
changing t to t− 1) part (i)(b) of the theorem.

Subcase: Lemma 3.1(iii)(b). In this situation, k = −1, P = t2 − t+ 1,
and Q = −t2 + t, with t 6= 0 or 1. As in the previous case, for each t ∈ Z,
P is odd and Q is even. It follows from (44) that p 6= 1. Hence, p = 2, q is
even, and a is odd.

Equation (51) is now

(54) s2(A2 − 4d2(2t− 1)2)
(
4d2(2t− 1)2(t2 − t− 1)2 −A2(P 2 − 4Q)

)
= 0.

As before, if s2 = 0, then by (45), d2 = 4t(t− 1), which is impossible. If the
third factor of (54) is equal to zero, then P 2− 4Q is a square, implying that
x ∈ Q, a contradiction.

Therefore, the second factor, A2 − 4d2(2t− 1)2, is equal to zero and the
other two factors are nonzero. So for some fixed ε = ±1, A = 2dε(2t − 1).
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Combining this with (49), we get

(55) Q(a− P ) = s+ dε(2t− 1) = s+ dε+ 2(t− 1)dε = s− dε+ 2tdε,

and therefore, since Q = −t(t−1), we see that (t−1) | (s+dε) and t | (s−dε).
Let c1, c2 ∈ Z be such that

c1(t− 1) = s+ dε and c2t = s− dε.
Then, multiplying, we obtain c1c2(−Q) = s2−d2 = 4Q, and thus c1c2 = −4.

As in the previous case, we obtain contradictions unless −c1 = c2 = ±2.
It follows that s = ±1 and dε = ∓(2t − 1). By equation (55), a = P ± 4.
Using (40)–(45), we obtain the remaining solutions in parts (i)(c) and (i)(d)
of the theorem.

Subcase: Lemma 3.1(iv)(a). Here, k = 5, P = t2 + 3t − 2, and Q =
−2t2 + t, with t 6= 0 or 1/2. Recall that p = 1 or 2 and t ∈ Z, and note that
P and a are both even.

Again, substituting into (51) and simplifying, we obtain

(56) s2(A2 − 4d2(4t− 1)2)
(
4d2(−2 + 5t− 3t2 + 4t3)2 −A2(P 2 − 4Q)

)
= 0.

If s2 = 0, then combining (44) and (45), we find that 10p2Q+p2P+cp2Q = 0.
It follows that Q |P , which is possible only if t = 1. Using (40)–(45), we
obtain the solution in part (ii)(a) of the theorem with t = 1 (in which case,
the second factor of (56) is also zero). If the third factor is zero, we obtain
a contradiction.

Thus, the second factor is zero, and so A2 = 4d2(4t − 1)2. Set ε = ±1
such that

(57) A = 2dε(4t− 1).

If p = 1, then by (40), 2 | (a+ P ), and so 2 | (a− P ). So, for p = 1 or 2,
there exists âp ∈ Z such that

(58) 2âp = p(a− P ).

By (49) and (57),

(59) âpQ = s+ dε(4t− 1) = s+ dε+ 2dε(2t− 1) = s− dε+ 4dεt.

Since Q = −t(2t− 1), there exist c1, c2 ∈ Z such that

c1(2t− 1) = s+ dε and c2t = s− dε.
Thus c1c2(−Q) = s2 − d2 = p2Q, and so c1c2 = −p2.

If p = 2 and c1 = ±1, solving for s leads to a contradiction. If p = 2 and
c1 = ±4, then (58) and (59) imply that a − P = ∓9. But this contradicts
the fact that a and P are both even.

Thus, regardless of the value of p, c1 = −c2 = ±p and so s = ±p(t−1)/2
and dε = ±p(3t− 1)/2. By (58) and (59), a− P = ∓6. Equations (40)–(45)
now yield the remaining solutions in parts (ii)(a) and (ii)(b) of the theorem.
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Subcase: Lemma 3.1(iv)(b). Now, k = 5, P = t2−6, and Q = −t2/4+1,
with t 6= ±2. Recall that p ∈ {1, 2, 4} and t ∈ Z.

Substituting into (51) yields

(60) s2(A2 − d2t2)
(
d2t2(t2 − 2)2 −A2(P 2 − 4Q)

)
= 0.

If s2 = 0, then by (45), 4d2 = p2(t2 − 4) and so t2 − 4 is a square,
which is impossible, since t 6= ±2. If the third factor is zero, then x ∈ Q,
a contradiction.

Therefore, only the second factor is zero, and so A2 = d2t2. Set ε = ±1
such that A = dεt. Then, by (49),

(61) pQ(a− P ) = 2s+ dεt.

As above, if p = 1, then by (40), 2 | (a − P ). So regardless of the value
of p, there exists âp ∈ Z such that

(62) 2âp = p(a− P ).

Since Q = −t2/4 + 1, equation (61) implies that 2âp(−t2/4 + 1) = 2s+ dεt.
As before, we have

−âp(t+2)(t−2) = 4s+2dεt = 4(s+dε)+2dε(t−2) = 4(s−dε)+2dε(t+2).

Thus, there exist c1, c2 ∈ Z such that

(63) c1(t− 2) = 4(s+ dε) and c2(t+ 2) = 4(s− dε).
Solving these for s and dε, we find that

−âp(t+ 2)(t− 2) = 4s+ 2dεt = (c1 − c2)(t+ 2)(t− 2)/4

and therefore, using (62), c1 − c2 = −4âp = −2p(a − P ). In particular, we
have 2p | (c1 − c2).

Now, equations (45) and (63) imply that c1c2(−4Q) = 16(s2 − d2) =
16p2Q, and thus c1c2 = −4p2. Since 2p | (c1 − c2), this implies that −c1 =
c2 = ±2p. It follows that s = ±p, dε = ∓pt/2, and a = P ±2. Then, by (40),
q = p(P ± 1).

If t is odd, then p is even. But then, since p | q, equation (41) implies that
2p | p2Q, which is impossible with t odd. Thus t is even, and so P is even
and Q ∈ Z. Now, if p is even, then q is even, dε = ∓pt/2 is even, s is even,
and, by (43), r is even. Since gcd(p, q, r, s, d) = 1, we conclude that p = 1.
Returning to equations (40)–(45), replacing t with 2t, we find the remaining
solutions in parts (ii)(c) and (ii)(d) of the theorem.
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