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1. Introduction. We fix an algebraic closure Q of the rational numbers,
and all algebraic extensions of Q are assumed to lie in this algebraic closure.
Let K be a number field with non-archimedean valuation v, and let Ktv be
the maximal totally v-adic field extension of K, that is, the maximal Galois
extension of K which can be embedded into Kv. Here and in the following,
we denote by Kv the completion of K with respect to v.

We denote by h the absolute logarithmic Weil height on P1(Q). For
details on height functions we refer the reader to [6]. Bombieri and Zannier
[7] have introduced the notion of the Bogomolov property (B) of a field
F ⊆ Q. We say that such a field F has property (B) if there is a positive
constant c such that h(α) is either zero or bounded from below by c for all
α ∈ P1(F ). In the same paper Bombieri and Zannier proved that all fields
Ktv as above have this property.

More examples of fields with property (B) are: the maximal totally real
field extension Qtr of the rationals (proved by Schinzel [25]), any abelian
extension of a given number field (proved by Amoroso and Zannier [1]),
and Q(Etors) where E is an elliptic curve defined over Q (proved by Habeg-
ger [15]).

In the last three decades the study of height functions associated to
a rational function f ∈ Q(x) of degree at least two has raised increasing

interest. We denote such a height function by ĥf . It is uniquely determined
by the properties

(1) ĥf (f(α)) = deg(f)ĥf (α) and ĥf = h+O(1),

for all α ∈ P1(Q) (see [8]). We denote by Per(f) the set of periodic points
of f and by PrePer(f) the set of preperiodic points of f . A point is called
preperiodic if some iterate of this point is periodic. (An equivalent statement
is that a point is preperiodic if and only if its forward orbit is finite.) It is
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not hard to see that ĥf vanishes precisely on the set PrePer(f). For a proof
and further properties we refer the reader to [26, Chapter 3]. Notice that

h = ĥxd for any integer d ≥ 2.
For any rational function f ∈ Q(x) of degree at least two we can study

fields F ⊆ Q with the Bogomolov property (B) relative to ĥf . Here F has

property (B) relative to ĥf if there is a positive constant c such that ĥf (α) ≥
c for all α ∈ P1(F ) \ PrePer(f). Following Fili and Miner [14] we say that

such a field F has the strong Bogomolov property (SB) relative to ĥf if
additionally there are only finitely many preperiodic points of f in P1(F ).
Note that there are fields with property (B) but without property (SB)

relative to h = ĥx2 . For example the maximal abelian field extension Qab

has property (B) as mentioned above. However, it contains infinitely many
roots of unity, which are the preperiodic points of x2. Therefore, Qab does
not have property (SB).

Apart from the cases where f is a power map, a Chebyshev polynomial or a
Lattès map there are almost no non-trivial examples of fieldsF ⊆ Qwith prop-
erty (B) relative to ĥf . One exception is the fieldQtr. In [23] we gave a complete
classification of rational functions f ∈ Q(x) such that Qtr has property (B)

relative to ĥf . This classification is according to whether the Julia set of f is
contained in the real line or not. Moreover, it is proven that Qtr has property
(B) relative to ĥf if and only if it has property (SB) relative to ĥf . In this paper
we want to give such a classification result in the non-archimedean setting.

Let again K be a number field with a non-archimedean valuation v. Then
we denote by Cv the completion of an algebraic closure of Kv. It is well
known that v extends uniquely to a valuation on Kv and that this valuation
extends uniquely to a valuation, which we again denote by v, on Cv. The
field Cv is algebraically closed and complete with respect to v. The fields Q
and Kv are subfields of Cv, hence we can describe the field Ktv as

Ktv = {α ∈ Q | σ(α) ∈ Kv for all σ ∈ Gal(Q/K)}.
We denote the classical v-adic Julia set by Jv(f). Note that Jv(f) might be
empty. This is one of the great differences from rational dynamics on P1(C),
where the Julia set is always an uncountable set.

The absolute Galois group Gal(Q/Q) acts coefficientwise on Q(x). Hence,
for any f ∈ Q(x) and any σ ∈ Gal(Q/Q), we have a unique rational function
σ(f) defined by this action.

The main part of this paper is to prove the following theorem. Although
we state it in the classical non-archimedean language, the proof relies heavily
on the theory of Berkovich spaces.

Theorem 1.1. Let K be a number field with a non-archimedean valua-
tion v, and let f ∈ Q(x) be a rational function of degree at least two. The
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following conditions are equivalent, and each implies the Bogomolov property
of Ktv relative to ĥf :

(i) There exists a σ ∈ Gal(Q/K) such that Jv(σ(f)) 6⊆ P1(Kv) or
Jv(σ(f)) = ∅.

(ii) |PrePer(f) ∩ P1(Ktv)| <∞.
(iii) Per(f) 6⊆ P1(Ktv).

If f is a polynomial, then (i)–(iii) are also equivalent to

(iv) PrePer(f) 6⊆ P1(Ktv).

We conjecture that Ktv having property (B) relative to ĥf also implies
(i) in Theorem 1.1. In the archimedean setting this has been proved in [23]
using a classification result for rational functions with Julia set lying on a
circle on the Riemann sphere.

Theorem 1.1 is a refinement and generalization of the result of Fili and
Miner [14]. They prove, using potential theory on the Berkovich line, that

(i) implies property (SB) of Ktv relative to ĥf , and that the converse is true
if f is a polynomial. Our theorem shows that the converse is also true for
rational maps, as property (SB) of Ktv relative to ĥf implies finiteness of
PrePer(f) ∩ P1(Ktv).

In Section 2 we provide some background on non-archimedean dynamical
systems. The proof of Theorem 1.1 is presented in Section 3. The main
ingredient for the proof of the implication (i)⇒(ii) is an equidistribution
theorem for points of small canonical height, independently achieved by
Baker and Rumely [3], Favre and Rivera-Letelier [13], Chambert–Loir [9]
and widely generalized by Yuan [28]. The converse implication follows mainly
from deep results of Rivera-Letelier [24] on the structure of the Berkovich
Julia set of a rational map.

As an application of small heights on totally p-adic fields, in Section 4
we investigate an arithmetic field property defined by Narkiewicz, called
property (P ). A field F is said to have property (P ) if the existence of an
infinite set X ⊆ F and a polynomial f ∈ F [x] such that f(X) = X implies
the linearity of f . In 1963 Narkiewicz conjectured that Q(d), the compositum
of all number fields of degree at most d, has property (P ) for all d ∈ N. Using
a theorem of Bombieri and Zannier, Dvornicich and Zannier gave a positive
answer in the case d = 2 (see [11] or [12]). We prove in Section 4 that
Narkiewicz’s conjecture is true in general.

To connect this conjecture to Theorem 1.1, we sketch how the conjecture
follows from our theorem: For every prime p there is a number field K and a
valuation v | p on K such that the field Q(d) is contained in Ktv. We use this
and Theorem 1.1 to show that for every polynomial f ∈ Q[x] of degree at
least two, there is a number field K and a non-archimedean valuation v on
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K such that Q(d) ⊆ Ktv has property (SB) relative to ĥf . In particular, this

shows that in Q(d) there are neither infinitely many closed finite f -orbits nor
an infinite f -backward orbit of any point. Note that any f -backward orbit of
a non-preperiodic point leads by (1) to a sequence of points with canonical

height ĥf tending to zero. As this is true for all polynomials f of degree at

least two, we find that Q(d) has property (P ).

These arguments are valid in a more general setting. We refer to Section 4
for details.

Narkiewicz asked further if any subfield of Q with property (P ) is con-
tained in some field Q(d). This, however, is not true, as was shown ineffec-
tively by Kubota and Liardet [19]. Effective constructions of counterexam-
ples were presented in [11] and [27]. Our argument leads to another class of
counterexamples, which are also presented in Section 4.

2. Background on non-archimedean dynamics. In this section we
will present the main definitions from non-archimedean dynamics needed
in the rest of this paper. We fix a number field K with a non-archimedean
valuation v, and a rational map f ∈ Cv(x) of degree at least two. Throughout
the paper we equip P1(Cv) = Cv ∪ {∞} with the topology induced by the
v-adic chordal metric. Recall that for any x ∈ Cv, the v-adic chordal metric
on P1(Cv) is given by

ρv(x, y) =


|x− y|v

max{|x|v, 1}max{|y|v, 1}
if y 6=∞,

1

max{|x|v, 1}
if y =∞.

Definition. The classical v-adic Fatou set of f , denoted by Fv(f), is
the maximal open subset of P1(Cv) where the iterates of f are equicontinuous
at every point of Fv(f). The classical v-adic Julia set of f is defined to be
Jv(f) = P1(Cv) \ Fv(f).

Some of the well known properties of the complex Julia set are also
preserved by Jv(f). In particular,

(2) f(Jv(f)) = f−1(Jv(f)) = Jv(f).

We say that Jv(f) is completely f -invariant. We denote by Rv = {α ∈ Cv |
|α|v ≤ 1} the valuation ring of Cv.

Definition. We choose polynomials g, h ∈ Rv[x] such that:

• f = g/h,
• g and h have no common zero,
• at least one coefficient of g or h lies in R∗v.
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We say that f has good reduction if the resultant Res(g, h) is in R∗v. A ratio-
nal map f ∈ Q(x) has good reduction at v if it has good reduction regarded
as a map defined over Cv. Consequently, f has bad reduction if it does not
have good reduction.

Note that this definition does not depend on the particular choice of
polynomials g and h satisfying the above criteria. The first statement in
the following lemma is obvious from the definition of good reduction. The
second statement is also well known and can be found in [26, Theorem 2.17].

Lemma 2.1. There are only finitely many rational primes p such that f
has bad reduction at some place v | p. If v is a non-archimedean place where
f has good reduction, then Jv(f) is empty.

Let f (n) be the nth iterate of f , and for any rational map g denote by
g′ the formal derivative of g. A periodic point α ∈ Per(f) \ {∞} of exact
period n is called repelling if |(f (n))′(α)|v > 1. A periodic point of f is in
Jv(f) if and only if it is repelling [26, Proposition 5.20]. For more details on
classical non-archimedean dynamical systems in dimension one we refer the
reader to [26, Chapters 2 and 5].

The great disadvantage of studying dynamical systems on P1(Cv) is that
this space is totally disconnected. It turns out that it is more convenient to
work in the Berkovich projective line P1,B

v . This is a path-connected Haus-
dorff space which contains P1(Cv) as a dense subspace. We call the topology

on P1,B
v the Berkovich topology. Moreover, for any subset S ⊆ P1(Cv) we call

the closure of S, regarded as a subset of P1,B
v , the Berkovich closure of S.

For the general theory of Berkovich spaces we refer the reader to [5] and for
detailed information on the theory of dynamical systems on the Berkovich
projective line we refer to [4].

Every rational function f ∈ Q(x) of degree at least two leads to a canon-

ical f -invariant probability measure µf,v on P1,B
v . For a construction of this

measure we refer the reader to [4, §10.1]. The Berkovich Julia set JBv (f)
of f is defined as the support of µf,v. Hence, in contrast to the classical
v-adic Julia set Jv(f), the set JBv (f) is never empty. These two notions of
non-archimedean Julia sets have the important property

(3) JBv (f) ∩ P1(Cv) = Jv(f),

which is shown in [4, Theorem 10.67]. We now recall a useful characterization
of JBv (f).

Theorem 2.2. There is a unique extension of f to a continuous self-map
of P1,B

v , which we again denote by f . The Berkovich Julia set JBv (f) is the

smallest non-empty subset of P1,B
v such that

(i) JBv (f) is completely f -invariant,
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(ii) JBv (f) is compact,
(iii) JBv (f) contains no exceptional point, that is, no point with finite

forward and finite backward orbits.

Proof. See [4, §2.3, and Corollary 10.57].

In complex dynamics, the Julia set is the closure of the set of repelling
periodic points. In the classical non-archimedean setting this is an open
conjecture (see [18]). The next proposition will be useful in the proof of
Theorem 1.1.

Proposition 2.3. If the classical v-adic Julia set of f is a non-empty
subset of P1(Kv), then

Jv(f) = JBv (f)

and Jv(f) is the closure of the set of repelling periodic points of f .

Proof. Under our assumption, (3) tells us that JBv (f)∩P1(Kv) = Jv(f).
Both sets on the left hand side are compact, and hence Jv(f) is compact in

the Hausdorff space P1,B
v .

By assumption, Jv(f) is not empty and by Theorem 2.2, it contains no
exceptional point of f . Since Jv(f) is completely f -invariant in the classical
sense, it is also completely f -invariant for the continuous extension of f to
a self-map of P1,B

v (see [4, Proposition 2.15]).
We have just proved that Jv(f) is a non-empty, compact and completely

f -invariant subset of P1,B
v containing no exceptional point. By Theorem 2.2,

we get JBv (f) ⊆ Jv(f), and hence the first claim of the proposition follows.
For the Berkovich Julia set JBv (f), Rivera-Letelier [4, Theorem 10.88]

proved that it is the Berkovich closure of the set of repelling periodic points
of f in P1,B

v . But since JBv (f) equals Jv(f), this is also true in the classical
non-archimedean setting. This is precisely the second claim of the proposi-
tion.

3. Proof of Theorem 1.1

3.1. Preliminary lemmas. Let again K be a number field with a
non-archimedean valuation v.

Lemma 3.1. The Berkovich closure of P1(K) is P1(Kv).

Proof. The space P1(Kv) is a compact (and hence closed) subspace

of P1,B
v . The restriction of the Berkovich topology to P1(Kv) is just the

topology induced by the chordal metric ρv. Therefore, the closure of P1(K)
in the Berkovich topology is P1(Kv) as claimed.

Lemma 3.2. For any f ∈ Q(x) of degree at least two and any σ in

Gal(Q/Q), we have ĥf = ĥσ(f) ◦ σ.
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Proof. This follows immediately from the defining properties (1) of the
canonical heights.

One of the main ingredients in the proof of Theorem 1.1 is the following
result, which in turn is an application of the celebrated equidistribution
theorem of Yuan (see [28, Theorem 3.7]).

Theorem 3.3. Let f ∈ Q(x) of degree at least two be such that JBv (f)
is not contained in P1(Kv). If L/K is a Galois extension lying in Kv, then

L has property (SB) relative to ĥf .

Proof. See [23, Theorem 2.5] or [14, Theorem 1] for a proof. Note that
in both cited theorems, the assumption is that JBv (f) shall not be contained
in the Berkovich closure of P1(K), which by Lemma 3.1 is equivalent to the
present formulation.

3.2. Proof of Theorem 1.1. In addition to the previous lemmas we
will use the substantial work of Rivera-Letelier, Baker and Rumely on dy-
namical systems on P1,B

v , summarized in [4, Chapter 10].

Proof of Theorem 1.1. We first prove that (i) implies (ii) as well as the

Bogomolov property ofKtv relative to ĥf . This is equivalent to the statement

that (i) implies property (SB) of Ktv relative to ĥf . So let σ ∈ Gal(Q/K) be
such that Jv(σ(f)) 6⊆ P1(Kv) or Jv(σ(f)) = ∅. Using (3) we infer that also
JBv (σ(f)) 6⊆ P1(Kv). Hence, by Theorem 3.3 we know that Ktv has property

(SB) relative to ĥσ(f) = ĥf ◦σ−1 (see Lemma 3.2). The extension Ktv/K is

Galois, and hence σ−1(Ktv) = Ktv. This proves the claim.

The implication (ii)⇒(iii) is trivial, since PrePer(f) is an infinite set.

Next we will prove (iii)⇒(i) by contraposition. So we assume that
Jv(σ(f)) is a non-empty subset of P1(Kv) for all σ ∈ Gal(Q/K). Let σ

be in Gal(Q/K). By Proposition 2.3 we have

(4) JBv (σ(f)) = Jv(σ(f)),

and Jv(σ(f)) is the closure of the set of repelling periodic points of σ(f)

in P1(Cv). Since any repelling periodic point of σ(f) in P1,B
v belongs to

JBv (σ(f)), equation (4) tells us that there is no repelling periodic point of

σ(f) in P1,B
v \P1(Cv). Hence we can apply another theorem of Rivera-Letelier

[4, Proposition 10.101] to deduce that there is at most one non-repelling
periodic point of σ(f) in P1(Cv). We conclude that

(5) α ∈ Jv(σ(f)) ⊆ P1(Kv) for all but possibly one α ∈ Per(σ(f)).

Since Jv(σ(f)) is completely σ(f)-invariant and contains infinitely many
points from Kv, the rational map σ(f) is necessarily defined over Kv. We
write σ(f) = g/h for g, h ∈ Kv[x]. For all n ∈ N0 there are gn, hn ∈ Kv[x]
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such that σ(f)(n) = gn/hn. The finite periodic points of σ(f) are precisely
the roots of the polynomials

Hn(x) = gn(x)− xhn(x), n ∈ N0.

By (5), for each n at most one root of Hn does not lie in Kv. But since Hn

is also defined over Kv, all roots of Hn must lie in Kv. This proves

(6) σ(Per(f)) = Per(σ(f)) ⊆ P1(Kv)

for all σ ∈ Gal(Q/K), and hence Per(f) ⊆ P1(Ktv), as desired.

We will use (5) to prove (iv)⇒(i). We argue by contraposition, so let
f ∈ Q[x] of degree at least two be such that Jv(σ(f)) is a non-empty subset
of P1(Kv) for all σ ∈ Gal(Q/K). In this case ∞ is a (super)attracting fixed
point of σ(f) for all σ ∈ Gal(Q/K), and we know from (5) that it is the only
non-repelling periodic point for these maps. The complete σ(f)-invariance
of Jv(σ(f)) implies directly that

(7) σ(PrePer(f)) \ [∞]σ(f) = PrePer(σ(f)) \ [∞]σ(f) ⊆ P1(Kv).

Here [∞]σ(f) denotes the union of all forward and backward orbits of ∞
under σ(f). But since σ(f) is a polynomial, we have [∞]σ(f) = {∞} for all

σ ∈ Gal(Q/K). Hence, by (7) we have PrePer(f) ⊆ P1(Ktv), as desired.

The implication (iii)⇒(iv) is trivial.

3.3. Examples. We present two easy examples: one where the condi-
tions of Theorem 1.1 are satisfied, and the other where they are not. More-
over, we will use Theorem 1.1 to reprove (an ineffective version of) a theorem
due to Baker and Petsche [2].

Example 3.4. Let Ktv be as in Theorem 1.1 and f ∈ Q(x) of degree at
least two. If f has good reduction at v, then Jv(f) = ∅ (see Lemma 2.1).

Hence, Ktv has property (SB) relative to ĥf whenever f has good reduction
at v. In particular, this is true for every v if f is a monic polynomial with
algebraic integer coefficients. So, Theorem 1.1 implies the result of Bombieri
and Zannier that Ktv has the Bogomolov property relative to h = ĥx2 .

Example 3.5. Let S be any finite set of rational primes, and denote by
k their product. The map f(x) = (x2−x)/k has bad reduction at a prime p
if and only if p ∈ S. For p ∈ S and α ∈ Qp with |α|p ≤ 1, the preimages of α
under f are the solutions of the equation x2−x−kα = 0. Since |kα|p ≤ p−1,
Hensel’s Lemma yields f−1(α) ⊆ Qp. Moreover, both preimages of α have
p-adic absolute value ≤ 1.

Obviously, 0 is a fixed point of f . We claim that the backward orbit of 0
under f is contained in

F =
⋂
p∈S

Qtp.



Heights and totally p-adic numbers 285

Let αn ∈ Q be such that f (n)(αn) = 0. We know from the previous paragraph
that αn ∈ Qp for all p ∈ S. Since f is defined over Q, the same is true for
every Galois conjugate of αn. We conclude that all the αn are in Qtp for all
p ∈ S, proving the claim. In particular, there are infinitely many preperiodic
points of f in F . Since f is a polynomial, Theorem 1.1 shows that all finite
preperiodic points of f are in F . Constructing such a backward orbit with 0
replaced by any non-preperiodic element in Z, we see that F does not have
property (B) relative to ĥf .

Example 3.6. Let E be an elliptic curve defined over the number field K.
We may assume that E is given in short Weierstraß form y2 = x3 + ax +
b, with a, b ∈ K. The multiplication-by-2 map, denoted by [2], defines a
dynamical system on E(Q). If π : E(Q)→ P1(Q) denotes the projection on
the x-coordinate, there exists a rational map f ∈ K(x) of degree 4 such that

f(π(P )) = π([2]P ) for all P ∈ E(Q).

Such a map f is called a Lattès map. For details we refer the reader to [26,
Chapter 6]. For any non-archimedean valuation v on K, we have Jv(f) = ∅
[17, Example 4.10]. Therefore, Ktv has property (SB) relative to ĥf . It
follows directly from the defining properties (1) of the respective height
functions that

ĥf ◦ π = 2ĥE ,

where ĥE denotes the Néron–Tate height on E. Hence, E has at most finitely
many torsion points defined over Ktv, and there is a positive constant c
such that ĥE(P ) ≥ c for all P ∈ E(Ktv). Effective bounds on the number
of torsion points and c have been calculated in [2, Section 6.3].

4. On Narkiewicz’s property (P )

4.1. Field properties. In the previous section we have studied proper-
ties (B) and (SB). We will start this section by recalling some more arith-
metic properties on fields. The first definition is, just like the definition of
the Bogomolov property, due to Bombieri and Zannier [7].

Definition. A field F ⊆ Q has the Northcott property (N) if any subset
of F of bounded height is finite.

Northcott [22] proved that there are only finitely many points of bounded
height and bounded degree in Q. Hence, every number field has prop-
erty (N). Note that there is no reason to define a Northcott property rel-

ative to some canonical height ĥf . Two height functions differ only by a

bounded function, and hence any set of bounded canonical height ĥf is a
set of bounded height h and vice versa.

Narkiewicz introduced the following definition.
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Definition. A field F has property (P ) if every polynomial f(x) in
F [x] \ F such that there is an infinite set X ⊆ F with f(X) = X, is
of degree one. If a field F satisfies the same condition with “polynomial”
replaced by “rational map”, then we say that F has property (R).

The next definition of Liardet goes in the same direction. We denote by
F a fixed algebraic closure of the field F .

Definition. A field F has property (P ) if every polynomial f(x) in
F [x] \ F such that there is an infinite set X ⊆ F consisting of elements of
uniformly bounded degree over F , with X ⊆ f(X), is of degree one. Again
the obvious generalization for rational functions is called property (R).

For a subfield F of Q we have the following implications:

(8) (N)⇒(R)⇒(R)⇒(P ).

We refer the reader to [10, Section 6] for a proof of this result and a more
detailed discussion of these properties (see also [12]). The authors of [10]
only state (N)⇒(P ) [10, Lemma 6.7], but their proof is valid for (N)⇒(R)
as well.

It is still open whether (P )⇔(R). Dvornicich and Zannier [11, Theorem 3]
gave an example of a field where property (P ) is not preserved under a finite
extension. Since properties (N) ([12, Theorem 2.1]), (P ) and (R) (obvious)
are stable under finite extensions, none of them is equivalent to (P ).

For a field F and any positive integer d we denote by F (d) the composi-
tum in F of all field extensions of F of degree at most d. In [20, Problème
415] Narkiewicz (implicitly) conjectured the following (see also [21, Prob-
lem 10]).

Conjecture 4.1 (Narkiewicz, 1963). The field Q(d) has property (P )
for all positive integers d.

Bombieri and Zannier [7, Corollary 1] proved that Q(2) has property (N),
and by (8) also properties (R) and (P ). Narkiewicz conjectured further that
the statement in Conjecture 4.1 is also true if we replace Q by any completely
transcendental extension field. We will only focus on the case of algebraic
numbers, although some of the tools used in the proof may apply in this
general setting as well.

4.2. Proof of Conjecture 4.1. In what follows we will give a posi-
tive answer to Narkiewicz’s conjecture. To ease notation we will define yet
another property, introducing dynamical canonical heights from (1).

Definition. A field F ⊆ Q has the universal strong Bogomolov property
(USB) if F has the strong Bogomolov property relative to ĥf for all f in
Q(x) with deg(f) ≥ 2.
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Of course, property (N) implies (USB). The next easy lemma relates
(USB) to the other properties defined above.

Lemma 4.2. Let F ⊆ Q be a field with property (USB). Then F has

property (R). If also F (d) has property (USB) for all positive integers d,
then F has property (R).

Proof. Let F ⊆ Q be a field such that F (d) has property (USB) for
some d ∈ N. Moreover, let f ∈ Q(x) be of degree at least two, and X ⊆ Q
a non-empty set of points of degree at most d over F with X ⊆ f(X).
Assume there is a non-preperiodic point α0 ∈ X. Then X ⊆ f(X) implies
the existence of a sequence α1, α2, . . . of pairwise distinct elements in X
such that f(αi) = αi−1 for all i ∈ N. In particular, we get

0 6= ĥf (αn) =
1

deg(f)n
ĥf (α0)→ 0 as n→∞.

Hence, F (d) contains points of arbitrarily small canonical height ĥf , which

contradicts our hypothesis that F (d) has property (USB). Therefore, all
points of X are preperiodic for f . But property (USB) of F (d) also implies
that there are only finitely many preperiodic points of f in X ⊆ F (d),
and hence X is finite. The case d = 1 proves the first statement of the
lemma.

Theorem 4.3. Let K be a number field and S be an infinite set of non-
archimedean valuations on K. If L/K is a Galois extension such that dw|v =
[Lw : Kv] is finite for all v ∈ S and w | v on L, then L has property (USB).

Proof. Let L/K be as above and let f ∈ Q(x) be of degree at least 2. By
Lemma 2.1, f has bad reduction only above finitely many primes. Therefore
we can fix a v ∈ S where f has good reduction.

Since the extension L/K is Galois, the local degree dv = [Lw : Kv]
does not depend on the choice of w | v. We fix such a w. Since dv is finite,
a standard application of Krasner’s Lemma yields the existence of an α ∈ Q
such that Lw = Kv(α). Let w′ be a valuation on L(α) with w′|L = w, and
set v′ = w′|K(α). Then L(α)/K(α) is Galois and

L(α) ⊆ L(α)w′ = Lw = Kv(α) = K(α)v′ .

The map f has good reduction at v′ | v, implying that Jv′(f) = ∅ (see
Lemma 2.1). Thus, by Theorem 1.1, the field L(α) ⊇ L has property (SB)

relative to ĥf . As the rational function f was chosen arbitrarily, L has prop-
erty (USB).

Remark. We have seen in Example 3.5 that the conclusion of the the-
orem is false for any finite set S of non-archimedean absolute values.
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Lemma 4.4. Let L/K be as in Theorem 4.3 and d any positive integer.
Then also L(d) is of this type, i.e. a Galois extension of K with finite local
degrees at all places v in the infinite set S.

Proof. The proof that L(d)/K is Galois is easy and proceeds as in [10,
Theorem 2.1]. The finiteness of local degrees is also well known and follows
as in [7, Proposition 1] from the fact that for all non-archimedean places v
on K there are only finitely many extensions of Kv of fixed degree.

The following immediate consequence proves Conjecture 4.1.

Corollary 4.5. The field Q(d) has properties (USB) and (R).

Proof. This follows from Lemma 4.4 and Theorem 4.3, if we start with
the field L = Q and the set of all primes S.

Example 4.6. We now present a new class of examples satisfying prop-
erty (R), using Theorem 4.3. Let K be an imaginary quadratic number
field and OK the ring of integers of K. For simplicity we assume that no
non-trivial roots of unity are contained in K. We set

S′ = {p prime | p is inert in OK}.
Let S ⊆ S′ be a non-empty subset of S′. For all p ∈ S′ \ S and all n ∈ N
we denote by Kpn the ring class field associated to the order Z+ pnOK . We
have Kpn ⊆ Kpn+1 for all n ∈ N, and hence

K[p] =
⋃
n∈N

Kpn

is a field, and in particular a Galois extension of K. Let ` ∈ S. By definition
`OK is a prime ideal. It follows from the construction of ring class fields
that this prime ideal splits completely in K[p]. This means that

K[p] ⊆ Kt` for all p ∈ S′ \ S and all ` ∈ S.
Define FS as the compositum of all fields K[p], p ∈ S′ \ S. Then FS is a
Galois extension of K with FS ⊆ Kt` for all ` ∈ S. We apply Theorem 4.3 to
see that FS has property (USB) whenever S is infinite. Moreover, Lemma
4.4 also implies that FS has property (R).

A classical result of Hasse [16] tells us that for almost all p ∈ S′ \ S,
the ramification index of Kpn/K at p is at least pn. Therefore, FS/K has
infinite local degree at almost all primes p ∈ S′ \ S.

4.3. Open problems. Let p1, p2, . . . be distinct primes, and d1, d2, . . .

natural numbers such that |p1/dii | tends to infinity as i → ∞. Widmer [27,
Corollary 2] proved that the field

F = Q(p
1/d1
1 , p

1/d2
2 , . . . )
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has property (N), and hence property (USB). This field is either contained
in some Q(d) (if the di are uniformly bounded), or has infinite local degree
at all primes. So, Theorem 4.3 cannot give a full classification of all fields
with property (USB). Notice that in the case of unbounded numbers di, the
Galois closure of F over Q contains infinitely many roots of unity. In that
case F has none of properties (N), (P ) or (USB).

Question 4.7. Do all fields F ⊆ Q with property (USB) which are
Galois extensions of some number field K have finite local degree at infinitely
many primes of K?

As Dvornicich and Zannier [11, Theorem 3] have constructed a Galois
extension of Q with infinite local degree at all primes and satisfying property
(P ) but not (N), Question 4.7 is strongly related to the next one.

Question 4.8. Is property (USB) equivalent to (N) or (P )?

By Corollary 4.5 the equivalence of (N) and (USB) would answer Bom-
bieri and Zannier’s question whether Q(d) has property (N) for all integers d.
At the moment it seems to be out of reach to decide whether all fields with
bounded local degrees above all primes have property (N). In order to give
an answer to Question 4.8, but also independently of it, we ask:

Question 4.9. Let FS be as in Example 4.6 with S an infinite set of
primes. Does FS satisfy property (N)?

Note that FS has property (USB) but (in the notation of Example 4.6)
there are infinitely many primes of K where FS/K has infinite local degree,
whenever S and S′ \ S are infinite sets.
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[17] L.-C. Hsia, A weak Néron model with applications to p-adic dynamical systems,
Compos. Math. 100 (1996), 277–304.

[18] L.-C. Hsia, Closure of periodic points over a non-Archimedean field, J. London Math.
Soc. (2) 62 (2000), 685–700.
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