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On bivariate Hermite interpolation and the limit
of certain bivariate Lagrange projectors

by Phung Van Manh (Hanoi)

Abstract. We give a new poised bivariate Hermite scheme and a formula for the
interpolation polynomial. We show that the Hermite interpolation polynomial is the limit
of bivariate Lagrange interpolation polynomials at Bos configurations on circles.

1. Introduction. Let P(R2) be the vector space of all polynomials
(with real coefficients) on R2, and Pd(R2) the subspace consisting of all
polynomials of degree at most d. The vector space P(R2) is endowed with
the norm

‖P‖∞ = max
j+k≤d

|cjk| for P (x) =
∑
j+k≤d

cjkx
jyk.

Suppose that E ⊂ R2 is some set. Then the polynomials in Pd(R2), when
restricted to E, form a certain vector space, say Pd(E). When E = R2 or E
contains some open disk, Pd(E) is identical with Pd(R2). The dimension of
Pd(E) is denoted by md(E). It is well-known that md = md(R2) =

(
d+2
2

)
. If

E is a circle in R2, then md(E) = 2d+ 1.
A subset X = {x1, . . . ,xmd(E)} of E that consists of md(E) distinct

points is said to be unisolvent for Pd(E) (or degree d on E) if, for ev-
ery function f defined on X, there exists a unique P ∈ Pd(E) such that
f(x) = P (x) for all x ∈ X. This polynomial is called the Lagrange interpo-
lation polynomial of f at X and is denoted by L[X; f ]. In studying Lagrange
interpolation, it is useful to introduce the (generalized) Vandermonde de-
terminant. Choose a basis B = {p1, . . . , pmd(E)} for Pd(E). Then

VDM(B;X) = det [pi(xj)]1≤i,j≤md(E)

is called the Vandermonde determinant . Here j is the row index of the
matrix. It is well-known that X is unisolvent if and only if VDM(B;X) 6= 0.
Of course, the condition is independent of the choice of the basis B. We can
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use the Vandermonde determinant to write the formula for the Lagrange
interpolation polynomial,

(1.1)

L[X; f ](x) =

md(E)∑
i=1

f(xi)
VDM(B;X[xi ← x])

VDM(B;X)
=
∑
p∈B

VDM(B[p← f ];X)

VDM(B;X)
p,

where X[xi ← x] means that we substitute x for xi in X and likewise for
B[p← f ].

We consider the problem of Hermite interpolation by a polynomial of
two variables. More precisely, the problem is to find a polynomial which
matches, on a set of distinct points in R2, the values of a function and its
partial derivatives. We deal with the case where the number of interpolation
conditions is equal to the dimension of Pd(R2). If the interpolation prob-
lem has a unique solution, then we say that the problem is poised . Unlike
univariate Hermite interpolation, bivariate Hermite interpolation is not al-
ways poised. Moreover, it is difficult to check whether a particular bivariate
Hermite problem is poised.

We now state a general problem. Associated with a homogeneous poly-
nomial P (x) =

∑
j+k=d cjkx

jyk, x = (x, y), we define a homogeneous differ-

ential operator P (D) by

P (D)f =
∑
j+k=d

cjk
∂df

∂xj∂yk
.

In the case when P (x) = c, we set P (D)f = cf .

Problem 1. Let A = {a1, . . . ,am} be m distinct points in R2. Let
n1, . . . , nm and d be positive integers such that n1 + · · · + nm = md(R2).
Find homogeneous differential operators Pjk(D) for 1 ≤ j ≤ m and k =
0, . . . , nj − 1 for which the interpolation problem

Pjk(D)f(aj) = fjk, 1 ≤ j ≤ m, 0 ≤ k ≤ nj − 1,

has a unique solution in Pd(R2) for any given data {fjk}.

In this paper, we give a solution of Problem 1 in which the homogeneous
differential operators are the real and imaginary parts of complex differential
operators of the form ∂d/∂xd with x = x + yi. Theorem 2.1 gives a poised
Hermite scheme. A formula for the Hermite interpolation polynomial is given
in Theorem 2.2.

Roughly speaking, a univariate Hermite interpolation is the result of
the collapsing of points in a univariate Lagrange interpolation. However, in
several variables, the problem of determining the limit of Lagrange interpo-
lations is not easy.
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Problem 2. Suppose that the points of a unisolvent set X for Pd(R2)
converge to some limit points. Determine the limit of the Lagrange interpo-
lation polynomial at X of a sufficiently smooth function f .

In [1], the authors gave a condition implying that multivariate Lagrange
projectors tends to a Taylor projector. However, it is difficult to check the
Bloom–Calvi conditions. In [8], the authors treated the case when X is a
natural lattice. They gave a natural geometric condition on X that ensures
that the corresponding Lagrange interpolation polynomial (of fixed degree)
of a sufficient smooth function converges to a Taylor polynomial. In a recent
work, based on a beautiful result of Bos and Calvi, Calvi and Phung [9]
proved that the limit of Lagrange projectors at Bos configurations on irre-
ducible algebraic curves in R2 are the Hermite projectors introduced by Bos
and Calvi [5, 6]. Note that in [9] the authors fixed the curves and let Bos
configurations move along them to Taylorian points.

In this paper, we collect interpolation points from disjoint circles to get a
unisolvent set X. Then we fix the centers of the circles and let the radii tend
to 0. We prove in Theorem 4.1 that the Lagrange interpolation polynomial
converges to the Hermite interpolation polynomial given in Theorem 2.1.
Theorem 4.2 is a slight modification of Theorem 4.1 in which the radius
of the circle containing the largest number of interpolation points remains
constant. We show that the corresponding Lagrange interpolation tends to
the mixed Lagrange/Hermite interpolation constructed in Theorem 2.6.

The tools for proving the convergence theorems are given in Section 3
in which we study the limit of Vandermonde determinants on circles when
the radii tend to 0. Note that there are many ways to collapse points in Rn,
n ≥ 2. In general, each way will give a Hermite interpolation scheme. For
a recent account of the theory of Hermite interpolation, we refer the reader
to [11, 13] and the references therein.

2. A new Hermite scheme in R2. As usual, to x = (x, y) ∈ R2,
we associate the complex number x + yi which we still denote by x. It is
understood that x is a complex number when we write xk for k ∈ N. The
Euclidean norm of x is defined by |x| =

√
x2 + y2. The derivatives in the

complex setting are defined as usual,

∂

∂x
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂x
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

If f and g are sufficiently differentiable real-valued functions in a neighbor-

hood of a ∈ R2, we have the law
(∂kf(a)

∂xk

)
= ∂kf(a)

∂xk
and the Leibniz formula

(2.1)
∂k(fg)(a)

∂xk
=

k∑
j=0

(
k

j

)
∂k−jf(a)

∂xk−j
· ∂

jg(a)

∂xj
.
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Moreover, since for each k ≥ 1,

∂kf(a)

∂xk
=

1

2k

( ∑
0≤j≤k, j even

(−1)j/2
(
k

j

)
∂fk(a)

∂xk−j∂yj

− i
∑

0≤j≤k, j odd
(−1)(j−1)/2

(
k

j

)
∂fk(a)

∂xk−j∂yj

)
,

the relation ∂kf(a)
∂xk

= a + bi is equivalent to the following two relations in
the real setting: ∑

0≤j≤k, j even
(−1)j/2

(
k

j

)
∂fk(a)

∂xk−j∂yj
= 2ka,

∑
0≤j≤k, j odd

(−1)(j−1)/2
(
k

j

)
∂fk(a)

∂xk−j∂yj
= −2kb.

The following theorem gives a poised Hermite scheme.

Theorem 2.1. Let d ≥ 2 be a positive integer and m = [d/2] + 1. Let
sk = d − 2k + 2 for k = 1, . . . ,m and let A = {a1, . . . ,am} be m distinct
points in R2. Then the Hermite scheme

(2.2)
∂jH(ak)

∂xj
= fjk, ∀1 ≤ k ≤ m, 0 ≤ j ≤ sk,

is poised for Pd(R2). Here the {fjk} are any given data.

Proof. We first remark that (2.2) gives 2sk + 1 = 2d − 4k + 5 interpo-
lation conditions for k = 1, . . . ,m. Hence the total number of interpolation
conditions is equal to

m∑
k=1

(2d− 4k + 5) = 2md− 2m(m+ 1) + 5m =

(
d+ 2

2

)
= md(R2).

To prove the Hermite scheme is poised, it suffices to check that ifH ∈ Pd(R2)
and

(2.3)
∂jH(ak)

∂xj
= 0, ∀1 ≤ k ≤ m, 0 ≤ j ≤ sk,

then H = 0. Since H is a polynomial of degree at most d, it is equal to its
Taylor expansion at a1 in the complex form (see for instance [12, p. 74]):

(2.4) H(x) =
∑
j+k≤d

1

j!k!

∂j+kH(a1)

∂xj∂xk
(x− a1)

j(x− a1)
k.

From (2.3) we have

∂jH(a1)

∂xj
=
∂jH(a1)

∂xj
= 0, ∀j = 0, . . . , s1.



Bivariate Hermite interpolation 5

Since s1 = d, we conclude from (2.4) that

H(x) = (x− a1)(x− a1)
∑
j,k>0
j+k≤d

1

j!k!

∂j+kH(a1)

∂xj∂xk
(x− a1)

j−1(x− a1)
k−1

= |x− a1|2H1(x),

where H1 ∈ Pd−2(R2). Applying the Leibniz formula for H1(x) = H(x)
|x−a1|2

and using (2.3) again, we obtain

∂jH1(ak)

∂xj
= 0, ∀2 ≤ k ≤ m, 0 ≤ j ≤ sk.

By similar arguments, we have H1(x) = |x−a2|2H2(x) with H2 ∈ Pd−4(R2).
We continue in this fashion to obtain

H(x) =

m∏
k=1

|x− ak|2Hm(x), Hm ∈ P(R2).

It follows from the last relation that H = 0. Conversely, suppose that H 6= 0.
Then the degree of the polynomial on the right hand side is at least 2m > d.
This contradics the fact that degH ≤ d, and the proof is complete.

We shall give a formula for the Hermite interpolation polynomial. Let f
be a real-valued function of class Ck in a neighborhood of a ∈ R2. Define

Hk
a(f)(x) = f(a) +

k∑
j=1

1

j!

(
∂jf(a)

∂xj
(x− a)j +

∂jf(a)

∂xj
(x− a)j

)
(2.5)

= f(a) + 2 Re
k∑
j=1

1

j!

∂jf(a)

∂xj
(x− a)j .

It is easily seen that Hk
a(f) is a polynomial in Pk(R2). Moreover,

(2.6)
∂jHk

a(f)(a)

∂xj
=
∂jf(a)

∂xj
, ∀0 ≤ j ≤ k.

If k = 0, then the empty sum in (2.5) is taken to be 0. In this case, we have
H0

a(f)(x) = f(a).

Theorem 2.2. With the assumptions of Theorem 2.1, the Hermite in-
terpolation polynomial of a function f of class Csk in a neighborhood of ak,
k = 1, . . . ,m, is given by the formula

H =
m∑
k=1

Tk
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where

T1(x) = Hs1
a1

(f)(x), Tk(x) =
k−1∏
j=1

|x− aj |2Hsk
ak

(
f − T1 − · · · − Tk−1∏k−1

j=1 | · −aj |2

)
(x),

for k = 2, . . . ,m.

Proof. We see at once that H ∈ Pd(R2). We need to verify that

(2.7)
∂jH(ak)

∂xj
=
∂jf(ak)

∂xj
, ∀1 ≤ k ≤ m, 0 ≤ j ≤ sk.

For simplicity of notation, set qk(x) = |x−ak|2. As qk(x) = (x−ak)(x−ak),
we have

(2.8)
∂jqk(ak)

∂xj
=
∂jqk(ak)

∂xj
= 0, ∀j = 0, 1, . . . , k = 1, . . . ,m.

Fix k ∈ {1, . . . ,m}. Then for every n > k, Tn contains the factor qk. There-
fore, relation (2.8) and the Leibniz formula imply that

(2.9)
∂jTn(ak)

∂xj
= 0, ∀0 ≤ j ≤ sk, k < n ≤ m.

To shorten notation, we write Qk−1 for q1 · · · qk−1. Now applying the Leibniz
formula again and the interpolation property of Hsk

ak(·) in (2.6) we find that,
for 0 ≤ j ≤ sk,

∂jTk(ak)

∂xj
=
∂j
(
Qk−1H

sk
ak

(f−T1−···−Tk−1

Qk−1

))
∂xj

(ak)

=

j∑
l=0

(
j

l

)
∂j−lQk−1
∂xj−l

(ak) ·
∂l
(
Hsk

ak

(f−T1−···−Tk−1

Qk−1

))
∂xl

(ak)

=

j∑
l=0

(
j

l

)
∂j−lQk−1
∂xj−l

(ak) ·
∂l
(f−T1−···−Tk−1

Qk−1

)
∂xl

(ak)

=
∂j
(
Qk−1

f−T1−···−Tk−1

Qk−1

)
∂xj

(ak) =
∂jf(ak)

∂xj
−
k−1∑
l=1

∂jTl(ak)

∂xj
.

Combining the last relation with (2.9), we obtain (2.7).

Definition 2.3. The Hermite interpolation polynomial of a function f
in Theorems 2.2 is denoted briefly by H[(A,S); f ], where A = {a1, . . . ,am}
and S = {s1, . . . , sm}.

Example 2.4. Take d = 2. Then m = 2, s1 = 2 and s2 = 0. The
interpolation conditions for H[({a1,a2}, {2, 0}); f ] at a1,a2 ∈ R2 are given
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by

f 7→ f(a1), f 7→
∂

∂x
f(a1), f 7→

∂

∂y
f(a1), f 7→

(
∂2

∂x2
− ∂2

∂y2

)
f(a1),

f 7→ ∂2

∂x∂y
f(a1), f 7→ f(a2).

According to Theorem 2.2, the Hermite interpolation polynomial is given
by H[({a1,a2}, {2, 0}); f ] = T1 + T2, where

T1(x) = f(a1) +
∂f(a1)

∂x
(x− b1) +

∂f(a1)

∂y
(y− c1) +

∂2f(a1)

∂x∂y
(x− b1)(y− c1)

+
1

4

(
∂2f(a1)

∂x2
− ∂2f(a1)

∂y2

)
((x− b1)2 − (y − c1)2), a1 = (b1, c1),

and

T2(x) =
f(a2)− T1(a2)

|a2 − a1|2
|x− a1|2.

Remark 2.5. There is another way to obtain the conditions for the
factorization in Theorem 2.1. Let H ∈ Pd(R2) and q(x) = |x − a|2 with
a = (a, b). We have q(x) = [(y − b) + i(x − a)][(y − b) − i(x − a)]. By [14,

Lemma 2.5], (y−b)+i(x−a) is a factor of H if H̃(x) := H(x, b−i(x−a)) = 0

for all x ∈ R. Since H̃ is a univariate polynomial of degree at most d, H = 0
is equivalent to

(2.10)
dkH̃

dxk
(a) = 0, k = 0, 1, . . . , d.

Since dH̃(x)
dx =

(
∂
∂x − i

∂
∂y

)
H(x, b− i(x− a)), relation (2.10) gives

(2.11)
∂kH

∂xk
(a) = 0, k = 0, 1, . . . , d.

Similarly, (y − b)− i(x− a) is a factor of H if

(2.12)
∂kH

∂xk
(a) = 0, k = 0, 1, . . . , d,

which is equivalent to (2.11). Hence H is a multiple of q if (2.11) holds.

A well-known result shows that the set Pd(R2) restricted to the circle
C(0, r) = {x : |x| = r} forms a (2d + 1)-dimensional vector space whose
basis can be taken to be

(2.13) B = {1,Re(x), Im(x), . . . ,Re(xd), Im(xd)}.
Let X be a set of 2d+ 1 distinct points on C(0, r). For a function f defined
on X, we set

(2.14) L[X; f ](x) =
∑
p∈B

VDM(B[p← f ];X)

VDM(B;X)
p(x), x ∈ R2.
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By Lemma 3.3 below, VDM(B;X) 6= 0. Therefore L[X; f ] is well-defined and
belongs to Pd(R2). When we restrict the polynomial L[X; f ](x) to C(0, r), it
is identical with the Lagrange interpolation polynomial of f at X on C(0, r).
In other words,

(2.15) L[X; f ](a) = f(a), ∀a ∈ X.

As usual, when a Hermite scheme is constructed by using the factorization
method, it can combine with another interpolation scheme (of Hermite type)
to make up a new interpolation process. Here we only exhibit the simplest
case when the additional interpolation process is Lagrange interpolation.

Theorem 2.6. Let d ≥ 2 be a positive integer and m = [d/2] + 1. Let
sk = d−2k+ 2 for k = 2, . . . ,m and let A′ = {a2, . . . ,am} be m−1 distinct
points in R2. Let B be a set of 2d+ 1 distinct points on the circle C(a1, r1)
with C(a1, r1) ∩A′ = ∅. Then, for any sufficiently smooth function f , there
exists a unique H ∈ Pd(R2) such that

H(a) = f(a), ∀a ∈ B,

and
∂jH(ak)

∂xj
=
∂jf(ak)

∂xj
, ∀2 ≤ k ≤ m, 0 ≤ j ≤ sk,

Furthermore,

(2.16) H =

m∑
k=1

T̃k

where

T̃1(x) = L[B; f ](x), T̃k(x) = q(x)
k−1∏
j=2

qj(x)Hsk
ak

(
f − T̃1− · · · − T̃k−1

q
∏k−1
j=2 qj

)
(x),

k = 2, . . . ,m. Here q(x) = |x − a1|2 − r21 and qk(x) = |x − ak|2 for k =
2, . . . ,m.

Proof. To verify the first assertion, it suffices to prove that if H ∈ Pd(R2)
vanishes on B and satisfies

(2.17)
∂jH(ak)

∂xj
= 0, ∀2 ≤ k ≤ m, 0 ≤ j ≤ sk,

then H is identically zero. By Lemma 3.3 below, B is unisolvent for the space
Pd(C(a1, r1)). The assumption shows that H must vanish on C(a1, r1). It
follows that H is a multiple of q. This enables us to write H = qH1 with
H1 ∈ Pd−2(R2). Using the Leibniz formula for H/q and relation (2.17) we
obtain

(2.18)
∂jH1(ak)

∂xj
= 0, ∀2 ≤ k ≤ m, 0 ≤ j ≤ sk,
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Analysis similar to that in the proof of Theorem 2.1 shows that H1 = 0.
Hence H = 0. To prove the formula for the interpolation polynomial, we
make use of a reasoning inspired from the proof of Theorem 2.2. We only
need to show that H given in (2.16) satisfies the interpolation conditions.

Since T̃k is a multiple of q for all k = 2, . . . ,m, we have T̃k(a) = 0 for all
a ∈ B and 2 ≤ k ≤ m. It follows that

H(a) = T̃1(a) = L[B; f ](a) = f(a), ∀a ∈ B,
where we use (2.15) to obtain the last relation. The rest of the proof runs
as before. The details are left to the reader.

Definition 2.7. The Hermite interpolation polynomial of a function f in
Theorem 2.6 is denoted briefly by H[B, (A′, S′); f ], where S′= {s2, . . . , sm}.

3. Vandermonde determinants on circles. The aim of this section
is to study the asymptotic behavior of Vandermonde determinants at points
lying on a circle when the radius goes to 0. We only work with circles centered
at the origin. But all results still hold for arbitrary centers. We recall the
basis B for Pd(C(0, r)),

B = {1,Re(x), Im(x), . . . ,Re(xd), Im(xd)}.
In the trigonometric form, by setting x = eiθ, we get a basis for the space
of all trigonometric polynomials of degree at most d,

(3.1) T = {1, cos θ, sin θ, . . . , cos dθ, sin dθ}.
Lemma 3.1. Let P be a polynomial of degree at most d in R2. If we write

(3.2) P (x) = cr,0 +

d∑
k=1

cr,k Re(xk) +

d∑
k=1

dr,k Im(xk), x ∈ C(0, r),

then limr→0 cr,0 = P (0) and for 1 ≤ k ≤ d,

(3.3)

lim
r→0

cr,k =
1

k!

(
∂kP (0)

∂xk
+
∂kP (0)

∂xk

)
, lim

r→0
dr,k =

i

k!

(
∂kP (0)

∂xk
− ∂kP (0)

∂xk

)
.

Proof. In the polar coordinate x = (r cos θ, r sin θ), θ ∈ [0, 2π), equa-
tion (3.2) becomes

(3.4) P (r cos θ, r sin θ)

= cr,0 +

d∑
k=1

cr,kr
k cos kθ+

d∑
k=1

dr,kr
k sin kθ, θ ∈ [0, 2π).

On the other hand, since P ∈ Pd(R2), we have

P (x) =
∑
j+k≤d

1

j!k!

∂j+kP (0)

∂xj∂xk
xjxk.
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Substituting x = r(cos θ + i sin θ) we obtain

(3.5) P (r cos θ, r sin θ)

=
∑
j+k≤d

1

j!k!

∂j+kP (0)

∂xj∂xk
rj+k

(
cos (j − k)θ + i sin (j − k)θ

)
.

Comparing the coefficients of the trigonometric polynomials on the right
hand sides of (3.4) and (3.5) we have

cr,0 = P (0) + rg0(r), cr,j =
1

j!

(
∂jP (0)

∂xj
+
∂jP (0)

∂xj

)
+ rgj(r),

and

dr,j =
i

j!

(
∂jP (0)

∂xj
− ∂jP (0)

∂xj

)
+ rhj(r), 1 ≤ j ≤ d,

where gj(r), hj(r) are polynomials in r. In the formulas for cr,j and dr,j we
let r → 0 and get the desired equations.

Definition 3.2. Let δ > 0. A set X = {x1, . . . ,x2d+1} ⊂ C(a, r) with
xk = a + reiθk for k = 1, . . . , 2d+ 1 is said to be δ-separate if

|eiθk − eiθj | ≥ δ, ∀k 6= j.

Lemma 3.3. Let X = {x1, . . . ,x2d+1} be 2d+1 distinct points on C(0, r)
with xk = reiθk . Then

VDM(B;X) = (−2i)−de−di(θ1+···+θ2d+1)rd(d+1)
∏

1≤j<k≤2d+1

(eiθk − eiθj ).

In particular, X is unisolvent for Pd(C(0, r)). Moreover, if X is δ-separate
for δ > 0, then

|VDM(B;X)| ≥ 2−drd(d+1)δd(2d+1).

Proof. It is easily seen that

(3.6) VDM(B;X) = rd(d+1)VDM(T ;Θ),

where Θ = {θ1, . . . , θ2d+1}. Here VDM(T ;Θ) = det [h(θ)]h∈T , θ∈Θ is the
(generalized) Vandermonde determinant. It follows from the computation
in [10, pp. 30–31] that

(3.7) VDM(T ;Θ) = (−2i)−de−di(θ1+···+θ2d+1)
∏

1≤j<k≤2d+1

(eiθk − eiθj ).

Hence the first assertion is proved. Next, it is easily seen that VDM(B;X)
6= 0. Hence X is unisolvent for Pd(C(0, r)). The last assertion is a conse-
quence of the fact that |eiθk − eiθj | ≥ δ for all k 6= j,

(3.8) |VDM(T ;Θ)| ≥ 2−dδd(2d+1).

Lemma 3.4. Let δ > 0 and {rn} a sequence of positive numbers tending
to 0. For each n, let Xn be a set of 2d + 1 points on C(0, rn) such that
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Xn is δ-separate. Then for any function f of class Cd in a neighborhood of
0 ∈ R2 we have

lim
n→∞

VDM(B[1← f ];Xn)

VDM(B;Xn)
= f(0),

lim
n→∞

VDM(B[Re(xk)← f ];Xn)

VDM(B;Xn)
=

1

k!

(
∂kf(0)

∂xk
+
∂kf(0)

∂xk

)
,

lim
n→∞

VDM(B[Im(xk)← f ];Xn)

VDM(B;Xn)
=

i

k!

(
∂kf(0)

∂xk
− ∂kf(0)

∂xk

)
, 1 ≤ k ≤ d,

where B[p← f ] means that we substitute f for p in B.

Proof. We will denote by Td
0(f) the Taylor expansion of f at 0 up to

order d. By the Taylor theorem, we can write

(3.9) f(x) = Td
0(f)(x) + |x|dϕ(x),

where ϕ(x) → 0 as x → 0. The polynomial Td
0(f) restricted to C(0, r) is a

linear combination of polynomials in B, that is,

(3.10) Td
0(f)(x) = cr,0 +

d∑
k=1

cr,k Re(xk) +

d∑
k=1

dr,k Im(xk), x ∈ C(0, r).

We first deal with Re(xk) for k = 1, . . . , d. Looking at (3.9), (3.10) and using
the column operation rule for the Vandermonde determinant

VDM(B[Re(xk)← f ];Xn)
we get

VDM(B[Re(xk)← f ];Xn)

= VDM(B[Re(xk)← crn,k Re(xk) + |x|dϕ(x)];Xn).

Writing the right hand side in the trigonometric form as in the proof of
Lemma 3.3, we obtain

VDM(B[Re(xk)← f ];Xn)

= rd(d+1)
n VDM(T [cos kθ ← crn,k cos kθ + rd−kn ϕ(rne

iθ)];Θn)

= rd(d+1)
n

(
crn,kVDM(T ;Θn) + VDM(T [cos kθ ← rd−kn ϕ(rne

iθ)];Θn)
)
,

where Θn is the set of the arguments of Xn. From (3.6) we conclude that

(3.11)
VDM(B[Re(xk)← f ];Xn)

VDM(B;Xn)

= crn,k +
VDM(T [cos kθ ← rd−kn ϕ(rne

iθ)];Θn)

VDM(T ;Θn)
.
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By Lemma 3.1, we have

(3.12) lim
n→∞

crn,k

=
1

k!

(
∂kTd

0(f)(0)

∂xk
+
∂kTd

0(f)(0)

∂xk

)
=

1

k!

(
∂kf(0)

∂xk
+
∂kf(0)

∂xk

)
.

On the other hand, since ϕ(rne
iθ)→ 0 as n→∞ uniformly in θ, we get

(3.13) lim
n→∞

VDM(T [cos kθ ← rd−kn ϕ(rne
iθ)];Θn) = 0.

Hence the fraction on the right hand side of (3.11) tends to 0 as n → ∞
since |VDM(T ;Θn)| is bounded from below by 2−dδd(2d+1) due to (3.8). It
follows that

(3.14) lim
n→∞

VDM(B[Re(zk)← f ];Xn)

VDM(B;Xn)

=
1

k!

(
∂kf(0)

∂xk
+
∂kf(0)

∂xk

)
, 1 ≤ k ≤ d.

The proofs of the remaining equations are similar. The details are left to
the reader.

Remark 3.5. The condition that Xn is δ-separate cannot be removed.
For simplicity, we work with three points. Set B = {1,Re(x), Im(x)} and
Xr = {reiθr,1 , reiθr,2 , reiθr,3}. The computation in Lemma 3.3 gives

VDM(B;Xr) = (−2i)−1r2e−i(θr,1+θr,2+θr,3)
∏

1≤j<k≤3
(eiθr,k − eiθr,j )(3.15)

= 4r2
∏

1≤j<k≤3
sin

θr,k − θr,j
2

.

Take f(x) = y4/3. Clearly, f ∈ C1(R2). Now, for k = 1, 2, 3 choose θr,k =
k3rd with d ≥ 1. Then

VDM(B[Re(x)← f ];Xr) =

∣∣∣∣∣∣∣
1 (r sin(rd))4/3 r sin(rd)

1 (r sin(8rd))4/3 r sin(8rd)

1 (r sin(27rd))4/3 r sin(27rd)

∣∣∣∣∣∣∣
∼ r

7
3
(d+1)

∣∣∣∣∣∣∣
1 1 1

1 16 8

1 81 27

∣∣∣∣∣∣∣ = −170r
7
3
(d+1).

where we use the Taylor expansion sinx = x+ o(x) in the second relation.
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On the other hand, from (3.15) we have

VDM(B;Xr) = 4r2
∏

1≤j<k≤3
sin

(k3 − j3)rd

2
∼ 1729r3d+2.

Consequently,

VDM(B[Re(x)← f ];Xr)

VDM(B;Xr)
∼ −170r

7
3
(d+1)

1729r3d+2
=

−170

1729r
2
3
d−1/3

.

The last fraction tends to −∞ as r → 0.

Corollary 3.6. Under the same assumptions of Lemma 3.4, we have

lim
n→∞

L[Xn, f ](x) = Hd
0 (f)(x),

where L[Xn; f ] is defined in (2.14).

Proof. By Lemma 3.4 and the formula for L[Xn, f ](x), we have

lim
n→∞

L[Xn, f ](x) = f(0) +
d∑

k=1

[
1

k!

(
∂kf(0)

∂xk
+
∂kf(0)

∂xk

)
Re(xk)

+
i

k!

(
∂kf(0)

∂xk
− ∂kf(0)

∂xk

)
Im(xk)

]
= f(0) +

d∑
k=1

1

k!

(
∂kf(0)

∂xk
xk +

∂kf(0)

∂xk
xk
)

= Hd
0 (f)(x),

which completes the proof.

Suppose K is a compact neighborhood of a ∈ R2. We denote by Cd(K)
the space of functions of class Cd in neighborhoods of K. Let us define a
norm on Cd(K) by

‖f‖K,d = max
j+k≤d

sup
x∈K

∣∣∣∣∂j+kf(x)

∂xj∂yk

∣∣∣∣, f ∈ Cd(K).

Definition 3.7. Let {fn} be a sequence of functions of class Cd in a
compact neighborhood K of a. We say that {fn} is d-regular at a if for
every ε1 > 0, there exist ε2 > 0 and n0 ∈ N such that

|ϕn(x)| < ε1, ∀x ∈ D(a, ε2), n > n0,

where ϕn is defined by

fn(x) = Td
a(fn)(x) + |x− a|dϕn(x).

Theorem 3.8. Let δ > 0 and {rn} a sequence of positive numbers tend-
ing to 0. For each n, let Xn be a δ-separate set of 2d+1 points on C(a, rn).
If K is a compact neighborhood of a, {fn} ⊂ Cd(K) is d-regular at a and
fn → f in Cd(K), then

lim
n→∞

L[Xn; fn](x) = Hd
a(f)(x),
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where L[Xn; fn] is defined in (2.14) in which

B = {1,Re(x− a), Im(x− a), . . . ,Re((x− a)d), Im((x− a)d)}.
Proof. There is no loss of generality in assuming a = 0. It suffices to

prove that the fraction VDM(B[p← fn];Xn)/VDM(B;Xn) has the limit
given in Lemma 3.4 for every p ∈ B. We need to check that

lim
n→∞

VDM(B[Re(xk)← fn];Xn)

VDM(B;Xn)
=

1

k!

(
∂kf(0)

∂xk
+
∂kf(0)

∂xk

)
, 1 ≤ k ≤ d.

As in the proof of Lemma 3.4, we write fn as the sum of its Taylor expansion
and an error,

(3.16) fn(x) = Td
0(fn)(x) + |x|dϕn(x).

We also set

(3.17) Td
0(fn)(x)

= crn,0 +

d∑
k=1

crn,k Re(xk) +

d∑
k=1

drn,k Im(xk), x ∈ C(0, rn).

By the arguments in the proof of Lemma 3.1, we have

crn,k =
1

k!

(
∂kTd

0(fn)(0)

∂xk
+
∂kTd

0(fn)(0)

∂xk

)
+ rngn,k(rn)

=
1

k!

(
∂kfn(0)

∂xk
+
∂kfn(0)

∂xk

)
+ rngn,k(rn),

where gn,k(rn) is a polynomial in rn. Moreover, the coefficients of gn,k(rn)
are linear combinations of partial derivatives of fn at 0 of order up to d,
and hence these coefficients are uniformly bounded in n. It follows that
rngn,k(rn)→ 0 as n→∞. Consequently,

lim
n→∞

crn,k = lim
n→∞

1

k!

(
∂kfn(0)

∂xk
+
∂kfn(0)

∂xk

)
=

1

k!

(
∂kf(0)

∂xk
+
∂kf(0)

∂xk

)
.

Since {fn} is d-regular at 0, ϕn(rne
iθ) → 0 as n → ∞ uniformly in θ.

A passage to the limit similar to the proof of Lemma 3.4 implies that

lim
n→∞

VDM(B[Re(xk)← fn];Xn)

VDM(B;Xn)
= lim

n→∞
crn,k =

1

k!

(
∂kf(0)

∂xk
+
∂kf(0)

∂xk

)
.

The proof is complete.

4. Lagrange interpolation at Bos configuration on circles. Let
d ≥ 2 and m = [d/2] + 1. We set sk = d − 2k + 2 for k = 1, . . . ,m.
Let C1, . . . , Cm be pairwise disjoint circles in R2. On Ck, we take a set
Xk of 2sk + 1 distinct points. In [4, Theorem 3.3], Bos pointed out that
X =

⋃m
k=1Xk is unisolvent for Pd(R2). Such a configuration of points will
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be called a Bos configuration on circles. Note that Bos considers two cases,
when d is even and odd. But our setting includes both of them.

Theorem 4.1. Let δ > 0 and d ≥ 2 be a positive integer. Define m =
[d/2] + 1 and S = {s1, . . . , sm} with sk = d − 2k + 2 for k = 1, . . . ,m. Let
A = {a1, . . . ,am} be m distinct points in R2. To each point ak is associated
a sequence {Cnk } of circles Cnk = {x : |x−ak| = rk,n} such that limn→∞ rk,n
= 0. For 1 ≤ k ≤ m and n ≥ 1, let Xn

k be a δ-separate set of 2sk + 1
points on Cnk . Set Xn =

⋃m
k=1X

n
k . Then for any function f of class Csk in

neighborhoods of the ak’s, we have

lim
n→∞

L[Xn; f ] = H[(A,S); f ].

In Figure 1, we show a Bos configuration formed by 21=11+7+3 points
on three pairwise disjoint circles. It is unisolvent for P5(R2). Fix the centers
and let the radii of the circles tend to 0. By Theorem 4.1, the Lagrange
operator converges to the Hermite operator H[({a1,a2,a3}, {5, 3, 1}); ·].

Fig. 1. An example of a Bos configuration

In the following result, we fix the radius of the first circle which contains
the largest number of points. We let points on this circle move along it and
get an analogous result.

Theorem 4.2. Let δ > 0 and d ≥ 2 be a positive integer. Define
m = [d/2] + 1 and S′ = {s2, . . . , sm} with sk = d − 2k + 2 for k =
2, . . . ,m. Let A′ = {a2, . . . ,am} be m distinct points in R2. To each point
ak with k = 2, . . . ,m is associated to a sequence {Cnk } of circles with Cnk =
{x : |x− ak| = rk,n} such that limn→∞ rk,n = 0. For 2 ≤ k ≤ m and n ≥ 1,
let Xn

k be a δ-separate set of 2sk + 1 points on Cnk . Let C(a1, r1) be a fixed
circle which is disjoint from A′. Let Xn

1 and B be sets of 2d + 1 distinct
points on C(a1, r1) such that Xn

1 → B as n → ∞. Set Xn =
⋃m
k=1X

n
k .

Then, for any continuous function f on C(a1, r1) and of class Csk in neigh-
borhoods of the ak’s for k = 2, . . . ,m, we have

lim
n→∞

L[Xn; f ] = H[B, (A′, S′); f ]

where the right hand side is defined in Definition 2.7.
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The assumption Xn
1 → B as n → ∞ is understood as follows. Assume

thatXn
1 = {bn1 , . . . ,bn2d+1} and B = {b1, . . . ,b2d+1}. Then limn→∞X

n
1 = B

if

lim
n→∞

bnk = bk, ∀k = 1, . . . , 2d+ 1.

We first need some auxiliary results.

Lemma 4.3. Let K be a compact neighborhood of a ∈ R2. Let {gn} be a
sequence in Cd+1(K) that converges to g in Cd+1(K). If f ∈ Cd(K), then
the sequence {fgn} is d-regular at a.

Proof. We can assume that a = 0 and K = {x : |x| ≤ r}. We write

(4.1) f(x) = Td
0(f)(x) + |x|dϕ(x), gn(x) = Td

0(gn)(x) + |x|dψn(x).

We have limx→0 ϕ(x) = 0. Since gn converges to g on Cd+1(K), the sequence
{Dαgn} is uniformly bounded on K for all |α| ≤ d+1 and we can find M1 > 0
such that ψn(x) ≤ M1|x|, x ∈ K. Here, to shorten the notation, we write

Dαf for ∂α1+α2f
∂xα1∂yα2 with α = (α1, α2) ∈ N2. From (4.1) we get

f(x)gn(x) =
(
Td

0(f)(x) + |x|dϕ(x)
)(

Td
0(gn)(x) + |x|dψn(x)

)
=

(∑
|β|≤d

1

β!
Dβ(f)(0)xβ + |x|dϕ(x)

)(∑
|γ|≤d

1

γ!
Dγ(gn)(0)xγ + |x|dψn(x)

)
.

On the other hand, using the Leibniz formula for partial derivatives, we
obtain

Td
0(fgn)(x) =

d∑
|α|=0

1

α!
Dα(fgn)(0)xα

=

d∑
|α|=0

xα

α!

∑
β+γ=α

α!

β!γ!
Dβ(f)(0)Dγ(gn)(0)

=
∑

|β|+|γ|≤d

(
1

β!
Dβ(f)(0)xβ

)(
1

γ!
Dγ(gn)(0)xγ

)
.

Consequently,

(4.2) f(x)gn(x)−Td
0(fgn)(x) =

∑
|β|+|γ|≥d+1
|β|,|γ|≤d

1

β!γ!
Dβ(f)(0)Dγ(gn)(0)xβ+γ

+ |x|dϕ(x)Td
0(gn)(x) + |x|dψn(x)Td

0(f)(x) + |x|2dϕ(x)ψn(x).

Since Td
0(gn)(x) is uniformly bounded on K and ψn(x) ≤ M1|x| for all

x ∈ K, the right hand side of (4.2) can be written in the form |x|dηn(x)
where {ηn(x)} satisfies the condition: For all ε1 > 0, there exists ε2 > 0
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such that

|ηn(x)| < ε1, ∀|x| < ε2, n ≥ 1.

This proves the lemma.

A simple argument gives the following result.

Lemma 4.4. Let K be a compact set in the plane that does not contain
a1, . . . ,ak. Set qj(x) = |x − aj |2, 1 ≤ j ≤ k. For each j, let {rj,n} be a
sequence of positive real numbers such that limn→∞ rj,n = 0. Then

1

(q1 − r21,n) · · · (qk − r2k,n)
→ 1

q1 · · · qk
in Cm(K) for all m ≥ 0.

Moreover if Pn, P ∈ Pd(R2) are such that Pn → P as n→∞, then

Pn
(q1 − r21,n) · · · (qk − r2k,n)

→ P

q1 · · · qk
in Cm(K) for all m ≥ 0.

Combining Lemmas 4.3 and 4.4 we obtain the following result.

Corollary 4.5. Under the assumptions of Lemma 4.4 where K is a
compact neighborhood of a, if f ∈Cd(K), then the sequence{

f

(q1 − r21,n) · · · (qk − r2k,n)

}
is d-regular a. Moreover, if Pn, P ∈ Pm(R2) are such that Pn tends to P as
n→∞, then so does the sequence

{
Pn

(q1−r21,n)···(qk−r2k,n)
}

.

Proof of Theorem 4.1. We first recall a formula for the Lagrange inter-
polation polynomial at the Bos configuration. It can be found in [9, proof
of Theorem 6.3]. The polynomial Ln = L[Xn; f ] is given by

(4.3)

Ln =
m∑
k=1

Lnk with Lnk =
k−1∏
j=1

(qj − r2j,n)L
[
Xn
k ;

f −
∑k−1

j=1 L
n
j∏k−1

j=1(qj − r2j,n)

]
, 1 ≤ k ≤ m,

where qk(x) = |x− ak|2, the empty product in the definition of Lnk is taken
as 1 and the empty sum is taken as 0. Note that when n is sufficiently large,
the m circles Cnk , k = 1, . . . ,m, are pairwise disjoint. Hence Xn is unisolvent
for Pd(R2). For the convenience of the reader, we recall the proof of (4.3).
On Xn

1 , we have Lnk = 0 for all k ≥ 2 since it contains the factor q1 − r21,n.
Hence Ln = Ln1 = f on Xn

1 by (2.15). Similarly, on Xn
j , for j ≥ 2, we have
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Lnk = 0 for all k > j. Hence, on Xn
j , we can write

Ln =

j∑
k=1

Lnk = Lnj +

j−1∑
k=1

Lnk(4.4)

=

j−1∏
k=1

(qk − r2k,n)

(
f −

∑j−1
k=1 L

n
k∏j−1

k=1(qk − r2k,n)

)
+

j−1∑
k=1

Lnk = f.

We will prove that limn→∞ L
n
k = Tk, where Tk is defined in Theorem 2.2.

Indeed, if k = 1, then using Corollary 3.6, we have

lim
n→∞

Ln1 = lim
n→∞

L[Xn
1 ; f ] = Hs1

a1
(f) = T1.

Assume the assertion holds up to k < m; we will prove it for k + 1. By
Corollary 4.5, the sequence{

f − Ln1 − · · · − Lnk−1∏k−1
j=1(qj − r2j,n)

}
is sk+1-regular at ak+1. Furthermore, when r is small enough, this sequence
converges in Csk+1(D(ak+1, r)) to

f − T1 − · · · − Tk−1∏k−1
j=1 qk

as n → ∞. Hence Theorem 3.8 implies that limn→∞ L
n
k+1 = Tk+1. Conse-

quently,

lim
n→∞

Ln =
m∑
k=1

Tk = H[(A,S); f ].

Proof of Theorem 4.2. The proof is a simple adaptation of that of The-
orem 4.1. It is sufficient to show that

lim
n→∞

Lnk = T̃k, k = 1, . . . ,m,

where Lnk and T̃k are defined in (4.3) and Theorem 2.6 respectively. We first
prove the claim for k = 1. For this purpose, we see at once that

Ln1 = L[Xn
1 ; f ] =

∑
p∈B

VDM(B[p← f ];Xn
1 )

VDM(B;Xn
1 )

p(x),

where B is defined in (2.13). Since limn→∞X
n
1 = B and VDM(B;B) 6= 0,

and since f is continuous on C(a1, r1), we have

lim
n→∞

VDM(B[p← f ];Xn
1 )

VDM(B;Xn
1 )

=
VDM(B[p← f ];B)

VDM(B;B)
, ∀p ∈ B.

It follows that

lim
n→∞

Ln1 =
∑
p∈B

VDM(B[p← f ];B)

VDM(B;B)
p = L[B; f ] = T̃1.
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A passage to the limit similar to the above implies that limn→∞ L
n
k = T̃k

for all k = 2, . . . ,m, and the proof is complete.

In Theorem 4.1 we consider the case when the Bos configurations lie
on m circles whose centers are distinct. Now we turn to the problem of
finding the limit of the Lagrange interpolation at Bos configurations when
the interpolation points are taken on concentric circles. In this case, it is to
be expected that the limit is the Taylor polynomial.

Let a ∈ R2. For d ≥ 2, we define m = [d/2] + 1 and sk = d − 2k + 2
for k = 1, . . . ,m. Fix m pairwise distinct radii r1, . . . , rm. Let {ρn} be a
sequence of positive numbers such that limn→∞ ρn = 0. For 1 ≤ k ≤ m and
n ≥ 1, let Xn

k be a set of 2sk + 1 points on Cnk = {x : |x − a| = rkρn}. Set
Xn =

⋃m
k=1X

n
k . Then Xn is a unisolvent set for Pd(R2) (see Bos [4]).

Proposition 4.6. Suppose Xn
k is δ-separate for every n, k. Let f be a

function of class Cmd−1 in a neighborhood of a. Then

lim
n→∞

L[Xn; f ] = Td
a(f).

Proof. Without loss of generality, we assume that a = 0. By [1, Theo-
rem 3.3], it suffices to check that for all monomial functions fα(x) = xα1yα2

with |α| = α1 + α2 = d+ 1, we have

(4.5) lim
n→∞

L[Xn; fα] = 0.

We follow [4, p. 276] in setting

Bk = {1,Re(x), Im(x), . . . ,Re(xsk), Im(xsk)},and

Dn1 = B1, Dnj =
(j−1∏
k=1

(|x|2 − (rkρn)2)
)
Bj , j = 2, . . . ,m.

Then Dn =
⋃m
j=1Dnj is a basis for Pd(R2). From the arguments in [4,

pp. 279–280], we have

VDM(Dn;Xn)

=

m∏
k=1

(rkρn)sk(sk+1)
{k−1∏
j=1

((rkρn)2 − (rjρn)2)
}2sk+1

VDM(Tk;Θnk )

= Mρσdn

m∏
k=1

VDM(Tk;Θnk ),

where Tk = {1, cos θ, sin θ, . . . , cos(skθ), sin(skθ)} and Θnk is the set of argu-
ments of Xn

k . The constant M depends only on the rk’s, and

σd =
m∑
k=1

(
sk(sk + 1) + 2(k − 1)(2sk + 1)

)
.
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Since Xn
k is δ-separate, the proof of Lemma 3.3 implies that there exists

Mk > 0 depending only on sk and δ such that |VDM(Tk;Θnk )| ≥Mk. Hence

(4.6) |VDM(Dn;Xn)| ≥M
( m∏
k=1

Mk

)
ρσdn .

On the other hand, for each p ∈ Dn, we can write

p(Xn) = ρdeg pn Yp,

and since fα is a monomial function of degree d+ 1, we have

fα(Xn) = ρd+1
n Y,

where Y, Yp ∈ Rd(d+1)/2 whose entries are linear combinations of polynomials
of the rk’s (with certain coefficients) multiplied by multivariate trigonomet-
ric polynomials evaluated at

⋃m
k=1Θ

n
k . Consequently,

(4.7) VDM(Dn[p← fα];Xn) = ρσd+d+1−deg p
n det(Vp),

where Vp is the matrix whose column vectors are the Yq’s for all q ∈ Dn
except for Yp which is replaced by Y . There exists a constant M ′ > 0
(depending only on the rk and d) such that |det(Vp)| < M ′ for all p ∈ Dn.
It follows that

(4.8) |VDM(Dn[p← fα];Xn)| ≤M ′ρσd+d+1−deg p
n .

Combining (4.6) and (4.8) we obtain

lim
n→∞

VDM(Dn[p← fα];Xn)

VDM(Dn;Xn)
= 0, p ∈ Dn.

The formula of L[Xn; fα] in (1.1) implies (4.5).

Example 4.7. In Proposition 4.6, every point of Xn tends to a with
the same speed as n → ∞. This example shows that when the speeds are
different, the Lagrange projector may not converge. Let r1, r2 be different
positive numbers. Take a1 = (r1, 0), a2 = (−r1, 0) on C(0, r1) and a3 =
(0, r2) on C(0, r2). Then X = {ai : i = 1, 2, 3} is unisolvent for P1(R2). Let
f(x) = x2. It is easy to check that

L[X; f ](x) = (r1)
2 − (r1)

2

r2
y, x = (x, y).

If we take r1 = δ, r2 = δ3, then L[X; f ](x) = δ2 − y/δ. Thus L[X; f ] does
not converge as δ → 0 although X tends to 0.

Remark 4.8. The results in this paper are very two-dimensional be-
ing based on complex derivatives. One may ask whether analogous results
hold for a higher-dimensional space using Clifford algebras, especially the
quaternions.
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