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Normality criteria for families of
zero-free meromorphic functions

by Jun-Fan Chen (Fuzhou)

Abstract. Let F be a family of zero-free meromorphic functions in a domain D, let
n, k and m be positive integers with n ≥ m + 1, and let a 6= 0 and b be finite complex

numbers. If for each f ∈ F , fm + a(f (k))n − b has at most nk zeros in D, ignoring
multiplicities, then F is normal in D. The examples show that the result is sharp.

1. Introduction. Let D be a domain in C and F be a family of func-
tions meromorphic in D. Then F is said to be normal in D, in the sense
of Montel, if every sequence {fn} ⊂ F contains a subsequence {fnj} which
converges spherically locally uniformly in D to a meromorphic function or
the constant ∞ (see [4, 9, 12]).

In 1959, Hayman [3] proved that if f is a transcendental meromorphic
function in C, then f ′ + afn assumes every finite value infinitely often for
a positive integer n ≥ 5 and a nonzero finite complex number a. Mues [7]
showed that this is false for n = 3, 4 by some counter-examples. Correspond-
ing to the above result, Ye [13] for n ≥ 3 and Fang and Zalcman [2] for n ≥ 2
studied a similar problem where f ′ + afn is replaced by f + a(f ′)n. More-
over, Fang and Zalcman [2] gave a related normal family analogue. Later on,
Xu, Wu and Liao [10] considered the case of higher derivatives and proposed
a conjecture. Recently, Li [5] studied this conjecture and proved the following
result.

Theorem A. Let F be a family of zero-free meromorphic functions in
a domain D, let n ≥ 2 and k be positive integers, and let a 6= 0 and b be
finite complex numbers. If for each f ∈ F , f + a(f (k))n − b has at most nk
zeros in D, ignoring multiplicities, then F is normal in D.

In this paper, we generalize Theorem A by replacing f + a(f (k))n− b by
fm + a(f (k))n − b and prove the following result.
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Theorem 1. Let F be a family of zero-free meromorphic functions in a
domain D, let n, k and m be positive integers with n ≥ m+ 1, and let a 6= 0
and b be finite complex numbers. If for each f ∈ F , fm + a(f (k))n − b has
at most nk zeros in D, ignoring multiplicities, then F is normal in D.

Example 1. Let D = {z : |z| < 1} and F = {fj : j = 1, 2, . . .}, where
fj(z) = ejz, and let n, k and m be positive integers. Then, for each fj ∈ F ,

we have fj 6= 0 and fmj + (f
(k)
j )m = emjz(1 + jmk) 6= 0 in D. But F fails to

be normal in D. This shows that the condition n ≥ m+ 1 in Theorem 1 is
necessary.

Example 2. Let D = {z : |z| < 1} and F = {fj : j = 1, 2, . . .}, where
fj(z) = jzk, and let n, k and m be positive integers with n ≥ m+ 1. Then,

for each fj ∈ F , we have fmj + (f
(k)
j )n = jm(zmk + jn−mk!n) 6= 0 in D. But

F fails to be normal in D. This shows that the condition of zero-freeness in
Theorem 1 cannot been removed.

Example 3. Let D = {z : |z| < 1} and F = {fj : j = 1, 2, . . .}, where
fj(z) = 1/(jz), and let n, k and m be positive integers with n ≥ m + 1.
Then, for each fj ∈ F ,

fmj + (f
(k)
j )n =

j−mzn(k+1)−m + j−n(−1)nkk!n

zn(k+1)

has at least nk+1 zeros inD, ignoring multiplicities. But F fails to be normal
in D. This shows that the condition in Theorem 1 that fm + a(f (k))n − b
has at most nk zeros in D, ignoring multiplicities, is the best possible.

2. Some lemmas. Let f(z) be a meromorphic function in the complex
plane C. We shall use standard notation of Nevanlinna theory (see e.g. [4,
12]), and denote by S(r, f) any real function of growth o(T (r, f)) as r →∞
outside of a possible exceptional set of finite linear measure.

Lemma 1 (see [8, 14]). Let α ∈ R satisfy −1 < α < ∞, and let F be a
family of zero-free meromorphic functions in a domain D. Then, if F is not
normal at some point z0 ∈ D, there exist

(i) points zj ∈ D, zj → z0,
(ii) functions fj ∈ F , and
(iii) positive numbers ρj → 0

such that
fj(zj + ρjζ)

ραj
= gj(ζ)→ g(ζ)

locally uniformly with respect to the spherical metric, where g is a noncon-
stant zero-free meromorphic function on C of order at most 2. In particular,
if g is an entire function, then g is of order at most 1.
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Lemma 2 (see [12]). Let f be a transcendental meromorphic function
in C. Then

lim
r→∞

T (r, f)

log r
=∞.

Lemma 3 (see [11]). Let k be a positive integer, and let f be a transcen-
dental meromorphic function in C. Then

m

(
r,
f (k)

f

)
= S(r, f (k)).

Lemma 4. Let f be a zero-free transcendental meromorphic function
in C, let n ≥ 2, k and m be positive integers, and let a 6= 0 be a finite
complex number. Then fm + a(f (k))n has infinitely many zeros.

Proof. Suppose that fm + a(f (k))n has finitely many zeros. Then by
Lemma 2,

(2.1) N

(
r,

1

fm + a(f (k))n

)
= O(log r) = S(r, f (k)).

On the other hand, it follows from the first and second fundamental
theorem and Lemma 3 that

(2.2) m

(
r,

1

a(f (k))n

)
≤ m

(
r,

fm

a(f (k))n

)
+m

(
r,

1

fm

)
≤ m

(
r,

fm

a(f (k))n
+ 1

)
+m

(
r,

1

(f (k))m

)
+m

(
r,

(f (k))m

fm

)
+O(1)

≤ m
(
r,
fm + a(f (k))n

a(f (k))n

)
+m

(
r,

1

(f (k))m

)
+ S(r, f (k))

≤ T
(
r,

a(f (k))n

fm + a(f (k))n

)
−N

(
r,
fm + a(f (k))n

a(f (k))n

)
+m

(
r,

1

(f (k))m

)
+ S(r, f (k))

≤ N
(
r,

a(f (k))n

fm + a(f (k))n

)
+N

(
r,
fm + a(f (k))n

a(f (k))n

)
+N

(
r,

1

a(f (k))n/(fm + a(f (k))n)− 1

)
+m

(
r,

1

(f (k))m

)
−N

(
r,
fm + a(f (k))n

a(f (k))n

)
+ S(r, f (k)).

A simple calculation shows that

N

(
r,

a(f (k))n

fm + a(f (k))n

)
≤ N

(
r,

1

fm + a(f (k))n

)
,(2.3)
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N

(
r,
fm + a(f (k))n

a(f (k))n

)
≤ N

(
r,

1

f (k)

)
,(2.4)

N

(
r,

1

a(f (k))n/(fm + a(f (k))n)− 1

)
≤ N

(
r,

1

f

)
+N(r, f),(2.5)

N

(
r,
fm + a(f (k))n

a(f (k))n

)
≥ N

(
r,

1

(f (k))n

)
−N

(
r,

1

fm + a(f (k))n

)
.(2.6)

Now by (2.1)–(2.6), Lemma 2 and the first fundamental theorem we
obtain

nT (r, f (k)) ≤ N
(
r,

1

f (k)

)
+N(r, f) +m

(
r,

1

(f (k))m

)
+ S(r, f (k))

≤ N
(
r,

1

f (k)

)
+N(r, f (k)) +mm

(
r,

1

f (k)

)
+ S(r, f (k))

≤ mN
(
r,

1

f (k)

)
+

1

k + 1
N(r, f (k)) +mm

(
r,

1

f (k)

)
+ S(r, f (k))

≤ mT
(
r,

1

f (k)

)
+

1

k + 1
T (r, f (k)) + S(r, f (k))

≤ mT (r, f (k)) +
1

k + 1
T (r, f (k)) + S(r, f (k)).

Noting n ≥ m+ 1, from this we get T (r, f (k)) = S(r, f (k)), a contradiction.
Therefore fm + a(f (k))n has infinitely many zeros.

This completes the proof of Lemma 4.

Using the idea of [1], we obtain the following important lemma.

Lemma 5. Let n, k and m be positive integers with n ≥ m+ 1, let a 6= 0
and b be finite complex numbers, and let f be a nonconstant zero-free rational
function. Then fm + a(f (k))n − b has at least nk + 1 distinct zeros in C.

Proof. Since f is a nonconstant zero-free rational function, f is not a
polynomial, i.e., f has at least one finite pole. Thus we can write

f(z) =
C1∏q

i=1(z + zi)pi
,(2.7)

fm(z) =
C2∏q

i=1(z + zi)mpi
,(2.8)

where C1 and C2 (= Cm1 ) are nonzero constants, q and pi are positive inte-
gers, the zi (when 1 ≤ i ≤ q) are distinct complex numbers, p =

∑q
i=1 pi.

By induction, we deduce from (2.7) that

(2.9) f (k)(z) =
P (z)∏q

i=1(z + zi)pi+k
,
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where P (z) is a polynomial of degree (q − 1)k. Further, by (2.7)–(2.9), we
get

fm(z) + a(f (k)(z))n =
C2
∏q
i=1(z + zi)

(n−m)pi+nk + aPn(z)∏q
i=1(z + zi)n(pi+k)

,

and so, by simple calculation, fm(z) + a(f (k)(z))n − b has at least one zero
in C. Thus we can write

(2.10) fm(z) + a(f (k)(z))n − b =
C3
∏s
i=1(z + ωi)

li∏q
i=1(z + zi)n(pi+k)

,

where C3 is a nonzero constant, s and li are positive integers, the zi (when
1 ≤ i ≤ q) and ωi (when 1 ≤ i ≤ s) are distinct complex numbers. From
(2.8)–(2.10), we have

(2.11) C2

q∏
i=1

(z + zi)
(n−m)pi+nk + aPn(z)

= b

q∏
i=1

(z + zi)
n(pi+k) + C3

s∏
i=1

(z + ωi)
li .

We now consider two cases.

Case 1: b = 0. Then by (2.11) it follows that
∑q

i=1[(n −m)pi + nk] =∑s
i=1 li, C2 = C3,

(2.12)

q∏
i=1

(1 + zit)
(n−m)pi+nk −

s∏
i=1

(1 + ωit)
li = t(n−m)p+nkQ(t),

where Q(t) = −(a/C2)t
n(q−1)kPn(1/t) is a polynomial of degree less than

n(q − 1)k. From (2.12), we get

(2.13)

∏q
i=1(1 + zit)

(n−m)pi+nk∏s
i=1(1 + ωit)li

= 1+
t(n−m)p+nkQ(t)∏s
i=1(1 + ωit)li

= 1+O(t(n−m)p+nk)

as t → 0. Thus by taking logarithmic derivatives of both sides of (2.13), it
follows that

(2.14)

q∑
i=1

[(n−m)pi + nk]zi
1 + zit

−
s∑
i=1

liωi
1 + ωit

= O(t(n−m)p+nk−1)

as t→ 0. If we compare the coefficients of tj , j = 0, 1, . . . , (n−m)p+nk−2,
in (2.14), we obtain

(2.15)

q∑
i=1

[(n−m)pi + nk]zji −
s∑
i=1

liω
j
i = 0,

j = 1, . . . , (n −m)p + nk − 1. Let zq+i = ωi when 1 ≤ i ≤ s. Noting that∑q
i=1[(n−m)pi+nk] =

∑s
i=1 li and using (2.15), we deduce that the system
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of linear equations

(2.16)

q+s∑
i=1

zji xi = 0,

where 0 ≤ j ≤ (n−m)p+ nk − 1, has a nonzero solution

(x1, . . . , xq+1, . . . , xq+s) = ((n−m)p1 + nk, . . . ,−l1, . . . ,−ls).

If (n − m)p + nk ≥ q + s, then the determinant det(zji )(q+s)×(q+s) of the
coefficients of the system of equations (2.15), where 0 ≤ j ≤ q + s − 1, is
equal to zero, by Cramer’s rule (see e.g. [6]). However, the zi are distinct
complex numbers when 1 ≤ i ≤ q+s, and the determinant is a Vandermonde
determinant, so it cannot be zero (again see [6]), which is a contradiction.

Hence we conclude that (n−m)p+ nk < q + s. It follows from this and
the two inequalities n ≥ m+ 1 and p =

∑q
i=1 pi ≥ q that s ≥ nk + 1.

Case 2: b 6= 0. Let

(2.17) b

q∏
i=1

(z + zi)
n(pi+k) − C2

q∏
i=1

(z + zi)
(n−m)pi+nk

= b

q∏
i=1

(z + zi)
(n−m)pi+nk

l∏
i=1

(z + αi)
mi ,

where the zi (when 1 ≤ i ≤ q) and αi (when 1 ≤ i ≤ l) are distinct complex

numbers, and
∑l

i=1mi = mp. Then from (2.11) and (2.17) we get

(2.18) b

q∏
i=1

(z + zi)
(n−m)pi+nk

l∏
i=1

(z + αi)
mi + C3

s∏
i=1

(z + ωi)
li = aPn(z).

We see by (2.17)–(2.18) that
∑q

i=1[(n−m)pi+nk] +
∑l

i=1mi = np+nkq =∑s
i=1 li and b = −C3. Thus by (2.18), we get

(2.19)

q∏
i=1

(1 + zit)
(n−m)pi+nk

l∏
i=1

(1 +αit)
mi −

s∏
i=1

(1 +ωit)
li = tnp+nkQ1(t),

where Q1(t) = a
b t
n(q−1)kPn(1/t) is a polynomial of degree less than n(q−1)k.

From (2.19), we get

(2.20)

∏q
i=1(1 + zit)

(n−m)pi+nk
∏l
i=1(1 + αit)

mi∏s
i=1(1 + ωit)li

= 1 +O(tn(p+k))

as t → 0. Thus taking logarithmic derivatives of both sides of (2.20) shows
that

(2.21)

q∑
i=1

[(n−m)pi + nk]zi
1 + zit

+
l∑

i=1

miαi
1 + αit

−
s∑
i=1

liωi
1 + ωit

= O(tn(p+k)−1)

as t→ 0.
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Set S = {α1, . . . , αl} ∩ {ω1, . . . , ωs}. We consider two subcases.

Case 2.1: S = ∅. Let zq+i = αi when 1 ≤ i ≤ l, and

Ni =

{
(n−m)pi + nk, 1 ≤ i ≤ q,
mi−q, q + 1 ≤ i ≤ q + l.

Then (2.21) can be rewritten as
q+l∑
i=1

Nizi
1 + zit

−
s∑
i=1

liωi
1 + ωit

= O(tn(p+k)−1)

as t→ 0. Using the same argument as in Case 1, we get s ≥ nk + 1.

Case 2.2: S 6= ∅. Without loss of generality, we can assume that S =
{α1, . . . , αM}. Then αi = ωi when 1 ≤ i ≤ M . Let M1 = l −M . Again we
discuss two subcases.

Case 2.2.1: M1 ≥ 1. Let ωs+i = αM+i when 1 ≤ i ≤ M1. If M < s,
then we set

Li =


li −mi, 1 ≤ i ≤M ,

li, M + 1 ≤ i ≤ s,
−mM−s+i, s+ 1 ≤ i ≤ s+M1.

If M = s, then we set

Li =

{
li −mi, 1 ≤ i ≤M = s,

−mM−s+i, s+ 1 ≤ i ≤ s+M1.

Case 2.2.2: M1 = 0. If M < s, then we set

Li =

{
li −mi, 1 ≤ i ≤M,

li, M + 1 ≤ i ≤ s.
If M = s, then we set Li = li −mi when 1 ≤ i ≤M = s = l.

In both Case 2.2.1 and Case 2.2.2, (2.21) can be rewritten as

q∑
i=1

[(n−m)pi + nk]zi
1 + zit

−
s+M1∑
i=1

Liωi
1 + ωit

= O(tn(p+k)−1)

as t→ 0, where 0 ≤M1 ≤ l− 1. Using the same argument as in Case 1, we
get s ≥ nk + 1.

This completes the proof of Lemma 5.

Lemma 6 (see [1]). Let k be a positive integer, let b 6= 0 be a finite
complex number, and let f be a nonconstant zero-free rational function. Then
f (k) − b has at least k + 1 distinct zeros in C.

3. Proof of Theorem 1. Suppose that F is not normal in D. Then
there exists at least one z0 ∈ D such that F is not normal at the point z0.
We consider two cases.
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Case 1: b = 0. Then from Lemma 1 we can find

(i) points zj ∈ D, zj → z0,
(ii) functions fj ∈ F , and
(iii) positive numbers ρj → 0,

such that

(3.1)
fj(zj + ρjζ)

ρ
nk/(n−m)
j

= gj(ζ)→ g(ζ)

locally uniformly with respect to the spherical metric, where g is a noncon-
stant zero-free meromorphic function on C of order at most 2. In particular,
if g is an entire function, then g is of order at most 1. From (3.1), we deduce
that

(3.2) gmj (ζ) + a(g
(k)
j (ζ))n

= ρ
−mnk/(n−m)
j [fmj (zj + ρjζ) + a(f

(k)
j (zj + ρjζ))n]→ gm(ζ) + a(g(k)(ζ))n

uniformly on compact subsets of C disjoint from the poles of g.

We claim that gm(ζ) + a(g(k)(ζ))n has at most nk distinct zeros.

Suppose that gm(ζ)+a(g(k)(ζ))n has at least nk+1 distinct zeros ζi, 1 ≤
i ≤ nk+1. First we show gm(ζ)+a(g(k)(ζ))n 6≡ 0. If gm(ζ)+a(g(k)(ζ))n ≡ 0,
then by n ≥ m+1 we know that g is an entire function. Since g is nonconstant
zero-free and of order at most 1, it follows that g(ζ) = ec1ζ+c2 , where c1 6= 0
and c2 are constants. Thus

gm(ζ) + a(g(k)(ζ))n = em(c1ζ+c2) + ackn1 en(c1ζ+c2) ≡ 0,

which is impossible because n ≥ m+ 1. Therefore, gm(ζ) + a(g(k)(ζ))n 6≡ 0.
Now by (3.2) and the Hurwitz theorem, there exist ζj,i, i = 1, . . . , nk + 1,
ζj,i → ζi, such that, for j sufficiently large,

fmj (zj + ρjζj,i) + a(f
(k)
j (zj + ρjζj,i))

n = 0.

But fmj (z) + a(f
(k)
j (z))n has at most nk distinct zeros in D, and zj + ρjζj,i

→ z0, which is a contradiction. Hence gm(ζ) + a(g(k)(ζ))n has at most nk
distinct zeros.

However, from Lemmas 4 and 5, we see that there do not exist noncon-
stant meromorphic functions that have the above properties. This contra-
diction shows that F is normal in D.

Case 2: b 6= 0. Then from Lemma 1 we can once more find

(i) points zj ∈ D, zj → z0,
(ii) functions fj ∈ F , and
(iii) positive numbers ρj → 0,
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such that

(3.3)
fj(zj + ρjζ)

ρkj
= gj(ζ)→ g(ζ)

locally uniformly with respect to the spherical metric, where g is a noncon-
stant zero-free meromorphic function on C of order at most 2. From (3.3),
we deduce that

(3.4) ρmkj gmj (ζ) + a(g
(k)
j (ζ))n − b

= fmj (zj + ρjζ) + a(f
(k)
j (zj + ρjζ))n − b→ a(g(k)(ζ))n − b

uniformly on compact subsets of C disjoint from the poles of g.
We claim that a(g(k)(ζ))n − b has at most nk distinct zeros.
Suppose that a(g(k)(ζ))n − b has at least nk + 1 distinct zeros ζi, 1 ≤

i ≤ nk+ 1. Clearly, a(g(k)(ζ))n 6≡ b, for otherwise g would be a nonconstant
polynomial of degree k, which contradicts the fact that g 6= 0. Then by
(3.4) and Hurwitz’s theorem, there exist ζj,i, i = 1, . . . , nk + 1, ζj,i → ζi,

such that, for j sufficiently large, fmj (zj + ρjζj,i) + a(f
(k)
j (zj + ρjζj,i))

n = b.

However fmj (z) + a(f
(k)
j (z))n − b has at most nk distinct zeros in D, and

zj + ρjζj,i → z0, which is a contradiction. Hence a(g(k)(ζ))n− b has at most
nk distinct zeros.

Let c1, . . . , cn be distinct roots of ωn − b/a = 0. Then

(3.5) a(g(k)(ζ))n − b = a

n∏
i=1

[g(k)(ζ)− ci].

Now if g is a rational function, then it follows by (3.5) and Lemma 6 that
a(g(k)(ζ))n − b has at least n(k + 1) distinct zeros, which contradicts that
a(g(k)(ζ))n − b has at most nk distinct zeros. And if g is a transcendental
meromorphic function, then noting that n ≥ m+1, from Nevanlinna’s second
fundamental theorem we deduce

T (r, g(k)) ≤ N(r, g(k)) +
n∑
i=1

N

(
r,

1

g(k) − ci

)
+ S(r, g(k))

= N(r, g(k)) +N

(
r,

1

a(g(k)(ζ))n − b

)
+ S(r, g(k))

≤ 1

k + 1
N(r, g(k)) + S(r, g(k))

≤ 1

k + 1
T (r, g(k)) + S(r, g(k)),

which implies that T (r, g(k)) = S(r, g(k)), a contradiction. Hence F is normal
at z0.

The proof of Theorem 1 is complete.
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[7] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), 239–259.
[8] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math.

Soc. 32 (2000), 325–331.
[9] J. Schiff, Normal Families, Springer, Berlin, 1993.

[10] Y. Xu, F. Q. Wu, and L. W. Liao, Picard values and normal families of meromorphic
functions, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 1091–1099.

[11] L. Yang, Precise fundamental inequalities and sum of deficiencies, Sci. China Ser.
A 34 (1991), 157–165.

[12] L. Yang, Value Distribution Theory, Springer, Berlin, 1993.
[13] Y. S. Ye, A Picard type theorem and Bloch law, Chinese Ann. Math. Ser. B 15

(1994), 75–80.
[14] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. 35 (1998),

215–230.

Jun-Fan Chen
Department of Mathematics
Fujian Normal University
Fuzhou 350117, Fujian Province, P.R. China
E-mail: junfanchen@163.com

Received 19.8.2014
and in final form 21.4.2015 (3475)

http://dx.doi.org/10.1007/s10114-011-0297-z
http://dx.doi.org/10.1007/s11425-008-0022-2
http://dx.doi.org/10.2307/1969890
http://dx.doi.org/10.1007/BF01182271
http://dx.doi.org/10.1112/S002460939900644X
http://dx.doi.org/10.1017/S0308210508000462
http://dx.doi.org/10.1090/S0273-0979-98-00755-1

	1 Introduction
	2 Some lemmas
	3 Proof of Theorem 1
	References

