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Jump conditions for a metaharmonic double layer potential
on rectifiable closed Jordan curves in R2

by Ricardo Abreu Blaya (Holgúın) and
Juan Bory Reyes (México, DF)

Abstract. This paper is concerned with jump conditions for the double layer po-
tential associated with the two-dimensional Helmholtz equation for Hölder continuous
boundary data on arbitrary rectifiable Jordan closed curves in R2.

1. Introduction. Layer potentials play a central role in the study
of numerous boundary value problems for the Helmholtz equation arising
in mathematical physics. Important examples of such problems have been
treated in connection with such areas as the Maxwell equations and the
scattering of electromagnetic waves.

For a deeper description of the use of layer potentials for boundary value
problems for the Helmholtz equation on smooth domains we refer the reader
to [CK1, CK2].

It has long been understood that there are intimate connections between
the holomorphic Cauchy type integral, supported on a smooth enough curve,
and the logarithmic layer potentials (see for instance [K, Mu]), and the
advantage of using holomorphic functions theory to derive jump conditions
for layer potentials is well established (see e.g. [Ga, Epigraph 10, p. 73]).

In the last years, the theory of hyperholomorphic quaternion-valued func-
tions of two real variables [GBS, GS1, GS2, KS, ST1, ST2] has been devel-
oped along many interesting directions, including some applications in po-
tential theory [GSO, GKS] and in physical problems with elliptic geometries
[LPRS, LRS] as well.

In [GSO] the authors proposed a modification of the metaharmonic
double layer potential in the case of rectifiable Jordan closed curves in R2,
and examined its boundary values by taking advantage of the connection be-
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tween the hyperholomorphic Cauchy type integral and the double layer po-
tential. Their aim was to present an appropriate modification of the double
layer potential that efficiently works on rectifiable curves. Their results are
based on their previous work [GS2] regarding a sufficient condition for the
existence of the limit boundary value of the hyperholomorphic Cauchy type
integral that implicitly restricts the class of admissible rectifiable curves.

A jump condition for a hyperholomorphic Cauchy type integral for Hölder
continuous boundary data on arbitrary rectifiable Jordan closed curves can
then be invoked in order to propose a general description of jump conditions
for the double layer potential associated with the two-dimensional Helmholtz
equation on arbitrary rectifiable Jordan closed curves; this constitutes the
main purpose of this work.

2. Preliminaries. We let H(C) denote the set of complex quaternions.
Each quaternion a ∈ H(C) can be written as a =

∑3
k=0 akik where {ak} ⊂ C,

i0 is the multiplicative unit and {ik | k = 1, 2, 3} are the quaternionic
imaginary units, which satisfy the rules i2k = −1, i1i2 = −i2i1 = i3, i2i3 =
−i3i2 = i1, i3i1 = −i1i3 = i2.

The imaginary unit in C is denoted as usual by i, and by definition,

i · ik = ik · i, k = 0, 1, 2, 3.

The set H(C) is a complex non-commutative, associative algebra with zero
divisors.

The quaternionic conjugation, denoted by a, acts only on the quaternionic
units, not on i. The module of a quaternion a coincides with its Euclidean
norm: |a| = ‖a‖R8 . For a, b ∈ H(C) the inequality |ab| ≤

√
2 · |a| · |b| holds.

The scalar and vector parts of a ∈ H(C), Sc(a) and ~a, are defined to be
a0 and

∑3
k=0 akik, respectively. This enables us to write a = Sc(a) + ~a and

a = Sc(a)− ~a.
For any complex quaternions a and b,

(2.1) ab = a0b0 − 〈~a,~b〉+ a0~b+ b0~a+ [~a,~b],

where

〈~a,~b〉 =

3∑
k=1

akbk, [~a,~b] =

∣∣∣∣∣∣∣
i1 i2 i3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ .
If a0 = b0 = 0 then (2.1) takes the most impressive form:

(2.2) ab = −〈~a,~b〉+ [~a,~b].

Throughout the paper, Ω ⊂ R2 denotes a bounded Jordan domain with
boundary a rectifiable curve Γ ; let us also introduce the temporary notation
Ω+ := Ω and Ω− := R2 \ {Ω+ ∪ Γ}.
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As follows directly from Rademacher’s theorem (see [EG, p. 81]), for
rectifiable curves there exists the conventional unit normal vector ~nst almost
everywhere on Γ .

Typical points of the Euclidean space R2 will be denoted by z := xi1+yi2,
ζ := ξi1 + ηi2, etc.

We shall consider H(C)-valued functions:

f : E ⊂ R2 → H(C),

where E could be Ω±, Γ or R2.

Identifying H(C) with C4 in the usual way, we denote by Cs(E,H(C)),
s ∈ N ∪ {0}, C0,ν(E,H(C)), 0 < ν ≤ 1, Lp(E,H(C)), p > 1, respectively
the complex linear spaces of s times continuously differentiable, Hölder
continuous and p-integrable functions. All have the usual componentwise
meaning.

For a function f defined on Ω±, its limit boundary values will be denoted
by

[f ]±(ς) := lim
Ω±3z→ς∈Γ

[f ](z).

Let λ ∈ C \ {0}, and let α denote an arbitrary fixed solution in H(C)
of the equation α2 = λ. This λ generates the two-dimensional Helmholtz
operator with a quaternionic wave, which acts on C2(Ω,H(C)):

λ∆ := ∆R2 + λM, ∆λ := ∆R2 +Mλ,

where ∆R2 := ∂2

∂x2
+ ∂2

∂y2
is the Laplacian and Mλ[f ] := fλ, λM [f ] := λf ,

for any λ ∈ H(C).

We shall be considering the following partial differential operators with
quaternionic coefficients:

st∂ := i1 ·
∂

∂x
+ i2 ·

∂

∂y
, st∂ := i1 ·

∂

∂x
+ i2 ·

∂

∂y
,

∂st :=
∂

∂x
◦M i1 +

∂

∂y
◦M i2 , ∂st :=

∂

∂x
◦M i1 +

∂

∂y
◦M i2 .

Thus,

st∂
2 = ∂2st = −∆R2 .

Set

α∂ := ∂st + αM, ∂α := st∂ +Mα.

Then we have the following factorizations of the Helmholtz operator:

(2.3) ∆λ = −∂α ◦ ∂−α = −∂−α ◦ ∂α.

A function f ∈ C1(Ω,H(C)) is said to be hyperholomorphic if ∂αf ≡ 0 in Ω.
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For further use, we recall that, for any f ∈ C0,ν(Γ,R), there exists f̃ in
C∞(R2 \ Γ,R) ∩ C0,ν(R2,R), in general not unique, for which f̃ |Γ = f and∣∣∣∣∂f̃∂x (z)

∣∣∣∣ ≤ cdist(z, Γ )ν−1,

∣∣∣∣∂f̃∂y (z)

∣∣∣∣ ≤ cdist(z, Γ )ν−1, for z ∈ R2 \ Γ.

Here and below, c stands for a generic positive constant, not necessarily the
same in different occurrences. In fact, this extension result is based upon
the so-called Whitney decomposition of the open set R2 \ Γ (see e.g. [St]).

For our purposes, it suffices to consider a direct quaternionic reformula-
tion of this Whitney extension result as stated in the following theorem.

Theorem 2.1 (Whitney extension). Let f ∈ C0,ν(Γ,H(C)). Then there
exists a function f̃ satisfying

(i) f̃ |Γ = f ;

(ii) f̃ ∈ C∞(R2 \ Γ,H(C));

(iii) |st∂f̃(z)| ≤ cdist(z, Γ )ν−1 for z ∈ R2 \ Γ .

Remark 2.2. We remark that property (iii) permits estimating the in-
tegrability exponent of st∂f̃ . Indeed, st∂f̃ ∈ Lp(Ω,H(C)) for p < 1/(1− ν),

as is easy to check. Note that if ν = 1, then st∂f̃ is bounded in Ω.

Throughout the paper, we fix α = α0 ∈ C with a strictly positive imagi-
nary part. It is well known (see e.g. [V]) that a fundamental solution θα0 of
∆λ is given by

θα0(z) := − i
4
H

(1)
0 (α0|z|),

where H
(1)
s is the Hankel function of first kind of order s.

The hyperholomorphic Cauchy kernel Kst,α0 , i.e. the fundamental solu-
tion of the operator ∂α0 , can be calculated from

(2.4) Kst,α0(z) = −∂−α0 θα0(z), z ∈ R2 \ {0}.

Hence, explicitly,

(2.5) Kst,α0(z) = − iα0

4

(
H

(1)
1 (α0|z|)

z

|z|
+H

(1)
0 (α0|z|)

)
.

The following vector property of the Hankel functions will be used:

(2.6) ∇H(1)
0 (α0|z|) = −α0H

(1)
1 (|z|) z

|z|
, z ∈ R2 \ {0}.

Here, we suppress the explicit dependence on z in ∇, but in what follows,
when ambiguity can arise, we shall indicate by subscript the variable with
respect to which differentiation is considered.
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3. Hyperholomorphic Cauchy type integral. One of the most cru-
cial facts of the theory of hyperholomorphic quaternion-valued functions of
two real variables is the existence of a Stokes formula, which can be found
in [ST2]. Here we present this formula by looking more closely at the as-
sumptions required.

Theorem 3.1. Let f, g ∈ C1(Ω,H(C)) ∩ C0(Ω ∪ Γ,H(C)). Then

(3.1)
�

Γ

g(ζ)σst(ζ)f(ζ) =
�

Ω

[
α0
∂[g] ·f+g ·∂−α0 [f ]−(α0g ·f−g ·fα0)

]
dξ∧dη,

provided the double integral exists.

Clearly the double integral exists if f, g ∈ C1(Ω ∪ Γ,H(C)). Also, if
f, g ∈ C0,ν(Γ,H(C)) then

f̃ , g̃ ∈ C1(Ω,H(C)) ∩ C0,ν(Ω ∪ Γ,H(C)),

and according to Remark 2.2 the double integral�

Ω

[
α0
∂[g̃] · f̃ + g̃ · ∂−α0 [f̃ ]− (α0g̃ · f̃ − g̃ · f̃α0)

]
dξ ∧ dη

exists and the following Stokes formula holds:

(3.2)
�

Γ

g(ζ)σst(ζ)f(ζ) =
�

Ω

[
α0
∂[g̃] · f̃+ g̃ ·∂−α0 [f̃ ]−(α0g̃ · f̃− g̃ · f̃α0)

]
dξ∧dη.

The hyperholomorphic Cauchy kernel Kst,α0 generates, as usual, two
important integrals related to the two-dimensional Helmholtz operator in
Jordan domains with rectifiable boundary: the hyperholomorphic Cauchy
type integral

(3.3) Kα0 [f ](z) := −
�

Γ

Kst,α0(z − ζ)σst(ζ)f(ζ), z ∈ R2 \ Γ,

where σst := dη i1 − dξ i2, and the Teodorescu transform

(3.4) Tα0 [f ](z) :=
�

Ω

Kst,α0(z − ζ)f(ζ) dξ ∧ dη, z ∈ R2.

Remark 3.2. It is well known that σst(ζ) = nst(ζ) dΓζ with dΓζ the arc-
length measure and nst(ζ) = ~nst(ζ) := n1(ζ)i1 + n2(ζ)i2 the unit outward
normal vector to Γ at the point ζ.

The operators (3.3) and (3.4) are connected by the Borel–Pompeiu type
formula, which may be stated as follows:

(3.5) Kα0 [f ](z) + Tα0 [∂α0f ](z) =

{
f(z) = ∂α0 · Tα0 [f ](z) if z ∈ Ω+,

0 if z ∈ Ω−.

This formula goes back to [ST2, Theorems 4.1 and 4.4], and its validity
relies critically on the Stokes Theorem 3.1. However, in [ST2, Theorem 4.1]
the necessity to guarantee the existence of the double integral in (3.1) is



184 R. Abreu Blaya and J. Bory Reyes

overlooked. For this reason, to justify the application of (3.1), we will assume
that (3.5) is obtained under the assumption that the double integral in (3.1)
exists.

Theorem 3.3. Let f ∈ C0,ν(Γ,H(C)). Then

(3.6) Kα0 [f ](z) + Tα0 [∂α0 f̃ ](z) =

{
f̃(z) = ∂α0 · Tα0 [f̃ ](z) if z ∈ Ω+,

0 if z ∈ Ω−.
This Borel–Pompeiu type formula provides a tool for proving jump con-

ditions for the hyperholomorphic Cauchy type integral (see Theorem 3.5 be-
low), which yields a direct consequence for the metaharmonic double layer
potentials to be considered in the next section.

Remark 3.4. (i) By (3.5) it is clear that

Kα0 [Tα0 [f ]](z) = 0, z ∈ R2 \ Γ.
(ii) Using standard techniques, and basically following the ideas of [GS,

Subsection 3.1], [GHS, Subsection 8.1] and [GSS], one can prove that for
p > 2,

Tα0 [f ] ∈ C0,(p−2)/p(R2,H(C)) when f ∈ Lp(Ω,H(C)).

Theorem 3.5. Let f ∈ C0,ν(Γ,H(C)) and let

(3.7) ν > 1/2.

Then the limit boundary values of Kα0 [f ](z) are given by

[Kα0 [f ]]+(ς) = f(ς) +
�

Ω

Kst,α0(ζ − ς) · ∂α0 f̃(ζ) dξ ∧ dη,

[Kα0 [f ]]−(ς) =
�

Ω

Kst,α0(ζ − ς) · ∂α0 f̃(ζ) dξ ∧ dη.

Furthermore, [Kα0 [f ]]± ∈ C0,µ(Γ,H(C)) whenever µ < 2ν − 1.

Proof. Our proof starts with the observation that by the Borel–Pompeiu
formula (3.6) we have

(3.8) Kα0 [f ](z) =

{
f̃(z)− Tα0 · ∂α0 [f̃ ](z) if z ∈ Ω+,

−Tα0 · ∂α0 [f̃ ](z) if z ∈ Ω−.

Hence, it suffices to prove that Tα0 · ∂α0 [f̃ ] is continuous through Γ .
In fact, we might choose p such that 2 < p < 1/(1 − ν) since condition

(3.7) implies that 2 < 1/(1− ν); then st∂f̃ ∈ Lp(Ω,H(C)).
On account of Remark 3.4(ii), together with the fact that (p − 2)/p <

2ν − 1, we obtain the desired result.

Remark 3.6. The proof strongly depended on condition (3.7). If ν = 1,
which we may assume, the theorem gains in interest if we realize that in this
case the restriction on the index µ can be relaxed.



Jump conditions for a metaharmonic double layer potential 185

If we allow f ≡ 1 then equation (3.8) gives a direct proof for Lemma 3.9
of [GS2].

4. Metaharmonic potentials. For f ∈ C0,ν(Γ,C) and z ∈ R2 \ Γ ,
define the metaharmonic potentials:

• The double layer potential

Vα0 [f ](z) =
�

Γ

〈~nst,∇ζ〉θα0(z − ζ)f(ζ) dΓζ .

• The single layer potential

Uα0 [f ](z) =
�

Γ

θα0(z − ζ)f(ζ) dΓζ .

One of the main motivations for the study of the single and double meta-
harmonic layer potential operators is that they solve the two-dimensional
Helmholtz equation for z ∈ R2 \Γ . Moreover, they play a basic role in many
real-world problems.

From the definitions, it is routine to verify the identities

−〈∇z, Uα0 [~nstf ]〉 = Vα0 [f ], Kα0 [~nstf ] = ∇zUα0 [f ]− α0Uα0 [f ].

It is also of interest to look at the following single layer type potential:

U∗α0
[f ](z) =

�

Γ

θα0(z − ζ)~nst(ζ)f(ζ) dΓζ .

Notice that U∗α0
differs from Uα0 by the operator of quaternionic multipli-

cation by the unit normal.
Finally, we define a Newton type potential for f ∈ L2(Ω,C),

Wα0 [f ](z) =
�

Ω

θα0(z − ζ)f(ζ) dξ ∧ dη,

which represents a solution of the equation

(4.1) ∆λ[Wα0 [f ]] =

{
f(z) if z ∈ Ω+,

0 if z ∈ Ω−.

Let us present a connection between the above potentials:

Theorem 4.1. Let f ∈ C0,ν(Γ,C). Then

U∗α0
[f ](z) = Tα0 [f̃ ](z) +Wα0 [∂−α0 f̃ ](z), z ∈ R2 \ Γ.

Proof. Applying the Stokes formula (3.2), we get�

Γ

θα0(z − ζ)~nst(ζ)f(ζ)dΓζ =
�

Ω

Kst,α0(z − ζ)f̃(ζ) dξ ∧ dη

+
�

Ω

θα0(z − ζ)∂−α0 f̃(ζ) dξ ∧ dη,

which establishes the formula.
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Corollary 4.2. Under the assumption of Theorem 4.1 we have

Kα0 [f ] =−α0 ∂ U
∗
α0

[f ], Tα0 [f̃ ] = −−α0∂Wα0 [f̃ ],

Kα0 [U∗α0
[f̃ ]] = 0 for f̃ ∈ Ker ∂−α0 .

Before stating our main result, observe that we can write (2.4) in the
form

Kst,α0(z − ζ) = −∇ζθα0(z − ζ) + α0θα0(z − ζ),

and direct calculation yields

Kst,α0(z − ζ)nst(ζ) = −〈~nst,∇ζ〉θα0(z − ζ) + [∇ζ , ~nst]θα0(z − ζ)

− α0θα0(z − ζ)~nst(ζ).

Thus

(4.2) Sc[Kα0 [f ]](z) = Vα0 [f ](z),

which provides a way for getting jump conditions for Vα0 [f ].

Remark 4.3. Note that for any f ∈ C0,ν(Γ,C), the Cauchy type integral
Kα0 [f ] decomposes as follows:

Kα0 [f ](z) = − iα0

4

�

Γ

H
(1)
1 (α0|ζ − z|)
|ζ − z|

((η − y) dξ − (ξ − x) dη)

−
(
iα0

4

�

Γ

H
(1)
0 (α0|ζ − z|) dη

)
i1 +

(
iα0

4

�

Γ

H
(1)
0 (α0|ζ − z|) dξ

)
i2

+

(
iα0

4

�

Γ

H
(1)
1 (α0|ζ − z|)
|ζ − z|

((ξ − x) dξ + (η − y) dη)

)
i3.

Thus

Sc(Kα0 [f ](z)) = − iα0

4

�

Γ

H
(1)
1 (α0|ζ − z|)
|ζ − z|

((η − y) dξ − (ξ − x) dη),

which is exactly the modification of the double layer potential introduced
in [GSO].

As an evidence of the intimate relation between the hyperholomorphic
Cauchy type integral and the double layer potential for the two-dimensional
Helmholtz equation, we will establish now the following jump conditions.

Theorem 4.4. Let f ∈ C0,ν(Γ,C) and ν satisfy (3.7). Then the limit
boundary values of Vα0 [f ](z) are given by

[Vα0 [f ]]+(ς) = f(ς) + α0 ·Wα0 [∂α0 f̃ ](ς),

[Vα0 [f ]]−(ς) = α0 ·Wα0 [∂α0 f̃ ](ς).

Furthermore, [Vα0 [f ]]± ∈ C0,µ(Γ,C) whenever µ < 2ν − 1.
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Proof. The structure of the limit boundary values of Kα0 [f ] in Theorem
3.5, and (4.2), show that

[Vα0 [f ]]+(ς) = f(ς) + Sc
( �
Ω

Kst,α0(ζ − ς) · ∂α0 f̃(ζ) dξ ∧ dη
)
,

[Vα0 [f ]]−(ς) = Sc
( �
Ω

Kst,α0(ζ − ς) · ∂α0 f̃(ζ) dξ ∧ dη
)
.

The proof is completed by observing that Sc(Kst,α0) = α0 · θα0 .

Remark 4.5. For ν=1, Theorem 4.4 holds, and the limit values [Vα0 [f ]]±

belong now to every Hölder space C0,µ(Γ,C), 0 < µ < 1.

Acknowledgments. J. Bory Reyes was partially supported by Insti-
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