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Hyper-order and order
of meromorphic functions sharing functions

by Jianming Qi (Shanghai), Wenjun Yuan (Guangzhou)
and Hongxun Yi (Jinan)

Abstract. In this paper we mainly estimate the hyper-order of an entire function
which shares one function with its derivatives. Some examples are given to show that the
conclusions are meaningful.

1. Introduction and main results. In Nevanlinna theory, the order
and the hyper-order of a meromorphic function are two important concepts.
They are defined respectively by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
, σ(f) = lim sup

r→∞

log log T (r, f)

log r
.

The respective definitions for an entire function f are

ρ(f) = lim sup
r→∞

log logM(r, f)

log r
, σ(f) = lim sup

r→∞

log log logM(r, f)

log r

(see [9]).

Consider a rational function R which behaves asymptotically as crβ as
r → ∞, where c 6= 0 and β are constants. Define the degree of R at in-
finity as degR = deg∞R = max{0, β}. Let f(z) and g(z) be two non-
constant meromorphic functions in the complex plane C, and let α(z) be
a meromorphic function or a finite complex number. If g(z) − α(z) = 0
whenever f(z) − α(z) = 0, we write f(z) = α(z) ⇒ g(z) = α(z). If
f(z) = α(z) ⇒ g(z) = α(z) and g(z) = α(z) ⇒ f(z) = α(z), we write
f(z) = α(z) ⇔ g(z) = α(z) and say that f(z) and g(z) share α(z) IM
(ignoring multiplicity).

In 2008, Li and Gao [4] proved the following
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Theorem 1.1. Let Q1 and Q2 be nonzero polynomials, and let P be a
polynomial. If f is a nonconstant solution of the equation

f (k) −Q1 = eP (f −Q2),

then σ(f) = n, where k is a positive integer and n denotes the degree of P .

The uniqueness problem for meromorphic functions sharing values with
their derivatives is closely related to some kind of complex differential equa-
tions. Therefore, it is of interest to consider the growth properties of mero-
morphic functions under conditions involving sharing value.

In 2012, Lü and Xu [6] obtained the following result.

Theorem 1.2. Let f be a nonconstant entire function, and let α = PeQ

(α 6= α′) where P (6= 0) and Q are polynomials. If

f(z) = α(z)⇒ f ′(z) = α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z),

then f is of finite order.

We propose four natural questions, related to Theorem 1.2.

Problem 1.3. From Theorem 1.2, we see that f , f ′, f ′′ share a function
of finite order. What will happen if they share a function of infinite order?

Problem 1.4. Can the polynomial P be replaced by a rational func-
tion R?

Problem 1.5. Can f be a meromorphic function in Theorem 1.2?

Problem 1.6. Can the order of f be estimated sharply?

In this paper, we discuss the above problems and derive the following
results.

Main Theorem 1.7. Let P be a polynomial and f, γ be entire functions.
If

f(z) = α(z)⇒ f ′(z) = α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z),

where α = Peγ (α 6= α′), and if α−α′ has at most finitely many zeros, then
σ(f) ≤ σ(α) = ρ(γ).

Remark. The following examples show that our conclusion σ(f) ≤ ρ(γ)
is sharp.

Example 1.8. Let f(z) = Aez, where A is a nonzero constant. Let

α(z) = ee
−z+z. Noting that f = f ′ = f ′′, we have

f(z) = α(z)⇒ f ′(z) = α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z).

Obviously, α(z)−α′(z) = ee
−z

has no zeros. Thus it satisfies the assumptions
of Theorem 1.7 and σ(f) = 0 < σ(α) = 1.
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Example 1.9. Let f(z) = 2ez and α(z) = (4z2 − z + 2)ez
2
. Noting that

f = f ′ = f ′′, we see that

f(z) = α(z)⇒ f ′(z) = α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z).

Thus f satisfies the assumptions of Theorem 1.7 and σ(f) = 0.

Example 1.10. Let f(z) = 4z2 − 8z + 8 and α(z) = 2z2. Note that
f 6= f ′ 6= f ′′, and f(z) − α(z) = 2(z − 2)2, f ′(z) − α(z) = −2(z − 2)2 and
f ′′(z)−α(z) = 2(2− z)(2 + z). It is easy to see f(z) = α(z)⇒ f ′(z) = α(z)
and f ′(z) = α(z) ⇒ f ′′(z) = α(z) and σ(f) = σ(α). Thus f satisfies the
assumptions of Theorem 1.7 and σ(f) = σ(α) = 0.

Example 1.11. Let f(z) = z4Aez + z4 + 8z3 + 24z2 + 48z + 48 and
α(z) = z4+8z3+24z2+48z+48, where A = e4 is a constant. Differentiating
f twice yields f ′(z) = (z4 + 4z3)Aez + 4z3 + 24z2 + 48z + 48 and f ′′(z) =
(z4 + 8z3 + 12z2)Aez + 12z2 + 48z + 48. Then f(z) = α(z)⇒ f ′(z) = α(z)
and f ′(z) = α(z)⇒ f ′′(z) = α(z). Thus σ(f) ≤ σ(α), but f 6= f ′.

Remark. The condition that α− α′ has at most finitely many zeros is
essential in our proof of Theorem 1.7. But we do not know whether it is
necessary or not. If γ is a polynomial, then this condition obviously holds.

Remark. In Theorem 1.7, if the order of γ is zero, for example γ is a
polynomial, then σ(f) = 0, which is an important property for a meromor-
phic function f .

Main Theorem 1.12. Let f be a meromorphic function with at most
finitely many poles, and let α = ReQ (α 6= α′), where R (6= 0) is a rational
function and Q is a nonconstant polynomial. If

f(z) = α(z)⇒ f ′(z) = α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z),

then ρ(f) ≤ 2 degQ.

Main Theorem 1.13. Let f be a nonconstant entire function, and let
α = ReQ (α 6= α′), where R ( 6= 0) is a rational function and Q is a non-
constant polynomial. If

f(z) = α(z)⇒ f ′(z) = α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z),

then ρ(f) ≤ degQ.

Example 1.14. Let f(z) = 2ez, α(z) = zez+1, so ρ(f) = 1, degQ = 1.
Note that

f(z) = α(z)⇒ f ′(z) = α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z).

Thus ρ(f) = 1 ≤ 1.

Remark. Example 5 illustrates both Theorem 1.12 and Theorem 1.13.
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2. Some lemmas. In order to prove our theorems, we need the following
lemmas.

Using the famous Pang–Zalcman lemma [8, Lemma 2] and the result of
F. Lü, J. F. Xu and A. Chen [7, Lemma 2.1, p. 595], it is easy to obtain the
following lemma. It plays an important role in the proofs of Theorems 1.7
and 1.12.

Lemma 2.1. Let {fn} be a family of meromorphic (resp. analytic) func-

tions in the unit disc 4. If an → a, |a| < 1, and f ]n(an) → ∞, and if there
exists A ≥ 1 such that |f ′n(z)| ≤ A whenever fn(z) = 0, then there exist

(i) a subsequence of fn (still denoted {fn}),
(ii) points zn → z0, |z0| < 1,

(iii) positive numbers ρn → 0,

such that ρ−1n fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly, where g is a
nonconstant meromorphic (resp. entire) function on C such that ρ(g) ≤ 2
(resp. ρ(g) ≤ 1), g](ξ) ≤ g](0) = A+ 1 and

ρn ≤M/f ]n(an),

where M is a constant independent of n.

Here, as usual, g](ξ) = |g′(ξ)|
1+|g(ξ)|2 is the spherical derivative.

Lemma 2.2 ([5]). Let f be a meromorphic function with σ(f) > 0. Then,

for any ε > 0, there exists a sequence zn →∞ such that f ](zn) > e|zn|
σ(f)−ε

if n is large enough.

Lemma 2.3 ([10]). Let f(z) be a meromorphic function in the complex
plane with ρ(f) > 2. Then for each 0 < µ < (ρ(f)− 2)/2, there exist points
an →∞ (n→∞) such that

lim
n→∞

f ](an)

|an|µ
=∞.

Lemma 2.4 ([3]). Let f(z) be an entire function with ρ(f) > 1. Then
for each 0 < µ < ρ(f)− 1, there exist points an →∞ (n→∞) such that

lim
n→∞

f ](an)

|an|µ
=∞.

Lemma 2.5 ([1]). Let g be a nonconstant entire function with ρ(g) ≤ 1,
let k ≥ 2 be an integer, and let a be a nonzero finite value. If g(z) = 0 ⇒
g′(z) = a and g′(z) = a⇒ g(k)(z) = 0, then g(z) = a(z − z0), where z0 is a
constant.

Lemma 2.6 ([9]). Suppose f(z) and g(z) are nonconstant meromorphic
functions in the complex plane. Then

ρ(fg) ≤ max{ρ(f), ρ(g)}, ρ(f + g) ≤ max{ρ(f), ρ(g)}.
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3. Proof of Theorem 1.7. In the proof, we use some ideas of [2, 7, 5].

Since α = Peγ , we have σ(α) = ρ(γ). So, we just need to obtain σ(f) ≤
ρ(γ).

On the contrary, assume that σ(f) = d > c = ρ(γ). Set H = f−α. Then

(I) H(z) = 0⇒ H ′(z) = α(z)− α′(z),
(II) H ′(z) = α− α′ ⇒ H ′′(z) = α− α′′.

Set

β = α−α′ = (P−P ′−Pγ′)eγ , ϕ = α−α′′ = (P ′′+2P ′γ′+Pγ′′+Pγ′2)eγ .

Set F = H/β. Obviously, σ(F ) = σ(f) = d. By Lemma 2.2, for 0 < ε <
(d− c)/2, there exists a sequence wn →∞ as n→∞ such that

F ](wn) > e|wn|
σ(F )−ε

= e|wn|
d−ε
.

As β = α− α′ has finitely many zeros, there exists a positive number r
such that F has no poles in D = {z : |z| > r}.

In view of wn → ∞ as n → ∞, we may assume |wn| ≥ r + 1 for all n.
Define D1 = {z : |z| < 1} and

Fn(z) = F (wn + z) =
H(wn + z)

β(wn + z)
;

then every Fn is analytic inD1. Now, fix z ∈ D1. If Fn(z) = 0, thenH(wn+z)
= 0. It is clear from (I) that H ′(wn + z) = β(wn + z). Hence (for n large
enough)

|F ′n(z)| =
∣∣∣∣H ′(wn + z)

β(wn + z)
− H(wn + z)

β(wn + z)

β′(wn + z)

β(wn + z)

∣∣∣∣ = 1.

Also F ]n(0)→∞ as n→∞. It follows from Marty’s criterion that (Fn)n is
not normal at z = 0.

Therefore, we can apply Lemma 2.1. Choosing an appropriate subse-
quence of (Fn)n if necessary, we may assume that there exist sequences
(zn)n and (ρn)n with |zn| < r < 1 and ρn → 0 such that

(3.1) gn(ζ) := ρ−1n Fn(zn + ρnζ) = ρ−1n
H(wn + zn + ρnζ)

β(wn + zn + ρnζ)
→ g(ζ)

locally uniformly in C, where g is a nonconstant entire function of order at
most 1. Moreover, g](ξ) ≤ g](0) = 2 for all ξ ∈ C and

(3.2) ρn ≤
M

F ]n(0)
=

M

F ](wn)
≤Me−|wn|

d−ε

for a positive number M .
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From (3.1), we have

g′n(ζ) =
H ′(wn + zn + ρnζ)

β(wn + zn + ρnζ)
− H(wn + zn + ρnζ)β′(wn + zn + ρnζ)

β(wn + zn + ρnζ)β(wn + zn + ρnζ)
(3.3)

=
H ′(wn + zn + ρnζ)

β(wn + zn + ρnζ)
− ρngn(ζ)

β′(wn + zn + ρnζ)

β(wn + zn + ρnζ)
→ g′(ζ).

Since β = α− α′ = (P − P ′ − Pγ′)eγ and ϕ = α− α′′ = (P ′′ + 2P ′γ′ +
Pγ′′ + Pγ′2)eγ , we have

β′

β
=
P ′ + Pγ′ − P ′′ − 2P ′γ′ − Pγ′′ − Pγ′2

P − P ′ − Pγ′

and ρ(γ′′) = ρ(γ′) = ρ(γ′2) = ρ(γ) = c. In view of the definition of order,
we have ∣∣∣∣β′β ∣∣∣

z=wn+zn+ρnζ

∣∣∣∣ ≤ |wn|qM(|wn + zn + ρnζ|, γ′)(3.4)

≤ |wn|qM(2|wn|, γ′) ≤ |wn|qeA|wn|
c+ε
,

where A is a positive constant and q is an integer. As 0 < ε < (d− c)/2, we
have d− ε > c+ ε. Combining (3.2) and (3.4) yields

(3.5)

∣∣∣∣H(wn + zn + ρnζ)β′(wn + zn + ρnζ)

β(wn + zn + ρnζ)β(wn + zn + ρnζ)

∣∣∣∣= ∣∣∣∣ρngn(ζ)
β′(wn + zn + ρnζ)

β(wn + zn + ρnζ)

∣∣∣∣
≤M |gn(ζ)| |wn|qeA|wn|

c+ε−|wn|d−ε → 0 as n→∞.
From (3.3) and (3.5), we deduce that

(3.6)
H ′(wn + zn + ρnζ)

β(wn + zn + ρnζ)
→ g′(ζ).

In a similar way, we obtain

(3.7) ρn
H ′′(wn + zn + ρnζ)

β(wn + zn + ρnζ)
→ g′′(ζ).

We claim that

(1) g(ζ) = 0⇒ g′(ζ) = 1,
(2) g′(ζ) = 1⇒ g′′(ζ) = 0.

Suppose that g(ζ0) = 0. Then by Hurwitz’s theorem there exist ζn → ζ0
such that (for n sufficiently large)

gn(ζn) = ρ−1n
H(wn + zn + ρnζn)

β(wn + zn + ρnζn)
= 0.

Thus H(wn + zn + ρnζn) = 0, and by (I) we have

(3.8) H ′(wn + zn + ρnζn) = β(wn + zn + ρnζn).
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From (3.6), we derive

g′(ζ0) = lim
n→∞

H ′(wn + zn + ρnζn)

β(wn + zn + ρnζn)
= 1,

which implies that g(ζ) = 0⇒ g′(ζ) = 1.

To prove (2), suppose that g′(η0) = 1. We know that g′ 6≡ 1, since
otherwise g](0) ≤ 1 < 2, a contradiction. Hence by (3.6) and Hurwitz’s
theorem, there exist ηn → η0 such that (for n sufficiently large)

H ′(wn + zn + ρnηn) = β(wn + zn + ρnηn).

It is obvious from (II) that H ′′(wn + zn + ρnηn) = ϕ(wn + zn + ρnηn). By
(3.7), similarly to (3.4) and (3.5), we obtain

g′′(η0) = lim
n→∞

ρn
H ′′(wn + zn + ρnηn)

β(wn + zn + ρnηn)
= lim

n→∞
ρn
ϕ(wn + zn + ρnηn)

β(wn + zn + ρnηn)
(3.9)

= lim
n→∞

ρn
(P ′′ + 2P ′γ′ + Pγ′′ + Pγ′2)(wn + zn + ρnηn)

(P − P ′ − Pγ′)(wn + zn + ρnηn)
= 0,

which yields (2).

From Lemma 2.5, it is now easy to deduce that g(ζ) = ζ−b0, where b0 is
a constant; then g](0) ≤ 1 < 2, which is also a contradiction. This completes
the proof of Theorem 1.7.

4. Proof of Theorem 1.12. We mimic the previous proof, so we will
omit the identical calculations.

Set H = f − α. Then

(I) H(z) = 0⇒ H ′(z) = α(z)− α′(z),
(II) H ′(z) = α− α′ ⇒ H ′′(z) = α− α′′.

Set

β = α− α′ = (R−R′ −RQ′)eQ = R1e
Q,

ϕ = α− α′′ = (R−R′′ − 2R′Q′ −RQ′′ −RQ′2)eQ = R2e
Q,

where R1 (6= 0) and R2 are rational functions. Set F = H/β.

Suppose that ρ(F ) > 2 degQ. By Lemma 2.3, for every 0 < µ <
(ρ(F )− 2)/2, there exist wn →∞ such that

(4.1) lim
n→∞

F ](wn)

|wn|µ
=∞.

Since β = α−α′ has at most finitely many zeros and f has finitely many
poles, there exists r > 0 such that F has no poles in D = {z : |z| > r}.
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As wn → ∞, we may assume that |wn| ≥ r + 1 for all n. Define D1 =
{z : |z| < 1} and

Fn(z) = F (wn + z) =
H(wn + z)

β(wn + z)
;

then every Fn is analytic inD1. Now, fix z ∈ D1. If Fn(z) = 0, thenH(wn+z)
= 0. It is clear from (I) that H ′(wn + z) = β(wn + z). Hence (for n large

enough) |F ′n(z)| = 1. Also F ]n(0) → ∞ as n → ∞. It follows from Marty’s
criterion that (Fn)n is not normal at z = 0.

Therefore, we can apply Lemma 2.1. Choosing an appropriate subse-
quence of (Fn)n if necessary, we may assume that there exist sequences
(zn)n and (ρn)n with |zn| < r < 1 and ρn → 0 such that

(4.2) gn(ζ) := ρ−1n Fn(zn + ρnζ)→ g(ζ)

locally uniformly in C, where g is a nonconstant entire function of order at
most 1. Moreover, g](ξ) ≤ g](0) = 2 for all ξ ∈ C and

(4.3) ρn ≤
M

F ]n(0)
=

M

F ](wn)
≤M |wn|−µ−ε

for a positive number M .
From (4.2) we have, as in (3.3),

(4.4) g′n(ζ)→ g′(ζ).

Since β = α− α′ = R1e
Q and ϕ = α− α′′ = R2e

Q, we have

(4.5)

∣∣∣∣β′β ∣∣∣
z=wn+zn+ρnζ

∣∣∣∣ =

∣∣∣∣R′1 +R1Q
′

R1

∣∣∣
z=wn+zn+ρnζ

∣∣∣∣
=

∣∣∣∣R′ −R′′ − 2R′Q′ −RQ′′ +RQ′ −RQ′2

R−R′ −RQ′
∣∣∣
z=wn+zn+ρnζ

∣∣∣∣ = O(|wn|l1).

By (4.1) and (4.3), we deduce that

(4.6) lim
n→∞

wl1n ρn = 0,

where

l1 = deg
R′ −R′′ − 2R′Q′ −RQ′′ +RQ′ −RQ′2

R−R′ −RQ′

= deg
R′

R −
R′′

R − 2R
′

RQ
′ −Q′′ +Q′ −Q′2

1− R′

R −Q′
= degQ′

is a fixed constant. Combining (4.1), (4.3), (4.5) and (4.6) yields, as in (3.5),

(4.7)

∣∣∣∣H(wn + zn + ρnζ)β′(wn + zn + ρnζ)

β(wn + zn + ρnζ)β(wn + zn + ρnζ)

∣∣∣∣ ≤M |gn(ζ)| |wn|l1−µ−ε → 0

as n→∞.
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From (4.4) and (4.7), we deduce that

H ′(wn + zn + ρnζ)

β(wn + zn + ρnζ)
→ g′(ζ).

In a similar way,

ρn
H ′′(wn + zn + ρnζ)

β(wn + zn + ρnζ)
→ g′′(ζ).

We claim that

(1) g(ζ) = 0⇒ g′(ζ) = 1,
(2) g′(ζ) = 1⇒ g′′(ζ) = 0.

The proof of (1) is exactly the same as the proof of Theorem 1.7. To
prove (2), just replace (3.9) in the previous proof by

g′′(η0) = lim
n→∞

ρn
H ′′(wn + zn + ρnηn)

β(wn + zn + ρnηn)

= lim
n→∞

ρn
ϕ(wn + zn + ρnηn)

β(wn + zn + ρnηn)

= lim
n→∞

ρn
(R−R′′ − 2R′Q′ −RQ′′ −RQ′2)(wn + zn + ρnηn)

(R−R′ −RQ′)(wn + zn + ρnηn)

= lim
n→∞

ρn(O(|wn|l2)),

where

l2 = deg
R′ −R′′ − 2R′Q′ −RQ′′ −RQ′2

R−R′ −RQ′

= deg
R′

R −
R′′

R − 2R
′

RQ
′ −Q′′ −Q′2

1− R′

R −Q′
= degQ′

is also a fixed constant.

By (4.1) and (4.3), we deduce that

(4.8) lim
n→∞

wl2n ρn = 0,

which yields (2).

From Lemma 2.5, it is easy to deduce that g(ζ) = ζ − b0, where b0 is a
constant; then g](0) ≤ 1 < 2, which is also a contradiction.

So ρ(F ) ≤ 2 degQ.

Next we will prove ρ(f) ≤ ρ(F ). We distinguish three cases.

Case 1. If ρ(α) < ρ(f), then since ρ(α − α′) ≤ ρ(α), by Lemma 2.6

we have ρ(F (α − α′)) ≤ max{ρ(F ), ρ(α)}. Due to F = f−α
α−α′ we have f =

α + F (α − α′). Thus, by Lemma 2.6, ρ(f) ≤ max{ρ(α), ρ(F (α − α′))} ≤
max{ρ(α), ρ(F )}, and ρ(α) < ρ(f) yields ρ(f) ≤ ρ(F ) ≤ 2 degQ.
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Case 2. If ρ(α) = ρ(f), then since ρ(α) = degQ, we have ρ(f) = ρ(α) =
degQ.

Case 3. If ρ(α) > ρ(f), then since

F =
f − α
α− α′

=
f −ReQ

R1eQ
=

f

R1eQ
− R

R1

and R/R1 is a rational function, because of ρ(R/R1) = 0 and ρ(α) =
degQ = ρ(R1e

Q) > ρ(f), we obtain ρ(f) < degQ = ρ(F ).

Thus, we have proved that ρ(f) ≤ ρ(F ) ≤ 2 degQ. This completes the
proof of Theorem 1.12.

5. Proof of Theorem 1.13. Similar to the proof of Theorem 1.12, we
also set H = f − α. Then

(I) H(z) = 0⇒ H ′(z) = α(z)− α′(z),
(II) H ′(z) = α− α′ ⇒ H ′′(z) = α− α′′.

Set

β = α− α′ = (R−R′ −RQ′)eQ = R1e
Q,

ϕ = α− α′′ = (R−R′′ − 2R′Q′ −RQ′′ −RQ′2)eQ = R2e
Q,

where R1 (6= 0) and R2 are rational functions. Set F = H/β.
If ρ(F ) > degQ, by Lemma 2.4, for every 0 < µ < ρ(f)− 1, there exist

wn →∞ such that

(5.1) lim
n→∞

F ](wn)

|wn|µ
=∞.

The remainder of the proof is very similar to the proof of Theorem 1.12,
so we omit it.
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