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Attractor of a semi-discrete
Benjamin–Bona–Mahony equation on R1

by Chaosheng Zhu (Chongqing)

Abstract. This paper is concerned with the study of the large time behavior and es-
pecially the regularity of the global attractor for the semi-discrete in time Crank–Nicolson
scheme to discretize the Benjamin–Bona–Mahony equation on R1. Firstly, we prove that
this semi-discrete equation provides a discrete infinite-dimensional dynamical system in
H1(R1). Then we prove that this system possesses a global attractor Aτ in H1(R1). In
addition, we show that the global attractor Aτ is regular, i.e., Aτ is actually included,
bounded and compact in H2(R1). Finally, we estimate the finite fractal dimensions of Aτ .

1. Introduction. This paper is concerned with the study of the large
time behavior and especially the regularity of the global attractor for the
following semi-discrete Benjamin–Bona–Mahony equation on R1:

ut − uxxt + αu− αuxx + uux = f(x), t ∈ (0,∞), x ∈ R1,(1.1)

u(x, 0) = u0(x), x ∈ R1,(1.2)

with the damping parameter α > 0.
The Benjamin–Bona–Mahony equation was proposed in [10] as the model

of propagation of long waves which incorporates nonlinear dispersive and
dissipative effects. The existence and uniqueness, as well as the decay rates
of solutions for this equation, were studied by many authors (see [5, 6, 11, 32]
and the references therein). In addition, the long-time behavior of solutions
for this equation was also considered (see [13, 24, 26, 28, 30, 31]).

When this equation is defined in a bounded domain, there exists a global
attractor which has finite fractal dimensions (see [13, 26, 28]). In [13], the
authors considered the periodic initial-boundary value problem for a multi-
dimensional generalized Benjamin–Bona–Mahony equation, and proved the
existence of a global attractor with finite fractal dimensions and the exis-
tence of the exponential attractor for the corresponding semigroup. The reg-
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ularity of the global attractor was established in [27] when the forcing term f
is in Hk with k ≥ 0, and the Gevrey regularity was proved in [15] when f be-
longs to a Gevrey class. The authors of [15] also proved the existence of two
determining nodes for the one-dimensional equation with periodic boundary
conditions. In [30], we established the existence of the asymptotic attractor
by the method of orthogonal decomposition, and obtained the dimensions
estimate of this asymptotic attractor. When the equation is defined in an
unbounded domain, there exists a global attractor which has finite fractal di-
mensions (see [24, 31]). In [24], the authors gave a sufficient condition for the
asymptotic compactness of an evolution equation by using the Littlewood–
Paley projection operators, and established the existence of an attractor for
the Benjamin–Bona–Mahony equation in the phase space H1(R3) by show-
ing that the solutions are point dissipative and asymptotically compact, and
then proved that the attractor is regular and bounded in H2(R3).

There are fruitful results on the Crank–Nicolson scheme for infinite-
dimensional dynamical systems. In the case where the space variable x
belongs to a finite interval, the authors of [20] proved the existence of a
global attractor under periodic boundary conditions. This result was also
obtained when the space variable x belongs to T2 (see [17]). In addition, the
discrete Crank–Nicolson scheme for both space and time variables for the
classical nonlinear Schrödinger equation was studied in [29] and [3].

In this paper, we study the large time behavior and especially the reg-
ularity of the global attractor for the semi-discrete in time Crank–Nicolson
scheme for the discretized Benjamin–Bona–Mahony equation on R1. First,
we prove that this semi-discrete equation provides a discrete infinite-dimen-
sional dynamical system in H1(R1). Then we prove that this system pos-
sesses a global attractor Aτ in H1(R1). In addition, we show that the global
attractor Aτ is regular, i.e., Aτ is actually included, bounded and compact
in H2(R1). Finally, we estimate the finite fractal dimensions of Aτ .

Throughout this paper, we write Lr and Hs for Lr(R1) and Hs(R1)
respectively, where 1 ≤ r ≤ ∞ and s ∈ R1. The spaces L2 and H1 are
Hilbert spaces with the inner products (u, v) =

	
R1 uv dx and (u, v)H1 =	

R1(uv + uxvx) dx. For general s ∈ R1, the Sobolev space Hs is endowed

with the norm ‖u‖Hs = ‖(I − ∆)s/2u‖L2 , where we denoted by ‖ · ‖X the
norm of a Banach space X.

Now we introduce a Crank–Nicolson scheme associated with (1.1): to
begin, we recall that for a given u0 ∈ H1(R1) there exists a unique solution
u ∈ C([0,∞), H1(R1)) ∩ C1([0,∞), H−1) for (1.1) which is equivalent to

∂

∂t
(eαtu(t))−∆ ∂

∂t
(eαtu(t)) +

1

2
(eαt/2u(t))2x = eαtf,(1.3)

where ∆u = ∂xxu. For a given time discretization τ > 0, we consider the
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uniform time sequence {tn}n defined by tn = nτ , and we integrate (1.3) over
the time interval [tn, tn+1] to get

(1.4) (eαt
n+1

u(tn+1)− eαtnu(tn))−∆(eαt
n+1

u(tn+1)− eαtnu(tn))

+
1

2

tn+1�

tn

(eαt/2u(t))2x dt =

tn+1�

tn

eαtf dt.

We recall the trapezoidal rule

(1.5)

tn+1�

tn

g(s) ds ∼ τ

2
[g(tn+1) + g(tn)];

the error of the approximation (1.5) is

(1.6) error =

tn+1�

tn

g(s) ds− τ

2
[g(tn+1) + g(tn)] = −τ

3

12
g′′(ξ);

Let {un}n be a real sequence such that un ∼ u(tn), where u is the solution
of the continuous form (1.1). Using (1.4) and the same trick as employed
in [16], we derive the relevant Crank–Nicolson scheme as follows. For given
f ∈ L2(R1), u0 ∈ H1(R1) and β = e−ατ we solve recursively

(1.7)
1

τ
(un+1 − βun)− 1

τ
∆(un+1 − βun) +

1

8
∇(un+1 + βun)2 =

1 + β

2
f.

It is well known that the Crank–Nicolson scheme is of second order (see [4]).
In this paper, we assume that τ is small enough, more precisely, ατ ≤
2(1 − β) and β(1 − ατ/4)−1 ≤ 1. In fact, the above two inequalities hold
when ατ < ln 2.

In Section 2, we prove that the Crank–Nicolson scheme is well posed.
That is, we obtain the following theorem.

Theorem 1.1. Assume that f ∈ L2. For any un ∈ H1, there exists a
solution un+1 of (1.7). Let S : H1 → H1, un 7→ un+1, be the multivalued
function defined by (1.7). There exists a bounded set B ⊂ H1 such that
S(B) ⊂ B. Moreover, for τ > 0 small enough, the map S is continuous and
one-to-one on B.

Remark. In order to ensure that S: B → B is one-to-one, the smallness
assumption on τ in (2.10) below is

(1.8) Cτ3/4K2
1 < 1,

where K1 > 0 depends on the size of B defined by Lemma 2.4 below. Thus
we can define a discrete dynamical system {Sn}n∈N on the set B.

In Section 3, we prove the existence and regularity of a global attractor,
that is, we prove the following theorem.
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Theorem 1.2. Assume that τ satisfies also (1.8). The discrete dynam-
ical system {Sn}n∈N defined on the set B by Sun = un+1 possesses a global
attractor Aτ in H1 that is a compact subset of H2(R1).

It is well known that the existence of a global attractor for a dissipa-
tive evolution equation always relies on some kind of compactness of the
semigroup generated by this equation. Usually, the compactness is obtained
through some regularity properties of this equation together with the com-
pact imbedding of the relevant Sobolev spaces (see [25] for instance). How-
ever, this approach is suitable only for bounded domains. As for unbounded
domains, this approach does not work because of lack of compactness. To
recover the compactness, one can consider weighted spaces (see for example
F. Abergel [1, 2], A. V. Babin [7], A. V. Babin and M. I. Vishik [8] and
E. Feireisl et al. [19]), but there is another drawback: the forcing term and
in some cases even the initial condition must be restricted to the weighted
spaces. Similarly, Huang [22] proves that there also exists a compact global
attractor for the Schrödinger equation in a special weighted space, provided
the effect of the zero-order dissipation is large enough.

In this paper, we use the methods in [18, 23] instead of weighted spaces.
That is, we will establish the asymptotic compactness of the discrete semi-
group S defined on B. Now we recall the general existence results of [25]
for global attractors in both continuous and discrete dynamical systems.
Suppose S = S1+S2, where S1, S2: B → B, S1 is relatively compact, and for
every bounded set B ⊂ B, supu∈B |Sn2 u|B → 0 as n→∞. By Theorem I.1.1
in [25], the ω-limit set ω(B) is a global attractor for S. Then we prove that
the global attractor Aτ is a compact set in H3/2−ε by the method of [9].

Moreover, we prove that the global attractor has finite fractal dimensions
by the method of [14].

Theorem 1.3. If f ∈ L2(R1, (1 + x2)dx) then the global attractor Aτ
has finite fractal dimension in H1 ∩ L2(R1, (1 + x2)dx).

This paper is organized as follows. In Section 2, we prove that the Crank–
Nicolson scheme is well posed. In Section 3, we prove the existence of a
compact attractor and show that the global attractor has finite fractal di-
mensions.

2. Existence of solution. Let {ϕn}n∈N+ be a regular Hilbertian ba-
sis of H1, i.e., the ϕn are smooth functions. For any N ∈ N+, let VN =
span{ϕ1, . . . , ϕN}, and consider the orthogonal projector PN : H1 → VN .
We consider the sequence {wN}N defined by the Faedo–Galerkin method,
that is, a finite-dimensional reduction of (1.7). For N ≥ 1, we seek a solution
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wN in VN of

(2.1)
1

τ

�

R1

(wN − βPNun)ϕdx+
1

τ

�

R1

∇(wN − βPNun)∇ϕdx

+
1

8

�

R1

∇(wN + βPNu
n)2ϕdx− 1 + β

2

�

R1

PNfϕ dx = 0, ∀ϕ ∈ VN .

Lemma 2.1 ([12]). Let X be a finite-dimensional space endowed with a
scalar product [·, ·] and consider a continuous mapping F : X → X. Suppose
that there exists R0 > 0 such that [F (w), w] > 0 for all w with [w,w]1/2 = R0.
Then there exists w∗ with [w∗, w∗]1/2 ≤ R0 such that F (w∗) = 0.

Lemma 2.2. The sequence {wN}N is well defined by (2.1).

Proof. Problem (2.1) defines a continuous map F : VN → VN such that

[F (w), ϕ] =
1

τ

�

R1

(wN − βPNun)ϕdx+
1

τ

�

R1

∇(wN − βPNun)∇ϕdx

+
1

8

�

R1

∇(wN + βPNu
n)2ϕdx− 1 + β

2

�

R1

PNfϕ dx,

where the scalar product [·, ·] is defined by [v, w] =
	
R1 vw dx for v, w ∈ VN .

Now we verify that F satisfies the hypothesis of Lemma 2.1. Taking ϕ =
w = wN + βPNu

n in (2.1), we get

[F (w), w] =
1

τ
(‖wN‖2L2 − β2‖PNun‖2L2) +

1

τ
(‖∇wN‖2L2 − β2‖∇PNun‖2L2)

− 1 + β

2

�

R1

PNf(wN + βPNu
n) dx

≥ 1

τ
(‖wN‖2L2 − β2‖PNun‖2L2) +

1

τ
(‖∇wN‖2L2 − β2‖∇PNun‖2L2)

− 1

2τ
‖wN‖2L2 −

β2

2τ
‖PNun‖2L2 −

(1 + β)2τ

4
‖f‖2L2

≥ 1

2τ

[
‖wN‖2L2 + ‖∇wN‖2L2 − 3β2‖PNun‖2L2

− 2β2‖∇PNun‖2L2 −
(1 + β)2τ2

2
‖f‖2L2

]
.

Set

R2
0 = 4β2‖PNun‖2L2 + 4β2‖∇PNun‖2L2 +

(1 + β)2τ2

2
‖f‖2L2 .

For w ∈ VN ,
√

[w,w] = R0, we have [F (w), w] > 0. By Lemma 2.1, there

exists w∗ ∈ VN such that
√

[w∗, w∗] ≤ R0 and F (w∗) = 0. Hence wN =
w + βPNu

n ∈ VN is a solution of (2.1) and satisfies (2.2).
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In order to let N → ∞ in (2.1), we need some compactness argument.
To this end, we prove:

Lemma 2.3. The sequence {wN}N is bounded in H1.

Proof. Taking ϕ = wN + βPNu
n in (2.1), we get

‖wN‖2L2 + ‖∇wN‖2L2 = β2‖PNun‖2L2 + β2‖∇PNun‖2L2

+
(1 + β)τ

2

�

R1

PNf(wN + βPNu
n) dx

≤ β2‖PNun‖2L2 + β2‖∇PNun‖2L2 +
1

2
‖wN‖2L2

+
(1 + β)2τ2

8
‖f‖2L2 +

(1 + β)τβ

2
‖f‖L2‖PNun‖L2 .

Then

(2.2) ‖wN‖2L2 + ‖∇wN‖2L2 ≤ 2β2‖PNun‖2L2 + 2β2‖∇PNun‖2L2

+
(1 + β)2τ2

4
‖f‖2L2 + (1 + β)τβ‖f‖L2‖PNun‖L2 ≤ K,

so {wN}N is bounded in H1.

Lemma 2.4. For a given un ∈ H1, there exists a solution un+1 ∈ H1 to
(2.1) which is a weak limit in H1 of a subsequence {wN ′}N ′.

Proof. First, we pass to the limit in the linear parts of (2.1). Since {wN}N
is bounded in H1, there exists a subsequence such that wN ⇀ un+1 weakly
in H1, that is,

∀ϕ ∈ H1,
�

R1

wNϕdx→
�

R1

un+1ϕdx,(2.3)

∀ϕ ∈ H1,
�

R1

∇wN∇ϕdx→
�

R1

∇un+1∇ϕdx.(2.4)

Secondly, we pass to the limit in the nonlocal nonlinear part of (2.1). We
consider now a smooth cut off function ρ ∈ C∞0 (R1) such that 0 ≤ ρ ≤ 1
and

ρ(s) =

{
1 if |s| ≤ 1,

0 if |s| ≥ 2.

For each r > 0, let ρr(s) = ρ(s/r). Then wNr = ρrw
N ∈ H1(−r, r). Since wN

is bounded in H1, we deduce that wNr is bounded in H1(−r, r). We have
wNr ⇀ un+1 weakly in H1(−r, r), and wNr → un+1 strongly in L2(−r, r).
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Now we write

�

R1

∇((wN )2 − (un+1)2)ϕdx =

r�

−r
∇((wN )2 − (un+1)2)ϕdx

+
�

|x|≥r

∇((wN )2 − (un+1)2)ϕdx =: Φ1 + Φ2.

We now majorize Φ1 and Φ2 separately. Let ε > 0. Since ϕ ∈ L2 and thanks
to Lemma 2.3 we have, for r > 0 large enough,

Φ2 ≤ K
( �

|x|≥r

|ϕ|2 dx
)1/2

≤ ε

2
.

On the other hand, since wN |(−r,r) = wNr , we have

Φ1 =

r�

−r
∇((wNr )2 − (un+1)2)ϕdx = −

r�

−r
(wNr + un+1)(wNr − un+1)∇ϕdx

≤
(
‖wNr ‖L∞(−r,r) + ‖un+1‖L∞(−r,r)

)
‖wNr − un+1‖L2(−r,r)‖∇ϕ‖L2(−r,r)

≤ K‖wNr − un+1‖L2(−r,r)‖∇ϕ‖L2(−r,r);

that yields Φ1 → 0 as N →∞, which is equivalent to saying that |Φ1| ≤ ε/2
if N large enough. Hence we deduce that

∀ϕ ∈ PNH1,
∣∣∣ �
R1

∇((wN )2 − (un+1)2)ϕdx
∣∣∣ ≤ ε as N →∞,

which allows us to conclude that

(2.5) ∀ϕ ∈ PNH1,
�

R1

∇(wN )2ϕdx→
�

R1

∇(un+1)2ϕdx as N →∞.

Thus un+1 is a solution of (1.1) at least in the distribution sense.

We now prove that there exists a bounded absorbing set B ⊂ H1 that is
positively invariant under S (S(B) ⊂ B) and bounded in the H1 topology.
Set

M2
0 =

5(1− β2)2‖f‖2L2

α2(1− 3β2)
, B = {u ∈ H1 : ‖u‖2L2 + ‖∇u‖2L2 ≤M2

0 }.

Lemma 2.5. The set B is positively invariant under S, that is, S(B) ⊂ B,
and absorbing for S, that is, for all u0 ∈ H1 there exists n0 > 0 such that
Snu0 ∈ B for all n ≥ n0.
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Proof. Multiplying (1.7) by un+1+βun and integrating on R1, we obtain

‖un+1‖2L2 − β2‖un‖2L2 + ‖∇un+1‖2L2 − β2‖∇un‖2L2

=
(1 + β)τ

2

�

R1

f(un+1 + βun) dx

≤ (1 + β)τ

2
‖f‖L2(‖un+1‖L2 + β‖un‖L2)

≤ 1

2
‖un+1‖2L2 +

β2

2
‖un‖2L2 +

(1 + β)2τ2

4
‖f‖2L2 .

Then

(2.6) ‖un+1‖2L2 + ‖∇un+1‖2L2

≤ 3β2‖un‖2L2 + 2β2‖∇un‖2L2 +
(1 + β)2τ2

2
‖f‖2L2

≤ 3β2(‖un‖2L2 + ‖∇un‖2L2) +
4(1− β2)2

α2
‖f‖2L2 .

We have S(B) ⊂ B: indeed, from (2.6) we deduce that if un ∈ B then

‖un+1‖L2 + ‖∇un+1‖2L2 ≤ 3β2M2
0 + (1− 3β2)

4(1− β2)2

α2(1− 3β2)
‖f‖2L2

≤ max

{
M2

0 ,
4(1− β2)2

α2(1− 3β2)
‖f‖2L2

}
= M2

0 .

Secondly, B is an absorbing set in H1 with respect to the H1 topology. In-
deed, by the discrete Gronwall lemma we see from (2.6) that for all u0 ∈ H1,

‖un‖2L2 + ‖∇un‖2L2 ≤ 3nβ2n(‖u0‖2L2 + ‖∇u0‖2L2) +
4(1− β2)2

α2(1− 3β2)
‖f‖2L2 .

Now, for u0 ∈ H1 there exists n0 such that for n ≥ n0,

3nβ2n(‖u0‖2L2 + ‖∇u0‖2L2) ≤ (1− β2)2

α2(1− 3β2)
‖f‖2L2 ,

which yields

‖un‖2L2 + ‖∇un‖2L2 ≤
5(1− β2)2

α2(1− 3β2)
‖f‖2L2 = M2

0 .

The proof of Lemma 2.5 is complete.

Lemma 2.6. For τ small enough, the mapping S: B → B is one-to-one
and continuous, that is, ‖Su − Sũ‖H1 ≤ C0‖u − ũ‖H1, where C0 > 0 is a
universal constant.

Proof. We establish the uniqueness of solution to (1.7) with the aid
of the Banach fixed point theorem. We introduce the following functional
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and we will make some smallness restrictions on the size of the time step
discretization τ . Let

Fu(v) = β(I −∆)−1(I −∆)u+ τ(I −∆)−1
[

1 + β

2
f − 1

8
∇(v + βu)2

]
.

Then any solution to (1.7) is a fixed point un+1 = Fun(un+1). Let ε > 0 be
small enough. We recall that for τ small enough,

(2.7) ∀s1 < s2, ‖(I −∆)−1‖L(Hs1 ,Hs2 ) ≤
C

τ (s2−s1)/2
.

It is clear that for u, v ∈ H1, (2.7) yields

(2.8) τ(I −∆)−1
[

1 + β

2
f − 1

8
∇(v + βu)2

]
∈ H2,

and thus Fu(H1) ⊂ H1. Let us prove that Fu is a contraction on B. Let
v1, v2, u ∈ B. Then

(2.9) ‖Fu(v2)−Fu(v1)‖H1 ≤ Cτ‖(I −∆)−1‖L(H−1/2,H1)

× (‖v2‖2H1 + ‖v1‖2H1 + ‖u‖2H1)‖v2 − v1‖H1 ≤ Cτ3/4K2
1‖v2 − v1‖H1 .

Thus, we deduce from (2.9) that if τ > 0 is small enough such that Cτ3/4K2
1

< 1/2, then Fu is a contraction on B. The mapping u 7→ v, where v is a
fixed point of Fu, is continuous on B: if v and ṽ are respectively the fixed
points for Fu and Fũ, then

(2.10) ‖v − ṽ‖H1 = ‖Fu(v)−Fu(ṽ)‖H1

≤ β‖u− ũ‖H1 + Cτ3/4K2
1‖u− ũ‖H1 + Cτ3/4K2

1‖v − ṽ‖H1 .

The result follows promptly if τ > 0 is small enough as above then ‖v− ṽ‖H1

≤ (2β + 1)‖u− ũ‖H1 . The proof of Lemma 2.6 is complete.

Proof of Theorem 1.1. From Lemmas 2.2–2.6, we easily obtain the de-
sired conclusion.

3. Global attractor

3.1. Existence of a global attractor. In this subsection, we prove
the existence of a compact global attractor in H1. Now, we plan to describe
the splitting S = S1 + S2 with the needed properties for S1, S2. For L > 0,
we consider a C∞-smooth cut-off function χL such that 0 ≤ χL ≤ 1 and

χL(x) =

{
1 if |x| ≤ L,

0 if |x| ≥ 1 + L.

For η > 0, that is chosen in (0, 1) without loss of generality, we consider a
function fχL ∈ S such that ‖f(1− χL)‖L2 ≤ η. We split the solution un of
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(1.7) as un = vn + wn, where vn is the solution to

(3.1)
1

τ
(vn+1 − βvn)− 1

τ
∆(vn+1 − βvn)

=
1 + β

2
fχL −

1

8
[∇(un+1 + βun)2]χL, v0 = 0.

Then wn = un − vn is the solution to

(3.2)
1

τ
(wn+1 − βwn)− 1

τ
∆(wn+1 − βwn)

=
1 + β

2
f(1− χL)− 1

8
[∇(un+1 + βun)2](1− χL), w0 = u0.

Lemma 3.1. The sequence {vn}n is well defined and belongs to H2 for
ε > 0.

Proof. Problem (3.1) is linear and elliptic on H1. Using the Lax–Milgram
theorem, we easily obtain the existence of a solution to (3.1). The estimate
(2.7) shows that the solutions are in H2.

Lemma 3.2. There exists K = K(α) such that for all η ∈ [0, 1] there
exists n0 = n0(‖f‖L2 , η) such that ‖wn‖H1 ≤ Kη for all u0 ∈ B and n ≥ n0.

Proof. Multiplying (3.2) by wn+1+βwn and integrating on R1, we obtain

‖wn+1‖2L2 − β2‖wn‖2L2 + ‖∇wn+1‖2L2 − β2‖∇wn‖2L2

=
(1 + β)τ

2

�

R1

f(1− χL)(wn+1 + βwn) dx

− τ

8

�

R1

[∇(un+1 + βun)2](1− χL)(wn+1 + βwn) dx

≤ (1 + β)τ

2
‖f(1− χL)‖L2(‖wn+1‖L2 + β‖wn‖L2)

+
τ

8

∥∥[(un+1 + βun)2](1− χL)
∥∥
L2(‖wn+1‖L2 + β‖wn‖L2)

≤ (5 + 4β)τη

8
(‖wn+1‖L2 + β‖wn‖L2)

≤ 1

2
‖wn+1‖2L2 +

β2

2
‖wn‖2L2 +

(5 + 4β)2τ2η2

64
.

We get

‖wn+1‖2L2 + ‖∇wn+1‖2L2 ≤ 3β2(‖wn‖2L2 + ‖∇wn‖2L2) +
(5 + 4β)2τ2η2

32
.

The discrete Gronwall lemma gives
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‖wn‖L2 + ‖∇wn‖2L2

≤ 3nβ2n(‖u0‖2L2 + ‖∇u0‖2L2) +
(5 + 4β)2τ2η2

32(1− 3β2)
,

≤ 3nβ2nM2
0 +

(5 + 4β)2(1− β)2

8(1− 3β2)
· η

2

α2
(since ατ ≤ 2(1− β)).

Then for n large enough that 3nβ2nM2
0 ≤

7(5+4β)2(1−β)2
8(1−3β2)

· η
2

α2 , we get

(3.3) ‖wn+1‖2L2 + ‖∇wn+1‖2L2 ≤
(5 + 4β)2(1− β)2

1− 3β2
· η

2

α2
.

The proof of Lemma 3.2 is complete.

Lemma 3.3. The sequence {vn}n is uniformly bounded in H1 ∩ L2(R1,
(1 + x2)dx) and in H2, that is, there exists a constant K such that for all
u0 ∈ B we have, for any n ≥ 0,

(3.4) ‖vn‖H1 ≤ K, ‖xvn‖L2 ≤ K, ‖vn‖H2 ≤ K/τ.
Proof. Since vn = un − wn, Lemma 3.2 yields

‖vn‖H1 ≤ K,(3.5)

that is, {vn}n is bounded in H1.
Now in order to prove the second inequality in (3.4), we have to verify

that xvn ∈ L2. To this end we shall consider the sequence {xϕ(x/N)vn}N ,
where ϕ ∈ D satisfies ϕ(0) = 1. Multiplying (3.1) by x2ϕ2(x/N)(vn+1+βvn)
and integrating on R1, we obtain

‖xϕ(x/N)vn+1‖2L2 − β2‖xϕ(x/N)vn‖2L2

+ ‖xϕ(x/N)∇vn+1‖2L2 − β2‖xϕ(x/N)∇vn‖2L2

= −
�

R1

[
(2ϕ(x/N)+

2

N
xϕ′(x/N))∇(vn+1−βvn)

]
[xϕ(x/N)(vn+1+βvn)] dx

+
(1 + β)τ

2

�

R1

[xϕ(x/N)fχL][xϕ(x/N)(vn+1 + βvn)] dx

− τ

8

�

R1

[
xϕ(x/N)χL[∇(vn+1 + βvn)2]

]
[xϕ(x/N)(vn+1 + βvn)] dx

≤
[
2‖(∇vn+1 + β∇vn)(ϕ(x/N) + (x/N)ϕ′(x/N))‖L2

+
(1 + β)τ

2
‖xϕ(x/N)fχL‖L2 +

τ

8
‖xϕ(x/N)χL(∇(vn+1 + βvn)2)‖

]
× [‖xϕ(x/N)vn+1‖L2 + β‖xϕ(x/N)vn‖L2 ]

≤ 1

2
‖xϕ(x/N)vn+1‖2L2 +

β2

2
‖xϕ(x/N)vn‖2L2 +K.
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Then we easily get

‖xϕ(x/N)vn+1‖2L2 + ‖xϕ(x/N)∇vn+1‖2L2

≤ 3β2(‖xϕ(x/N)vn‖2L2 + ‖xϕ(x/N)∇vn‖2L2) +K.

Again thanks to the discrete Gronwall lemma, we deduce that

‖xϕ(x/N)vn+1‖2L2 + ‖xϕ(x/N)∇vn+1‖2L2 ≤ K/τ.

Hence, the Fatou lemma yields

(3.6) ‖xvn+1‖2L2 + ‖x∇vn+1‖2L2 ≤ K/τ.

In fact we can obtain a better bound than (3.6) for {xvn}n in H1. Multi-
plying (3.1) by x2(vn+1 + βvn) and integrating on R1, we obtain

‖xvn+1‖2L2 − β2‖xvn‖2L2 + ‖x∇vn+1‖2L2 − β2‖x∇vn‖2L2

= −
�

R1

[(2 + 2x)∇(vn+1 − βvn)][x(vn+1 + βvn)] dx

+
(1 + β)τ

2

�

R1

[xfχL][x(vn+1 + βvn)] dx

− τ

8

�

R1

[xχL∇(un+1 + βun)2][x(vn+1 + βvn)] dx

≤
(

2‖(1 + x)(∇vn+1 + β∇vn)‖L2 +
(1 + β)τ

2
‖xfχL‖L2

+
τ

8
‖xχL[∇(vn+1 + βvn)2]‖

)
(‖xvn+1‖L2 + β‖xvn‖L2)

≤ 1

2
‖xvn+1‖2L2 +

β2

2
‖xvn‖2L2 +K(η).

Then we easily get

‖xvn+1‖2L2 + ‖x∇vn+1‖2L2 ≤ 3β2(‖xvn‖2L2 + ‖x∇vn‖2L2) +K(η).

Since v0 = 0, the discrete Gronwall lemma gives

(3.7) ‖xvn‖L2 + ‖x∇vn‖2L2 ≤ K(η).

Thus, we deduce that {vn}n is bounded in H1 ∩ L2(R1, (1 + x2)dx).

Now we prove the third inequality in (3.4). From (3.1) we obtain

∆vn+1 = β∆vn + vn+1 − βvn − (1 + β)τ

2
fρ+

τ

8
[∇(un+1 + βun)2]ρ.

Using the fact that un and vn are bounded in H1, we obtain
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‖∆vn+1‖L2 ≤ β‖∆vn‖L2 + ‖vn+1‖L2 +
(1 + β)τ

2
‖fχL‖L2

+ β‖vn‖L2 +
τ

8
‖∇(un+1 + βun)2χL‖L2

≤ β‖∆vn‖L2 +K.

Thus by the discrete Gronwall lemma we get

(3.8) ‖∆vn‖L2 ≤ K/τ.
The proof of Lemma 3.3 is complete.

We have constructed a splitting un = vn +wn where wn is small enough
in H1 and vn belongs to a bounded set of H2 ∩ L2(R1, (1 + x2)dx) ⊂ H1.
To establish the proof of compactness of the trajectories in H1, we use the
following compact embedding.

Lemma 3.4 ([21]). The embedding H2(R1)∩L2(R1, (1+x2)dx) ↪→H1(R1)
is compact.

Proof of Theorem 1.2. Now, the assumptions of [25, Theorem I.1.1] are
satisfied. Indeed, we set S1u

n = vn and S2u
n = wn, and use Lemmas 3.2–

3.4. Thus, we have the existence of a global attractor Aτ in H1 that is
a bounded set in H2. In order to prove that the global attractor Aτ is
a compact set in H2, we rely on the J. Ball argument [9]. Let {un+1

j }j
be a sequence of points of Aτ ⊂ H2, and consider {unj }j in Aτ such that

{un+1
j }j = S{unj }j . We are going to prove that there exists a subsequence

of {un+1
j }j that converges strongly in H2. Let wnj = unj − un. Then wnj is a

solution to

(3.9)
1

τ
(wn+1

j − βwnj )− 1

τ
∆(wn+1

j − βwnj )

= 1
8∇(un+1 + βun)2 − 1

8∇(un+1
j + βunj )2.

To go further, we reformulate (3.9) as follows

wn+1
j = β(I −∆)−1(I −∆)wnj

+
τ

8
(I −∆)−1[∇(un+1 + βun)2 −∇(un+1

j + βunj )2].

Now, it is easy to obtain

‖wn+1
j ‖H2 ≤ β‖wnj ‖H2 + C‖∇(un+1 + βun)2 −∇(un+1

j + βunj )2‖H−1 .

The continuity of the map S on H1 given by Lemma 3.1 and the strong
convergence of the sequences {un+1

j }j and {unj }j to un+1 and un respectively

in H1 implies that un+1 = Sun and ∇(un+1
j + βunj )2 → ∇(un+1 + βun)2

in H−1. We set Πn = lim supj→∞ ‖wnj ‖H2 . Then Πn+1 ≤ βΠn, and hence

by induction Πn ≤ βn−pΠp. As {Πp}p is uniformly bounded since {unj }n
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and {un}n are trajectories on the global attractor, we let p→ −∞ in Πn ≤
βn−pΠp to get Πn = 0. The proof of Theorem 1.2 is complete.

3.2. Dimension of the global attractor. In this subsection we prove
that the global attractor has finite fractal dimensions. For this purpose, we
recall a result of [14].

Lemma 3.5 ([14]). Let X be a separable Hilbert space and M a bounded
closed set in X. Assume that there exists a mapping V : M → X such that
M ⊆ VM and

(i) V is Lipschitz on M , i.e., there exists L0 > 0 such that

‖V u1 − V u2‖X ≤ L0‖u1 − u2‖X , u1, u2 ∈M.

(ii) There exist compact seminorms n1(·) and n2(·) on X such that

‖V u1 − V u2‖X ≤ µ‖u1 − u2‖X +K(n1(u1 − u2) + n2(V u1 − V u2))

for u1, u2 ∈M , where 0 < µ < 1 and K > 0 are constants.

(A seminorm n(x) in X is said to be compact if n(xm)→ 0 for any sequence
{xm}m ⊂ X such that xm ⇀ 0 weakly in X.) Then M is a compact set in
X with finite fractal dimensions.

In order to apply Lemma 3.5 with V = S, the solution map defining the
scheme (1.7), we have to impose some assumption on the force f . We prove
the following:

Lemma 3.6. Let f ∈ L2(R1, (1 +x2)dx). Then the global attractor Aτ is
in fact a bounded set in H1 ∩ L2(R1, (1 + x2)dx).

Proof. Here we use again the splitting method. Let {un}n be a global
trajectory that lies on the global attractor Aτ . Any un will split as follows:

(3.10)
1

τ
(vn+1 − βvn)− 1

τ
∆(vn+1 − βvn)

=
1 + β

2
f − 1

8
∇(un+1 + βun)2, v0 = 0.

Then wn = un − vn is the solution to

(3.11)
1

τ
(wn+1 − βwn)− 1

τ
∆(wn+1 − βwn) = 0, w0 = u0.

Problem (3.10) is linear and the existence of {vn}n follows easily by the Lax–
Milgram lemma. Moreover, since xf ∈ L2(R1), it is clear that {xvn}n ⊂
L2(R1). Then the sequence {vn}n defined by (3.10) is contained in H1 ∩
L2(R1, (1 + x2)dx) and is bounded. On the other hand, it is easy to prove
that {wn}n is bounded in H1 and satisfies ‖wn+1‖L2 = β‖wn‖L2 . Thus Aτ
is bounded in H1 ∩ L2(R1, (1 + x2)dx).
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Proof of Theorem 1.3. We apply Lemma 3.5 with S = V , X = H1 ∩
L2(R1, (1 + x2)dx) and M = Aτ . The first assumption is valid with L0 =
2β + 1 due to Lemma 3.1. On the other hand, considering the equation
satisfied by the difference wn = un − vn of two solutions un+1 = Sun and
vn+1 = Svn, we have

‖wn+1‖2H1 − β2‖wn‖2H1 ≤M(‖wn+1‖2L4 + ‖wn+1‖2L∞ + ‖wn‖2L4 + ‖wn‖2L∞).

Since the embeddings

H1 ∩ L2(R1, (1 + x2)dx) ⊂ L4 and H1 ∩ L2(R1, (1 + x2)dx) ⊂ L∞

are compact, assumption (ii) in Lemma 3.5 is valid. The proof of Theorem
1.3 is complete.
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