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Legendrian dual surfaces in hyperbolic 3-space

by Kentaro Saji (Kobe) and Handan Yıldırım (Istanbul)

Abstract. We consider surfaces in hyperbolic 3-space and their duals. We study
flat dual surfaces in hyperbolic 3-space by using extended Legendrian dualities between
pseudo-hyperspheres in Lorentz–Minkowski 4-space. We define the flatness of a surface in
hyperbolic 3-space by the degeneracy of its dual, which is similar to the case of the Gauss
map of a surface in Euclidean 3-space. Such surfaces are a kind of ruled surfaces. Moreover,
we investigate the singularities of these surfaces and the dualities of the singularities.

1. Introduction. A theorem on Legendrian dualities for pseudo-hyper-
spheres (hyperbolic n-space, de Sitter n-space and n-dimensional lightcone)
in Lorentz–Minkowski (n+1)-space, which gives a commutative diagram be-
tween contact manifolds defined by the dual relations, was shown in [11] (see
also [5, 21]). This theorem was extended in [17] to one-parameter families
of pseudo-hyperspheres in Lorentz–Minkowski (n+ 1)-space depending on a
parameter φ ∈ [0, π/2]. As an application of this extended duality theorem,
one-parameter families of extrinsic differential geometries of spacelike hyper-
surfaces in hyperbolic n-space, de Sitter n-space and n-dimensional lightcone
were constructed in [2, 16, 17]. Here, we point out that the principal cur-
vatures and the Gaussian curvature of each of these spacelike hypersurfaces
depend on φ. This geometry which depends on φ is called slant geometry.
Here, we emphasize that this geometry connects continuously horizontal ge-
ometry which corresponds to φ = 0 and vertical geometry which corresponds
to φ = π/2 (see [2] for the details).

In this paper, using the extended Legendrian dualities between hyper-
bolic 3-space and one-parameter families of pseudo-hyperspheres in Lorentz–
Minkowski 4-space, we consider one-parameter families of flat surfaces in
hyperbolic 3-space. It is well-known that a flat surface in Euclidean 3-space
is characterized by the degeneracy of its Gauss map. Moreover, a surface
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is developable if the image of its Gauss map is a point or a curve (that
is, all points of the surface are singularities of its Gauss map). Further-
more, the dual of a surface plays a similar role to the Gauss map of the
surface [26]. Taking into account these cases in Euclidean 3-space, we can
consider the Legendrian dual of a surface in hyperbolic 3-space as a kind of
Gauss map of the surface. Therefore, a surface in hyperbolic 3-space is flat
if its Legendrian dual is singular at any point of the surface. In particular,
we consider the case when the Legendrian dual is a spacelike curve in the
dual pseudo-hypersphere. We point out that a surface in hyperbolic 3-space
whose dual is valued in the 3-dimensional lightcone was studied in [13]. In
this case, the surface is called a horospherical flat (briefly, horo-flat) surface.
Such surfaces are one-parameter families of horo-cycles.

In this study, we consider surfaces in hyperbolic 3-space which have sim-
ilar properties to horo-flat surfaces. While these surfaces are one-parameter
families of horo-cycles for φ = 0, they are not one-parameter families of
horo-cycles for φ ∈ (0, π/2]. However, they are one-parameter families of
equidistant curves for φ ∈ (0, π/2] since the radiuses of the dual pseudo-
hyperspheres given in one-parameter families of Legendrian dualities are
non-zero. Thus, these surfaces connect continuously two important classes
of surfaces: the one-parameter family of horo-cycles and the one-parameter
family of geodesics. Flat cases of these surfaces connect horo-flat surfaces and
analogies of tangent developable surfaces in hyperbolic 3-space. Our main
results in this paper classify the singularities of these surfaces and show
dualities among them. These surfaces are frontals, that is, projections of
isotropic maps into the base space of a Legendrian fibration. If the isotropic
map is a Legendrian immersion, the frontal is called a wave front (or briefly
a front).

Singularities of wave fronts were originally investigated by Zakalyukin
[31, 32]. See also [1] for the details. It was shown that generic singularities
of wave front surfaces are cuspidal edges and swallowtails. It is known that
generic singularities of frontal surfaces can also be cuspidal cross caps, in ad-
dition to the above two [7, 10]. In this paper, we show that flat one-parameter
families of equidistant curves are always frontals, and generic singularities of
a certain class of them can also be a cuspidal beaks in addition to the above
three (Theorem 5.6(2)). Moreover, we discuss generic singularities of other
classes of one-parameter families of equidistant curves (Theorems 4.4, 5.3
and 5.6(1)). See [5, 19, 20, 22, 25] for some other investigations of surfaces
in hyperbolic 3-space.

In this paper, we deal with singularities of maps up to A-equivalence
among map germs. Two map germs g1, g2 : (R2,0)→ (R3,0) are A-equiva-
lent if there exist diffeomorphism germs S : (R2,0) → (R2,0) and T :
(R3,0)→ (R3,0) satisfying g2 ◦ S = T ◦ g1. Here, a cuspidal edge is a map
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germ which is A-equivalent to (u, v) 7→ (u, v2, v3) at the origin, a swallowtail
is a map germ which is A-equivalent to (u, v) 7→ (u, 3v4 +uv2, 4v3 + 2uv) at
the origin, and a cuspidal cross cap is a map germ which is A-equivalent to
(u, v) 7→ (u, v2, uv3) at the origin. Moreover, dual surfaces can have a more
degenerate singularity called cuspidal beaks. A cuspidal beaks is a map germ
which is A-equivalent to (u, v) 7→ (u,−2v3 − u2v, 3v4 − u2v2) at the origin.
The images of these singularities are shown in Figure 1.

Fig. 1. Cuspidal edge, swallowtail, cuspidal cross cap and cuspidal beaks

On the other hand, there are many investigations of singularities of ruled
surfaces and their analogies (see [12, 15, 23, 24] for example). Circular sur-
faces, that is, one-parameter families of circles are one of the analogies of
ruled surfaces in Euclidean 3-space. They were investigated in [14]. Surfaces
which we study here are one-parameter families of equidistant curves. These
are also analogies of ruled surfaces.

Throughout this paper, we assume that all the maps and manifolds con-
sidered are of class C∞.

2. One-parameter families of Legendrian dualities. Let Rn+1
1 be

the Lorentz–Minkowski (n + 1)-space with the inner product 〈 , 〉 =
(−,+, . . . ,+). Let Hn(−c2) (respectively, Sn1 (c2) and LC∗)⊂ Rn+1

1 denote
hyperbolic n-space with radius c (respectively, de Sitter n-space with radius
c and n-dimensional (open) lightcone) defined by

Hn(−c2) = {x ∈ Rn+1
1 | 〈x,x〉 = −c2},

Sn1 (c2) = {x ∈ Rn+1
1 | 〈x,x〉 = c2},

LC∗ = {x ∈ Rn+1
1 \ {0} | 〈x,x〉 = 0}.

We denote Sn1 (1) by Sn1 .
Recall that a point of a surface in a Riemannian space form is called

umbilical if the shape operator at this point is a multiple of the identity.
Moreover, a surface in a Riemannian space form is called totally umbilic if
all of its points are umbilical. Furthermore, it is called totally geodesic if its
second fundamental form is identically zero.
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For a vector p ∈ Sn1 and k ≥ 0, define

Ω(p, k) = {x ∈ Hn(−1) | 〈x,p〉 = k}.

It can be easily seen that Ω(p, sinh r) is a totally umbilic hypersurface of
constant extrinsic curvature sinhn−1 r/coshn−1 r (cf. [4, p. 68]). We remark
that Ω(p, 0) is a totally geodesic hyperbolic (n − 1)-space in Hn(−1), and
the distance from Ω(p, 0) to Ω(p, sinh r) is r. The space Ω(p, sinh r) is said
to be an equidistant surface (from a geodesic plane) when n = 3, and an
equidistant curve (from a geodesic line) when n = 2.

On the other hand, for a vector q ∈ Hn(−1) and k ≤ −1, we define

Σ(q, k) = {x ∈ Hn(−1) | 〈x, q〉 = k}.

If cosh r 6= 1, then Σ(q,− cosh r) is a totally umbilic hypersurface of con-
stant extrinsic curvature coshn−1 r/sinhn−1 r (see [4, p. 69]). We remark that
Σ(q,−1) is a point and the distance from Σ(q,−1) to Σ(q,− cosh r) is r.
The space Σ(q,− cosh r) is said to be a sphere (an equidistant surface from
a point) when n = 3, and a circle (an equidistant curve from a point) when
n = 2.

In order to give the Legendrian dualities which we will use throughout
this paper, we now review some basic notions related to contact manifolds
and Legendrian submanifolds. Let N be a (2n + 1)-dimensional manifold
and K be a tangent hyperplane field on N . Locally such a field is defined
as the field of zeros of a 1-form α. The field K is called non-degenerate if
α ∧ (dα)n 6= 0 at any point of N . We say that (N,K) is a contact manifold
if K is a non-degenerate hyperplane field. In this case, K (respectively, α)
is said to be a contact structure (respectively, a contact form).

A map L : U → N from an open set U ⊂ Rn to a contact manifold
(N,K) is said to be isotropic if dLx(TxU) ⊂ KL(x) for any x ∈ U . An
isotropic embedding L : U → N is said to be Legendrian if dimU = n.
Images of Legendrian embeddings are called Legendrian submanifolds.

A smooth fiber bundle π : E → N is said to be a Legendrian fibration
if its total space E is furnished with a contact structure and its fibers are
Legendrian submanifolds. Let π : E → N be a Legendrian fibration. A map
f : U → N is a frontal if there exists an isotropic map Lf : U → E such
that π ◦Lf = f . If Lf is an immersion, then f is said to be a wave front (or
briefly a front).

An example of a Legendrian fibration is the unit tangent bundle of a
Riemannian manifold. Let N be an n-dimensional Riemannian manifold
with a Riemannian metric g, and TN be its tangent bundle. Let (x1, . . . , xn)
be the local coordinates on a neighborhood V of N and (ξ1, . . . , ξn) be the
coordinates on the fiber over V . Let gij be the components of the metric g
with respect to the above coordinates. Let us define a one-form α locally by
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α =
∑

i,j gijξjdxi. Let T1N be the unit tangent bundle with respect to the
metric g. Then the restriction of α onto T1N gives a contact structure, and
π̃ : T1N → N is a Legendrian fibration (see [1, 3] for the details).

Now, set

∆−21(φ) = {(x,y) ∈ H3(−1)× S3
1(sin2 φ) | 〈x,y〉 = − cosφ}

for 0 < φ < π/2, and

∆̃−21(φ) = {(x,y) ∈ H3(−1)×H3(− sinh2 φ) | 〈x,y〉 = − coshφ}
for φ > 0. We follow [2, 16, 17] for some of these notations. Let ∆ be ∆−21(φ)

or ∆̃−21(φ). Then the restrictions of the standard one-forms

−x0dy0 +
3∑
i=1

xidyi and −y0dx0 +
3∑
i=1

yidxi

(x = (x0, . . . , x3), y = (y0, . . . , y3) ∈ R4
1)

to ∆ define the same tangent hyperplane field over ∆. So, ∆ is a contact
manifold with contact form (−x0dy0 +

∑3
i=1 xidyi)|∆. Let U be a domain in

R2 and L = (f, g) : U → ∆ ⊂ R4
1 × R4

1 be a map. If L is isotropic, we say
that f and g are ∆-dual to each other, g is a ∆-dual of f , and f is a ∆-dual
of g. Let L = (f, g) : U → ∆ ⊂ R4

1 × R4
1 be a Legendrian immersion. Then

each of f and g is a front. By comparing this duality with a surface in R3

and its unit normal vector, we define the extrinsic curvature of a surface in
H3(−1) as follows:

Let L = (f, g) : (U ; (u, v)) → ∆ ⊂ R4
1 × R4

1 be an isotropic map. We
define

E = 〈fu, fu〉, F = 〈fu, fv〉, G = 〈fv, fv〉,
L = −〈fu, gu〉, M = −〈fu, gv〉, N = −〈fv, gv〉,

and call E du2+2F du dv+Gdv2 the first fundamental form, Ldu2+2Mdudv
+Ndv2 the second fundamental form (with respect to ∆), where ( )u = ∂/∂u
and ( )v = ∂/∂v. Moreover, we define

S =

(
E F

F G

)−1(
L M

M N

)
,

and call detS the extrinsic curvature with respect to ∆, or briefly the ex-
trinsic curvature (cf. [11]).

Let us consider ∆−21(φ). When φ = 0, we have ∆−21(0) = ∆−2 = {(x,y) ∈
H3(−1) × LC∗ | 〈x,y〉 = −1}, where LC∗ denotes the 3-dimensional light-
cone. Moreover, when φ = π/2, we have ∆−21(π/2) = ∆1 = {(x,y) ∈
H3(−1)× S3

1 | 〈x,y〉 = 0}. Thus, ∆−21(φ) connects the dualities ∆−2 and ∆1

(see [2, 11, 17]). So, we may regard that dual surfaces constructed by using
∆−21(φ) connect dual surfaces constructed by using ∆−2 (horo-flat surfaces
[13]) and ∆1 (usual extrinsic flat surfaces).
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Let us now consider ∆̃−21(φ). When φ = 0, we have ∆̃−21(0) = ∆−2 =
{(x,y) ∈ H3(−1)×LC∗ | 〈x,y〉 = −1}. Furthermore, when φ = sinh−1(1) =
log(1 +

√
2), we get ∆̃−21(sinh−1(1)) = {(x,y) ∈ H3(−1)×H3(−1) | 〈x,y〉 =

− cosh(sinh−1(1)) = −
√

2}.

3. Dual surfaces. In this section, we construct dual surfaces in H3(−1)
of spacelike curves in S3

1(sin2 φ) and H3(− sinh2 φ), respectively.

3.1. Frame. We now introduce a one-parameter frame field and its
invariant. Let ai : I → R4

1 (i = 0, . . . , 3) be smooth maps such that

A(t) = t(a0(t),a1(t),a2(t),a3(t)) ∈ SO(3, 1),

where I ⊂ R is an open interval. Here, a vector in R4
1 is a row vector and t(·)

denotes the transpose of a matrix. Let us define the following fundamental
invariants:

c1(t) = 〈a′0(t),a1(t)〉, c2(t) = 〈a′0(t),a2(t)〉, c3(t) = 〈a′0(t),a3(t)〉,
c4(t) = 〈a′1(t),a2(t)〉, c5(t) = 〈a′1(t),a3(t)〉, c6(t) = 〈a′2(t),a3(t)〉,

where ( )′ = d/dt. Then we can easily show that C = A′A−1, where

(3.1) C(t) =


0 c1(t) c2(t) c3(t)

c1(t) 0 c4(t) c5(t)

c2(t) −c4(t) 0 c6(t)

c3(t) −c5(t) −c6(t) 0

 ∈ so(3, 1),

and so(3, 1) is the Lie algebra of SO(3, 1). In this sense, C(t) is a Lorentzian
invariant of A(t). If we suppose that a0 is a unit speed curve inH3(−1) ⊂ R4

1,
a1 = a′0 and a2 (respectively, a3) is the principal-normal (respectively, bi-
normal) vector of this curve, then we find that c1 = 1 and c2 = c3 = c5 = 0.
Moreover, c4 (respectively, c6) coincides with the hyperbolic curvature (re-
spectively, hyperbolic torsion) of this curve. Thus, c1, . . . , c6 represent the
curvatures of the frame {a0, . . . ,a3}.

For the converse, let A : I → SO(3, 1) be a smooth curve. Then we
can show that A′A−1 ∈ so(3, 1). Moreover, for any smooth curve C : I →
so(3, 1), if we apply the existence theorem for linear systems of ordinary
differential equations, we conclude that there exists a unique curve A : I →
SO(3, 1) such that C = A′A−1 with initial data A(t0).

3.2. ∆−21(φ)-dual surface of a spacelike curve in S3
1(sin2 φ). Let

`φ : I → S3
1(sin2 φ) be a spacelike curve, and set a3(t) = `′φ(t)/|`′φ(t)|. Since

`φ ∈ (a3)
⊥, we have curves a0(t) and a2(t) satisfying `φ = cosφa0 + a2,

−〈a0,a0〉 ≡ 〈a2,a2〉 ≡ 1 and 〈a0,a2〉 ≡ 0. Let a1(t) = a0(t) ∧ a2(t) ∧ a3(t)
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and A(t) = t{a0(t),a1(t),a2(t),a3(t)}. Then A ∈ SO(3, 1) and c2 ≡ cosφ c1
− c4 ≡ 0. Here, ≡ means that the equality holds for any t ∈ I.

Consider the function

Φ : H3(−1)× I → R, (x, t) 7→ 〈x, `φ(t)〉+ cosφ.

Then for each t ∈ I, the first component of Φ−1(0) coincides with the equidis-
tant surface

Ω

(
y

sinφ
,−cosφ

sinφ

)
.

Set

fA(s, t) = f(s, t)(3.2)

=
cosh s−cos2 φ

sin2 φ
a0(t) +

sinh s

sinφ
a1(t) + cosφ

cosh s−1

sin2 φ
a2(t).

Then the image of f is a part of the discriminant set of Φ. This means that
f is the envelope of a one-parameter family of equidistant surfaces and it is
a ∆−21(φ)-dual of `φ. Moreover, for each t ∈ I, it is clear that {f(s, t) | s ∈ R}
⊂ Ω(a3(t), 0) ∩ Ω(`φ(t)/sinφ,− cosφ/sinφ). It can be easily seen that
s 7→ f(s, t) is an equidistant curve in a hyperbolic plane in hyperbolic
3-space. Under the assumptions c2 ≡ cosφ c1 − c4 ≡ 0, `φ is a ∆−21(φ)-dual
of f . Thus, f is of constant extrinsic curvature zero with respect to ∆−21(φ).
We call f a ∆−21(φ)-flat surface foliated by equidistant curves or briefly a flat
surface foliated by equidistant curves. Here, we remark that f has been con-
structed under the assumptions c2 ≡ cosφ c1− c4 ≡ 0 and `′φ 6= 0. However,
without these assumptions, we can define a surface f by a similar formula
to that in (3.2). We then call f a surface foliated by equidistant curves when
we do not have any assumptions on C.

Since A(t) = t(a0(t),a1(t),a2(t),a3(t)) ∈ SO(3, 1) is uniquely deter-
mined by C(t) and initial data A(t0), we consider the space of each class of
surfaces foliated by equidistant curves as follows: The space of surfaces foli-
ated by equidistant curves is defined to be C∞(I, so(3, 1)) with the Whitney
C∞-topology, and the space of ∆−21(φ)-flat surfaces foliated by equidistant
curves is defined to be C∞(I, fes(3, 1)) again with the Whitney C∞-topology,
where

fes(3, 1) = {C ∈ so(3, 1) | c2 = cosφ c1 − c4 = 0}

and

(3.3) C =


0 c1 c2 c3

c1 0 c4 c5

c2 −c4 0 c6

c3 −c5 −c6 0

.
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Let us rewrite f as follows:

f(s, t) = − cosφ
cosφa0(t) + a2(t)

sin2 φ

+ cosh s
a0(t) + cosφa2(t)

sin2 φ
+ sinh s

a1(t)

sinφ
.

Furthermore, define

γ(t) = − cosφ
cosφa0(t) + a2(t)

sin2 φ
,

d1(t) =
a0(t) + cosφa2(t)

sin2 φ
and d2(t) =

a1(t)

sinφ
.

We call γ the base curve, d1 and d2 the directrices, and the equidistant curve
s 7→ γ(t)+cosh sd1(t)+sinh sd2(t) the generating (equidistant) curve of f .
If f is flat, then image(f) = H3(−1)∩{x ∈ R4

1 | d(γ,x) = −1/sin2 φ}. Thus,
a flat surface foliated by equidistant curves is called a canal surface.

Example 3.1. Consider the matrix

C =


0 0 0 1

0 0 1 0

0 −1 0 0

1 0 0 0

.
Then we have the corresponding surface fC(s, t), foliated by equidistant
curves, which is drawn in the Poincaré ball model of H3(−1) in Figure 2.

Fig. 2. The surface fC foliated by equidistant curves; left: φ = π/12, right: φ = π/4

3.3. ∆̃−21(φ)-dual surface of a curve in H3(− sinh2 φ). Let `φ : I →
H3(− sinh2 φ) be a curve, and take a frame {a0(t),a1(t), a2(t),a3(t)} such
that a3(t) = `′φ(t)/|`′φ(t)|, `φ = coshφa0 + a2, and A(t) = t(a0(t),a1(t),
a2(t),a3(t)) ∈ SO(3, 1). By the same arguments as in Subsection 3.2, we
have the following ∆̃−21(φ)-dual surface f̃ of `φ:
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f̃A(s, t) = f̃(s, t)(3.4)

=
cos s+cosh2 φ

sinh2 φ
a0(t) +

sin s

sinhφ
a1(t) + coshφ

cos s+1

sinh2 φ
a2(t).

It can be easily seen that f̃ is the envelope of a one-parameter family of
spheres, and so s 7→ f̃(s, t) is a one-parameter family of circles. Moreover,
f̃ is a ∆̃−21(φ)-dual of `φ under the assumptions c2 ≡ coshφ c1 − c4 ≡ 0.

In this case, we call f̃ a ∆̃−21(φ)-flat surface foliated by circles (equidistant

curves) or briefly a flat surface foliated by circles. We call f̃ a surface foliated
by circles when we do not have any assumptions on C.

Now, define

γ̃(t) = coshφ
coshφa0(t) + a2(t)

sinh2 φ
,

d̃1(t) =
a0(t) + coshφa2(t)

sinh2 φ
and d̃2(t) =

a1(t)

sinhφ
,

and call γ̃ the base curve, d̃1 and d̃2 the directrices, and the circle s 7→
γ̃(t) + cos s d̃1(t) + sin s d̃2(t) the generating curve (circle) of f̃ . A flat sur-
face foliated by circles is also called a canal surface. In what follows, the
equidistant curves from a geodesic line or from a point are simply referred
to as “equidistant curves”.

We now consider the space of each class of surfaces foliated by circles.
The space of surfaces foliated by circles is defined to be C∞(I, so(3, 1)) with
the Whitney C∞-topology, and the space of ∆̃−21(φ)-flat surfaces foliated by

circles is defined to be C∞(I, f̃es(3, 1)) again with the Whitney C∞-topology,
where

f̃es(3, 1) = {C ∈ so(3, 1) | c2 = coshφ c1 − c4 = 0},

and C is a matrix as in (3.3).

4. Surfaces foliated by equidistant curves. In this section, we do
not assume that c2 ≡ cosφ c1− c4 ≡ 0 (respectively, c2 ≡ coshφ c1− c4 ≡ 0)
for ∆−21(φ) (respectively, ∆̃−21(φ)). The following definition corresponds to
the non-cylindricity of a ruled surface in R3.

Definition 4.1. A point (s, t) on a surface fA (respectively, f̃A), foli-
ated by equidistant curves, is called a non-∆−21(φ)-flat point (respectively,

non-∆̃−21(φ)-flat point), or briefly a non-flat point, if (c2, cosφ c1 − c4)(t)
6= (0, 0) (respectively, (c2, coshφ c1 − c4)(t) 6= (0, 0)). A surface fA (respec-
tively, f̃A), foliated by equidistant curves, is non-∆−21(φ)-flat (respectively,

non-∆̃−21(φ)-flat), or briefly non-flat , if any point on the surface fA (respec-

tively, f̃A) is a non-flat point.
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4.1. Striction curve. It is known that the singularities of a ruled sur-
face are located on the striction curve, and there exists a unique striction
curve on a non-cylindrical ruled surface (see [9, 15] for the details). In this
subsection, we consider a curve on a surface foliated by equidistant curves
with similar properties to those of the striction curve.

Definition 4.2. Let f (respectively, f̃) be a surface foliated by equidis-
tant curves as in (3.2) (respectively, (3.4)). A curve σ : I → U (or f ◦ σ
(respectively, f̃ ◦ σ)) is a striction curve if 〈(f ◦ σ)′,d1〉 ≡ 〈(f ◦ σ)′,d2〉 ≡ 0
(respectively, 〈(f̃ ◦ σ)′, d̃1〉 ≡ 〈(f̃ ◦ σ)′, d̃2〉 ≡ 0).

We now suppose that f (respectively, f̃) is non-flat. For a function s(t)
(respectively, s̃(t)), the curve σ(t) = (s(t), t) (respectively, σ̃(t) = (s̃(t), t))
is a striction curve if and only if

sinφ c2(t) cosh s(t) + (− cosφ c1(t) + c4(t)) sinh s(t) ≡ 0(
respectively, sinhφ c2(t) cos s̃(t) + (coshφ c1(t)− c4(t)) sin s̃(t) ≡ 0

)
.

Hence, in the case of f , if

|−cosφ c1(t) + c4(t)| > |sinφ c2(t)|,

then there exists a striction curve of f , where

s(t) = sinh−1
(

sgn
(
cosφ c1(t)− c4(t)

)
sinφ c2(t)√

(cosφ c1(t)− c4(t))2 − (sinφ c2(t))2

)
.

On the other hand, since f is non-flat, there exist two striction curves of f .
For a surface foliated by equidistant curves, the base curve is an image of
the striction curve if and only if c2 ≡ 0. Thus, if a striction curve exists,
then we can assume that c2 ≡ 0.

If f is flat, then any curve t 7→ (s(t), t) satisfies the condition for a
striction curve.

4.2. Singularity. In this subsection, we study conditions for a point
on a surface foliated by equidistant curves to be a Whitney umbrella, and
show that a Whitney umbrella is a generic singularity of a surface foliated
by equidistant curves. A map-germ g : (R2,0) → (R3,0) at the origin is a
Whitney umbrella if g is A-equivalent to (u, v) 7→ (u, v2, uv) at the origin.

By a direct calculation, we obtain

fs(s, t) =
1

sin2 φ

(
sinh sa0(t) + sinφ cosh sa1(t) + cosφ sinh sa2(t)

)
,
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f ′(s, t) =
1

sin2 φ

[(
sinφ c1(t) sinh s+ cosφ c2(t) (cosh s− 1)

)
a0(t)

+
(
c1(t)(− cos2 φ+ cosh s)− cosφ c4(t) (cosh s− 1)

)
a1(t)

+
(
c2(t)(− cos2 φ+ cosh s) + sinφ c4(t) sinh s

)
a2(t)

+
(
c3(t)(− cos2 φ+ cosh s) + sinφ c5(t) sinh s

+ cosφ c6(t)(cosh s− 1)
)
a3(t)

]
,

where ( )s = ∂/∂s and ( )′ = ∂/∂t. Set f ′(s, t) =
∑3

i=0 αi(s, t)ai(t) and
denote the set of singular points of f by S(f). Then (s, t) ∈ S(f) if and only
if

(4.1) sinφ c2(t) cosh s+ (− cosφ c1(t) + c4(t)) sinh s = 0, α3(s, t) = 0.

If |−cosφ c1(t) + c4(t)| > |sinφ c2(t)|, then there exists a function s(t) such
that (s(t), t) satisfies the first equation of (4.1). Take κcr(t) = α3(s(t), t).
Then by a direct calculation, we get

κcr(t) = (c3(t) + cosφ c6(t))(− cosφ c1(t) + c4(t))− sin2 φ c2(t)c5(t)(4.2)

− sgn(c4(t)− cosφ c1(t)) cosφ (c6(t) + cosφ c3(t))
√
ρ(t),

where ρ(t) = (c4(t)− cosφ c1(t))
2 − sin2 φ c22(t).

Let S(f̃) denote the set of singular points of f̃ . In a similar vein, (s, t) ∈
S(f̃) if and only if

(4.3) sinhφ c2(t) cos s+ (coshφ c1(t)− c4(t)) sin s = 0, α̃3(s, t) = 0,

where f̃ ′(s, t) =
∑3

i=0 α̃i(s, t)ai(t). If f̃ is non-flat, then there exists a
function s̃(t) such that (s̃(t), t) satisfies the first equation of (4.3). Put
κ̃cr(t) = α̃3(s̃(t), t).

We now state conditions for a point on the surface f (respectively, f̃) to
be a Whitney umbrella by using the function κcr (respectively, κ̃cr):

Theorem 4.3.

(1) The map-germ f at a non-flat point (s0, t0) is a Whitney umbrella
if and only if

sinφ c2(t0) cosh s0 + (−cosφ c1(t0) + c4(t0)) sinh s0 = 0,

κcr(t0) = 0 and κ′cr(t0) 6= 0.

(2) The map-germ f̃ at a non-flat point (s0, t0) is a Whitney umbrella
if and only if

sinhφ c2(t0) cos s0 + (coshφ c1(t0)− c4(t0)) sin s0 = 0,

κ̃cr(t0) = 0 and κ̃′cr(t0) 6= 0.

Proof. The characterization of a Whitney umbrella is very well-known
[30, p. 161] (see also [27, Remark 2.3]). Let ϕ = det(fs, ηf, ηηf, f). For f ,
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set η = α1 ∂s−sinφ cosh s ∂t. Then f at (s0, t0) is a Whitney umbrella if and
only if ϕ(s0, t0) = 0 and ϕs(s0, t0) 6= 0. It can be easily seen that η spans the
kernel of df at (s0, t0), and it is tangent to the striction curve σ(t). Thus, on σ
we have η det(π0(fs), π0(ηf), π0(f)) ≡ 0, where π0(

∑3
i=0 δiai) =

∑2
i=0 δiai.

Hence, det(π0(fs), π0(ηηf), π0(f)) = 0 at (s0, t0). Moreover, by a direct
calculation, det(π0(fs), π0(ηfs), π0(f)) 6= 0 at (s0, t0). Thus, it is clear that
ϕs(s0, t0) 6= 0 is equivalent to β3(s0, t0) 6= 0, where ηηf =

∑3
i=0 βiai. By

a direct calculation, we find that βi(s0, t0) = (d/dt)αi(σ(t))|t=t0 . Thus, we
have (1). We can obtain (2) in the same way.

Taking into account the above characterization of a Whitney umbrella,
we prove the following theorem:

Theorem 4.4. There exists a residual subset O1 ⊂ C∞(I, so(3, 1)) (res-
pectively, Õ1 ⊂ C∞(I, so(3, 1))) such that the germ of the surface fA(s, t)
(respectively, f̃Ã(s, t)), foliated by equidistant curves, at any point (s0, t0) is

an immersion or a Whitney umbrella for any C ∈ O1 (respectively, C̃ ∈ Õ1).
Here, A : I → SO(3, 1) (respectively, Ã : I → SO(3, 1))) is the smooth curve
corresponding to C ∈ C∞(I, so(3, 1)) (respectively, C̃ ∈ C∞(I, so(3, 1))).

Proof. Let us identify the 1-jet space as Euclidean space by

J1(I, so(3, 1)) ' I × R6 × R6

= {(t, c, d) | t ∈ I, c = (c1, . . . , c6) ∈ R6, d = (d1, . . . , d6) ∈ R6},
where I ⊂ R, and define a polynomial P (c) (respectively, Q(c, d)) of 6 vari-
ables c1, . . . , c6 (respectively, 12 variables c1, . . . , c6, d1, . . . , d6) as follows:

P (c) =
(
(c3 + cosφ c6)(− cosφ c1 + c4)− sin2 φ c2c5

)2
− cos2 φ (c6 + cosφ c3)

2
(
(c4 − cosφ c1)

2 − sin2 φ c22
)
,

Q(c, d) =
(
(c3 + cosφ c6)(− cosφ c1 + c4)− sin2 φ c2c5

)
×
(
(d3 + cosφd6)(− cosφ c1 + c4)

+ (c3 + cosφ c6)(− cosφd1 + d4)− sin2 φ (d2c5 + c2d5)
)

− cos2 φ (c6 + cosφ c3)(d6 + cosφd3)
(
(c4 − cosφ c1)

2 − sin2 φ c22
)

− cos2 φ (c6 +cosφ c3)
2
(
(c4−cosφ c1)(d4−cosφd1)− sin2 φ c2d2

)
.

Moreover, define the following subsets of J1(I, so(3, 1)):

S1 = {(t, c, d) ∈ J1(I, so(3, 1)) | c2 = cosφ c1 − c4 = 0},
S2 = {(t, c, d) ∈ J1(I, so(3, 1)) |P (c) = 0},
S3 = {(t, c, d) ∈ J1(I, so(3, 1)) |Q(c, d) = 0}.

Then we can easily see that S1 is a submanifold of codimension two, and
S2 and S3 are algebraic subsets of codimension one. We remark that φ is a
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fixed number, and the coefficients of d5 and d6 in Q(c, d) are

c2
(
−c3c4 + cosφ c1c3 − cosφ c4c6 + cos2 φ c1c6 + (1− cos2 φ) c2c5

)
and

(c3c
2
4 − 2 cosφ c1c3c4 + cos2 φ c21c3)

+ (−c4c5 + cosφ c1c5)c2 + (cosφ c6 + cos2 φ c3)c
2
2,

respectively. We see that these coefficients do not have any common factors
and they do not appear in P (c). Thus, S2 ∩ S3 is an algebraic subset of
codimension two. Therefore, we have stratifications of S2, S3 and S2 ∩ S3.
We say that j1C is transverse to S2 (or S3 or S2 ∩ S3) if j1C is transverse
to all of these stratifications. By Thom’s jet transversality theorem (see [8,
Theorem 4.9, p. 54], for example), O1 = {C ∈ C∞(I, so(3, 1)) | j1C is trans-
verse to S1, S2, S3 and S2 ∩ S3} is a residual subset in C∞(I, so(3, 1)). On
the other hand, P (c) is constructed by taking the difference of the squares
of two terms of κcr (see (4.2)), and Q(c, d) is constructed from the differen-
tiation of it. Furthermore, since the codimensions of S1 and S2∩S3 are both
two, which is greater than dim I = 1, we conclude that j1C is transverse
to both S1 and S2 ∩ S3. This implies that j1C(I) intersects neither S1 nor
S2 ∩ S3. Consequently, Theorem 4.3 implies that O1 satisfies the required
conditions. We can obtain Õ1 in the same way.

5. Special classes of surfaces foliated by equidistant curves. In
this section, we consider a special class of surfaces foliated by equidistant
curves other than the flat surfaces. Although these surfaces are not flat, they
have similar properties to flat surfaces.

5.1. The cut-end surface of a circular saw. In the case of ruled
surfaces in Euclidean 3-space, the condition of flatness is equivalent to the
condition that all generating lines are lines of curvature. Here we study
the surface f = fA, foliated by equidistant curves, such that all generat-
ing equidistant curves are lines of curvature. Since s is the parameter of
generating equidistant curves, this condition is equivalent to

r(s, t) := det(fs, ν, νs, f)(s, t) ≡ 0 (ν = fs ∧ f ′ ∧ f).

Let us consider r(s, t) + rs(s, t) ≡ 0 and r(s, t)− rs(s, t) ≡ 0. Then

c2(t) ≡ cosφ c1(t)− c4(t) ≡ 0 or cosφ c3(t) + c6(t) ≡ 0.

The first condition gives r(s, t) ≡ 0. Under the second condition, r(s, t) ≡ 0
is equivalent to c5(t) c2(t) + c3(t)(cosφ c1(t)− c4(t)) ≡ 0. Thus, we have the
following conditions:

(5.1)
c2(t) ≡ 0, cosφ c1(t)− c4(t) ≡ 0 or

cosφ c3(t) + c6(t) ≡ 0, c5(t)c2(t) + c3(t)(cosφ c1(t)− c4(t)) ≡ 0.
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The first condition implies flatness. On the other hand, the second condition
is interesting, because under this condition, (s, t) ∈ S(f) if and only if

sinφ c2(t) cosh s+ (−cosφ c1(t) + c4(t)) sinh s = 0.

This means that all points on the striction curve are singular points. More-
over, all of the generating equidistant curves are tangent to the striction
curve.

Since cosφ c3(t) + c6(t) = 0, we have γ ′ ∈ 〈d1,d2〉R. Let γ be a unit
speed curve. If γ satisfies |γ ′′ − γ| 6= 0, then f can be written as

γ +
sinh sγ ′ + cosh s (cos θ(t)n+ sin θ(t) e)

sinφ
,

where n = (t′−γ)/κh and e = γ∧t∧n. Here, we denote |t′−γ| by κh. The
condition c5(t)c2(t) + c3(t)(cosφ c1(t) − c4(t)) = 0 implies that θ′ + τ ≡ 0,
where τ = |γ,γ ′,γ ′′,γ ′′′|/κ2h is the torsion of γ. So, this is an analogy of
roller coaster surfaces in R3 ([14]).

This surface is a locus swept out by equidistant curves. Taking into
account the Poincaré ball model of H3(−1), we can say that equidistant
curves are parts of circles. As a result, we call this surface the cut-end surface
of a circular saw (see Figure 3).

Since we are interested in the singularities of this surface, we consider
it together with the striction curve. Taking the base curve as the striction
curve, we can suppose that c2 ≡ 0. Then (5.1) is equivalent to c2 ≡ c3 ≡
c6 ≡ 0. Thus, the space of cut-end surfaces of circular saws is defined to be
C∞(I, cs(3, 1)) with the Whitney C∞-topology, where

cs(3, 1) = {C ∈ so(3, 1) | c2 = c3 = c6 = 0}

and C is a matrix as in (3.3).

Fig. 3. Cut-end surface of a circular saw

We now consider the singularities of a non-flat cut-end surface of a circu-
lar saw. We fix a pseudo-orthonormal frame A(t)= t{a0(t),a1(t),a2(t),a3(t)}
corresponding to C(t) ∈ cs(3, 1) and suppose that (cosφ c1(t)− c4(t), c5(t))
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6= (0, 0) for any t ∈ I. Moreover, set f = fA and take

(5.2)

νc(s, t) = δ(t)

[
cosφ c5(t)(1−cosh s)

sin2 φ
a0(t)−

cosφ c5(t) sinh s

sinφ
a1(t)

+
c5(t)(1−cos2 φ cosh s)

sin2 φ
a2(t)+(cosφ c1(t)−c4(t))a3(t)

]
,

δ(t) =
(
(cosφ c1(t)−c4(t))2+c25(t)

)−1/2
.

Then νc is an S3
1 -valued normal vector field of f . This means that the cut-end

surface of a circular saw with (cosφ c1(t)− c4(t), c5(t)) 6= (0, 0) is a frontal.

There are some criteria for the singularities of frontals. Let (U ;u, v)
be an open domain in R2 and h : U → N be a front, where (N, g) is a
3-dimensional Riemannian manifold. The function defined by

λ(u, v) = Ω(hu, hv, ν)

is said to be the signed area density function, where Ω is a non-vanishing
3-form of N and ν = hu ∧ hv ∧ h. Let p ∈ U be a singular point of h. If
rank dhp = 1, then p is said to be a corank one singular point . Assume that
p is a corank one singular point. Then there exists a vector field η on U
satisfying dhq(ηq) = 0 for all singular points q. A vector field η with this
property is said to be a null vector field. Let p be a singular point of h.
If dλp 6= 0, then p is said to be a non-degenerate singular point. Let p be
such a point. By the implicit function theorem, there exists a regular curve
ξ : (−ε, ε)→ U such that ξ(0) = p, and image(ξ) = S(h) in a neighborhood
of p. Set

(5.3) ψ(t) = Ω

(
dh(ξ(t))

dt
, ν(ξ(t)), (ην)(ξ(t))

)
,

where ην = Dh
ην is the canonical covariant derivative along the map h

induced from the Levi-Civita connection on N . See [6] for the details. In the
above notation, we state the following characterizations of the singularities
of frontals [6, 13, 18, 28]:

Lemma 5.1. Let h be a frontal and p be a corank one singular point
of h. The map-germ h at p is

(1) a cuspidal edge if and only if h is a front at p and ηλ(p) 6= 0;
(2) a swallowtail if and only if h is a front at p, ηλ(p) = 0, ηηλ(p) 6= 0

and dλp 6= 0;
(3) a cuspidal beaks if and only if h is a front at p, dλ(p)=0, det Hessλ(p)

< 0 and ηηλ(p) 6= 0;
(4) a cuspidal cross cap if and only if ηλ(p) 6= 0, ψ(0) = 0 and ψ′(0)
6= 0.
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See [18, Proposition 1.3] (see also [28, Corollary 2.5]), [13, Theorem A.1],

[6, Corollary 1.5] for the details. We remark that if a function λ̂ (respec-

tively, ψ̂) is proportional to λ (respectively, ψ), then we can use λ̂ (respec-

tively, ψ̂) instead of λ (respectively, ψ) in the above lemma. Thus, we can
characterize the singularities of non-flat cut-end surfaces of circular saws by
the following theorem:

Theorem 5.2. Let c2(t)=c3(t)=c6(t)=0 and (cosφ c1(t)− c4(t), c5(t))
6= (0, 0) for all t ∈ I, and set f = fA and ψ̄(t) = c5(t)(cosφ c′1(t)− c′4(t))−
c′5(t)(cosφ c1(t)− c4(t)). Then f at (0, t0) ∈ S(f) is

(1) a cuspidal edge if and only if c1(t0) 6= 0 and ψ̄(t0) 6= 0;
(2) a swallowtail if and only if c1(t0) = 0, c′1(t0) 6= 0 and ψ̄(t0) 6= 0;
(3) a cuspidal cross cap if and only if c1(t0) 6=0, ψ̄(t0)=0 and ψ̄′(t0) 6=0.

Proof. From (5.2) and S(f) = {s = 0}, the signed area density function
is proportional to λ(s, t) = s. Moreover, η(t) = − sinφ c1(t) ∂s + ∂t and
ψ(t) = c1(t)ψ̄(t) for the function ψ in (5.3). In view of Lemma 5.1, we get
the desired result.

By means of this theorem, we have the following theorem:

Theorem 5.3. There exists a residual subset Ocs ⊂ C∞(I, cs(3, 1)) such
that the germ of the cut-end surface of a circular saw fA(s, t) at any point
(s0, t0) is an immersion, a cuspidal edge, a swallowtail or a cuspidal cross
cap for any C ∈ Ocs. Here, A : I → SO(3, 1) is the smooth curve corre-
sponding to C ∈ C∞(I, cs(3, 1)).

The proof of this theorem is the same as that of Theorem 4.4. So, we
omit it.

5.2. Singularities of flat surfaces foliated by equidistant curves.
In this section, we study the singularities of a ∆−21(φ)-flat surface foliated by
equidistant curves. We recall that fA is flat if and only if c2 ≡ cosφ c1 − c4
≡ 0. The space of flat surfaces foliated by equidistant curves is defined to
be C∞(I, fe(3, 1)) with the Whitney C∞-topology, where

fe(3, 1) = {C ∈ so(3, 1) | c2 = cosφ c1 − c4 = 0}
and C is a matrix as in (3.3).

Let C ∈ fe(3, 1) and take f = fA, where A is the pseudo-orthonormal
frame corresponding to C.

As mentioned in Sections 1 and 2, f can be lifted as an isotropic map to
a contact manifold: (f, `φ) : U → ∆−21(φ). Hence, f is always a frontal. By
Lemma 5.1, we have the following theorem:

Theorem 5.4. Under the conditions c2 ≡ cosφ c1− c4 ≡ 0, f at (s0, t0)
∈ S(f) is
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(1) a cuspidal edge if and only if

cosφ c3(t0)+c6(t0) 6= 0 and −sinφ c1(t0)λs(s0, t0)+λ
′(s0, t0) 6= 0;

(2) a swallowtail if and only if

cosφ c3(t0) + c6(t0) 6= 0, − sinφ c1(t0)λs(s0, t0) + λ′(s0, t0) = 0,

λs(s0, t0) 6= 0 and sin2 φ c21(t0)λss(s0, t0) − 2 sinφ c1(t0)λ
′
s(s0, t0) −

sinφ c′1(t0)λs(s0, t0) + λ′′(s0, t0) 6= 0;
(3) a cuspidal cross cap if and only if cosφ c3(t0)+c6(t0) = 0, cosφ c′3(t0)

+ c′6(t0) 6= 0 and − sinφ c1(t0)λs(s0, t0) + λ′(s0, t0) 6= 0;
(4) a cuspidal beaks if and only if

λs(s0, t0) = λ′(s0, t0) = 0, det Hessλ(s0, t0) < 0

and

sin2 φ c21(t0)λss(s0, t0)− 2 sinφ c1(t0)λ
′
s(s0, t0)

− sinφ c′1(t0)λs(s0, t0) + λ′′(s0, t0) 6= 0.

Here,

λ(s, t) = cosφ c6(t)(−1+cosh s)+ c3(t)(− cos2 φ+cosh s)+sinφ c5(t) sinh s.

Proof. Since the function λ defined as above is proportional to the signed
area density function and the null vector field is η(s, t) = − sinφ c1(t) ∂s+∂t,
Lemma 5.1 yields the desired result.

If we assume that c2 ≡ c3 ≡ cosφ c1−c4 ≡ 0, then f is a ∆−21(φ)-flat sur-
face foliated by equidistant curves all of whose generating equidistant curves
are tangent to the striction curve. Thus, we call this surface a flat tangent
surface foliated by equidistant curves. This means that S(f) ⊃ {s = 0}
∪ {cosφ c6 sinh s + sinφ c5 (1 + cosh s)}. The space of flat tangent surfaces
foliated by equidistant curves is defined to be C∞(I, fte(3, 1)) with the Whit-
ney C∞-topology, where

fte(3, 1) = {C ∈ so(3, 1) | c2 = c3 = cosφ c1 − c4 = 0}
and C is a matrix as in (3.3).

In this case, we have the following corollary:

Corollary 5.5. Suppose that c2 ≡ c3 ≡ cosφ c1 − c4 ≡ 0. Then f at
(0, t0) ∈ S(f) is

(1) a cuspidal edge if and only if c1(t0)c5(t0)c6(t0) 6= 0;
(2) a swallowtail if and only if c1(t0) = 0 and c′1(t0)c5(t0)c6(t0) 6= 0;
(3) a cuspidal cross cap if and only if c6(t0) = 0 and c1(t0)c5(t0)c

′
6(t0)

6= 0;
(4) a cuspidal beaks if and only if c5(t0)=0 and c1(t0)(cosφ c1(t0)c6(t0)
− 2c′5(t0)) c

′
5(t0) c6(t0) 6= 0.
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On the other hand, if s0 6= 0 and

(s0, t0) ∈ {(s, t) | cosφ c6(t) sinh s+ sinφ c5(t) (1 + cosh s) = 0},
then f at (s0, t0) is a cuspidal edge if and only if

− sinφ c1(t0)
(
cosφ c6(t0) cosh s0 + sinφ c5(t0) sinh s0

)
+ cosφ c′6(t0) sinh s0 + sinφ c′5(t0) (1 + cosh s0) 6= 0.

Using Theorem 5.4 and Corollary 5.5, we have the following theorem:

Theorem 5.6. (1) There exists a residual subset O3 ⊂ C∞(I, fe(3, 1))
such that the germ of the flat surface fA(s, t), foliated by equidistant curves,
at any point (s0, t0) is an immersion, a cuspidal edge, a swallowtail or a
cuspidal cross cap for any C ∈ O3. Here, A : I → SO(3, 1) is the smooth
curve corresponding to C ∈ C∞(I, fe(3, 1)).

(2) There exists a residual subset O4 ⊂ C∞(I, fte(3, 1)) such that the
germ of the flat tangent surface fA(s, t), foliated by equidistant curves, at
any point (s0, t0) is an immersion, a cuspidal edge, a swallowtail, a cuspidal
beaks or a cuspidal cross cap for any C ∈ O4. Here, A : I → SO(3, 1) is the
smooth curve corresponding to C ∈ C∞(I, fte(3, 1)).

The proof of this theorem is the same as that of Theorem 4.4. Thus,
we omit it. We remark that a cuspidal beaks does not appear as a generic
singularity of fronts. Therefore, we can say that flat tangent surfaces foliated
by equidistant curves have a different geometric property from those of usual
fronts.

6. Duality of singularities. The image of singular points of a ∆−21(φ)-
flat tangent surface foliated by equidistant curves coincides with the image
of a0(t) ∈ H3(−1). As in Subsection 3.2, using ∆−21(φ), we can construct
the dual surface in S3

1(sin2 φ) of a0(t) as follows:
Let Ψ : I × S3

1(sin2 φ)→ R be defined by

Ψ(t,x) = 〈a0(t),x〉+ cosφ.

Taking into account the discriminant set of Ψ , under the assumptions c2 ≡
c3 ≡ 0 and a′0(t) 6= 0, we have a parametrization of the dual surface g as
follows:

g(s, t) = cosφa0(t) + cos sa2(t) + sin sa3(t).

This is flat with respect to ∆−21(φ) provided that c2 ≡ c3 ≡ 0. If we assume
that cosφ c1 − c4 ≡ 0, then all of the generating circles are tangent to the
striction curve. As in Subsection 5.1, we have the following theorem:

Theorem 6.1. Under the conditions c2 ≡ c3 ≡ cosφ c1 − c4 ≡ 0, g at
(0, t0) ∈ S(f) is

(1) a cuspidal edge if and only if c1(t0)c5(t0)c6(t0) 6= 0;



Legendrian dual surfaces 259

(2) a swallowtail if and only if c6(t0) = 0 and c1(t0)c5(t0)c
′
6(t0) 6= 0;

(3) a cuspidal cross cap if and only if c1(t0) = 0 and c′1(t0)c5(t0)c6(t0)
6= 0;

(4) a cuspidal beaks if and only if c5(t0) = 0 and c1(t0)(cosφ c1(t0)c6(t0)
+ 2c′5(t0))c

′
5(t0)c6(t0) 6= 0.

Proof. Since the method is the same as in the proofs of Theorems 5.2
and 5.4, we only show the fundamental data. Since

gs(s, t) = −sin sa2(t) + cos sa3(t),

g′(s, t) =
(
−cosφ c1(t)(−1 + cos s)− c5(t) sin s

)
a1(t)

− c6(t) sin sa2(t) + c6(t) cos sa3(t),

the signed area density function λ, the null vector field η and the function ψ
of g are as follows: λ(s, t) = sin s(cosφ c1(t) sin s− c5(t)(1 + cos s)), η(s, t) =
c6(t) ∂s + ∂t and ψ(t) = c1(t)c6(t).

Under the conditions c2 ≡ c3 ≡ cosφ c1 − c4 ≡ 0, the singular value
of f is a0(t), and the singular value of g is cosφa0(t) + a2(t). Moreover,
a0(t) is the ∆−21(φ)-dual of g, and cosφa0(t)+a2(t) is the ∆−21(φ)-dual of f .
Consequently, we have the following diagram:

f
taking singular value−−−−−−−−−−−−−→ a0(t)

∆−21(φ)-dual

x ∆−21(φ)-dual

y
cosφa0(t) + a2(t)

taking singular value←−−−−−−−−−−−−− g

Thus, it is natural to expect a geometric relation between f and g. Table 1
gives the conditions defining the singularities of f and g.

Table 1. The duality of singularities, where C is c1c5c6 6= 0

dual s = 0 ce sw ccr cbk

f c2 = 0 c3 = 0 C c1 = 0 c6 = 0 c5 = 0

cosφ c1 − c4 = 0 c′1c5c6 6= 0 c1c5c
′
6 6= 0 c1(cosφ c1c6

−2c′5)c′5c6 6= 0

g c2 = c3 = 0 cosφ c1 − c4 = 0 C c6 = 0 c1 = 0 c5 = 0

c1c5c
′
6 6= 0 c′1c5c6 6= 0 c1(cosφ c1c6

+2c′5)c′5c6 6= 0

Here, we remark that there is a duality between the conditions for swal-
lowtails and cuspidal cross caps. Such dualities have been studied by many
researchers (for example, see [6, 12, 13, 29]). The duality which we show
here is of the same type as in [12].
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