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Higher-order linear differential equations
with solutions having a prescribed sequence

of zeros and lying in the Dirichlet space

by Li-peng Xiao (Nanchang)

Abstract. The aim of this paper is to consider the following three problems:

(1) for a given uniformly q-separated sequence satisfying certain conditions, find a
coefficient function A(z) analytic in the unit disc such that f ′′′ + A(z)f = 0 possesses a
solution having zeros precisely at the points of this sequence;

(2) find necessary and sufficient conditions for the differential equation

(∗) f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = 0

in the unit disc to be Blaschke-oscillatory;

(3) find sufficient conditions on the analytic coefficients of the differential equation (∗)
for all analytic solutions to belong to the Dirichlet space D.

Our results are a generalization of some earlier results due to J. Heittokangas and
J. Gröhn.

1. Introduction and main results. Initiated by the work of S. Bank
and I. Laine [3], a remarkable amount of research has been directed to the
zero distribution of entire solutions of

(1.1) f ′′ +A(z)f = 0,

where A(z) is entire. See [18] for an extensive collection of these results, as
well as for further references. The early results on oscillation theory in the
case of the unit disc D = {z : |z| < 1} go back to the work of Nehari and his
students Beesack and Schwarz in the 1940s and 1950s. In the 1960s and 1970s
results on nonoscillation were obtained by Hadass, Kim, Lavie and London,
to name but a few. After a quiet period, the unit disc oscillation theory
begins to flourish again, starting from the 1990s. In particular, a sequence
of papers due to Chuaqui, Duren, Osgood and Stowe continue the classical
considerations in oscillation theory, while Belaidi, Cao and Yi are inspired by
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the complex plane case, and consider oscillation of solutions in terms of the
exponent of convergence. Oscillation results in terms of Blaschke sequences
are considered by Heittokangas [7–9, 13, 14].

1.1. A prescribed sequence of c-points. We denote the Nevanlinna
class by N , it consists of all functions f meromorphic in D and having
bounded characteristic T (r, f). Further, a meromorphic function f in D is
called nonadmissible if

lim sup
r→1−

T (r, f)

− log(1− r)
<∞.

In addition, the order of a meromorphic function f(z) in D is defined by

σ(f) = lim sup
r→1−

log+ T (r, f)

− log(1− r)
.

Let H∞ denote the space of all bounded analytic functions in D. For
p ≥ 0, the space H∞p consists of functions g analytic in D satisfying

‖g‖∞p = sup
z∈D

(1− |z|2)p|g(z)| <∞.

The union
⋃
p≥0H

∞
p is known as the Korenblum space A−∞ [17].

A sequence {zn} in D satisfying

1− |zn+1| ≤ K(1− |zn|), n ∈ N,

for some constantK ∈ (0, 1) is called an exponential sequence in D [5, p. 156].
We see that every exponential sequence {zn} in D satisfies

(1.2)
∞∑
n=1

(1− |zn|)α <∞

for any α > 0. A sequence {zn} satisfying (1.2) for some α ∈ (0, 1] will be
called an α-Blaschke sequence. In particular, {zn} is a Blaschke sequence
when α = 1, and the product

B(z) =

∞∏
n=1

|zn|
zn

zn − z
1− znz

,

known as the Blaschke product , represents an analytic function in D and has
zeros precisely at the points {zn}.

A sequence {zn} of points in D is called uniformly separated if

inf
k

∏
n6=k

∣∣∣∣ zn − zk1− znzk

∣∣∣∣ > 0,
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and uniformly q-separated [7] if there is a constant q ≥ 0 such that

(1.3) inf
k∈N

{(
1

1− |zk|

)q ∏
n6=k

∣∣∣∣ zn − zk1− znzk

∣∣∣∣} > 0.

A uniformly 0-separated sequence is known as a uniformly separated se-
quence [5, p. 148]. Every exponential sequence in D is uniformly separated
[5, Theorem 9.2].

The following result can be found in [7, Theorem 6].

Theorem 1.1. Let {zn} be a uniformly q-separated sequence of nonzero
points in D.

(a) Suppose that {zn} is an α-Blaschke sequence. Then there exists a
function A ∈ H∞2(1+α+2q) satisfying

(1.4) lim sup
|z|→1−

(1− |z|2)2|A(z)| ≥ 1

such that (1.1) possesses a solution whose zero sequence is {zn}.
(b) Suppose that {zn} is a finite union of uniformly separated (or expo-

nential) sequences in D. Then there exists A ∈ H∞2(1+2q) satisfying

(1.4) such that (1.1) possesses a solution whose zero sequence is {zn}.

We are unaware whether an analog of Theorem 1.1 in the case of higher
order linear differential equations can be found in the existing literature.
Hence we state a result in the case f ′′′ +A(z)f = 0.

Theorem 1.2. Let {zn} be a uniformly q-separated sequence of nonzero
points in D.

(a) Suppose that {zn} is an α-Blaschke sequence. Then there exists a
function A ∈ H∞3+9α+24q such that

(1.5) f ′′′ +A(z)f = 0

possesses a solution whose zero sequence is {zn} and the multiplicity
of each zero is two.

(b) Suppose that {zn} is a finite union of uniformly separated (or ex-
ponential) sequences in D. Then there exists A ∈ H∞3+24q such that
(1.5) possesses a solution whose zero sequence is {zn} and the mul-
tiplicity of each zero is two.

Part (b) has the following immediate consequence:

Corollary 1.3. If {zn} is a uniformly separated (or exponential) se-
quence of nonzero points in D, then there exists A ∈ H∞3 such that (1.5)
possesses a solution whose zero sequence is {zn} and the multiplicity of each
zero is two.
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In [7], the authors found that a solution that maps a prescribed Blaschke
sequence to some fixed nonzero value is very easy to find; see the following
theorem.

Theorem 1.4. Let {zn} be a Blaschke sequence of nonzero points in D.
Then there exists A ∈ H∞2 such that for each ζ ∈ C \ {0}, (1.1) possesses a
solution fζ ∈ H∞ taking the value ζ precisely at the points zn.

The above result can be considered as a solution to the problem of a
prescribed sequence of c-points, where c ∈ C \ {0}. Does a similar result
hold if (1.1) is replaced by a higher order equation in Theorem 1.4? The
answer is affirmative and given in the following theorem.

Theorem 1.5. Let {zn} be a Blaschke sequence of nonzero points in D.
Then there exists A ∈ H∞k such that for each ζ ∈ C \ {0},

(1.6) f (k) +A(z)f = 0 (k ≥ 2)

possesses a solution fζ ∈ H∞ taking the value ζ precisely at the points zn.

1.2. Blaschke-oscillatory equations. Before we state some further
results, it is convenient to recall some classical terminology. Equation (1.1),
where A(z) is analytic in the unit disc, is called

• disconjugate (resp. nonoscillatory) if each nontrivial solution has at
most one zero (resp. finitely many zeros) in D;
• oscillatory if there is at least one solution with infinitely many zeros

in D;
• Blaschke-oscillatory if the zero sequence {zn} of each nontrivial solu-

tion satisfies the Blaschke condition (1.2) with α = 1.

It is clear that a disconjugate equation is a nonoscillatory equation, which
in turn is a Blaschke-oscillatory equation.

Nehari [22] proved that if A(z) is analytic in D satisfying

(1.7) |A(z)| ≤ 1

(1− |z|2)2

for all z ∈ D, then (1.1) is disconjugate.

In 1955 Schwarz [23] showed that Nehari’s condition (1.7) can be relaxed
in the following sense: suppose that A(z) is analytic in D and there exists a
constant R ∈ (0, 1) such that (1.7) holds for all z with R ≤ |z| < 1. Then
(1.1) is nonoscillatory.

Using the result of Nehari, D. London [21] showed that if A(z) is analytic
in D and

(1.8)
� �

D

|A(z)| dσ(z) ≤ π,



Equations with solutions having prescribed zeros 279

then (1.1) is disconjugate. Here and in what follows, dσ(z) = rdr dθ stands
for the Euclidean area measure.

London [21] showed further that (1.8) can be relaxed in the following
sense: if A(z) is analytic in D and� �

D

|A(z)| dσ(z) <∞,

then (1.1) is nonoscillatory.
Heittokangas [8] extended the classical results due to Nehari and London

as follows. Let A(z) be analytic in D satisfying� �

D

|A(z)|1/2 dσ(z) <∞ or
� �

D

|A(z)|(1− |z|) dσ(z) <∞.

Then (1.1) is Blaschke-oscillatory. As a corollary, Heittokangas [8] showed
that if A ∈ Hp, where 1/4 ≤ p ≤ ∞, then (1.1) is Blaschke-oscillatory. In
particular, if 1 ≤ p ≤ ∞, then (1.1) is nonoscillatory. Here Hp (0 < p ≤ ∞)
denotes the classical Hardy space [5] of all functions f analytic in D satisfying

sup
0≤r<1

Mp(r, f) <∞,

where

Mp(r, f) =

(
1

2π

2π�

0

|f(reiθ)|p dθ
)1/p

, 0 < p <∞,

M∞(r, f) = M(r, f) = max
0≤θ≤2π

|f(reiθ)|.

Heittokangas [12] pointed out that the above results can be generalized to
higher order linear differential equations

(1.9) f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = 0 (k ≥ 2),

where Aj(z) (j = 0, . . . , k − 1) are analytic in D.
Following the second order case above, we call (1.9) Blaschke-oscillatory

if the zero sequence of any nontrivial solution of (1.9) satisfies the Blaschke
condition. The following proposition is from [12].

Proposition 1.6. Let Aj(z) be analytic in D satisfying

(1.10)
� �

D

|Aj(z)|1/(k−j) dσ(z) <∞, j = 0, . . . , k − 1,

or

(1.11)
� �

D

|Aj(z)|(1− |z|)k−j−1 dσ(z) <∞, j = 0, . . . , k − 1.

Then (1.9) is Blaschke-oscillatory.

Using the Hardy–Littlewood theorem, we have the following consequence.
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Corollary 1.7. Let Aj ∈ Hpj , j = 0, . . . , k − 1, where 1/(2(k − j))
≤ pj ≤ ∞. Then (1.9) is Blaschke-oscillatory.

Assuming that (1.1) is Blaschke-oscillatory, what can we say about the
properties of the coefficient function A(z)? Heittokangas [9] showed that if
A(z) is analytic in D and (1.1) is Blaschke-oscillatory, then

� �

D

|A(z)|α dσ(z) <∞

for every α ∈ (0, 1/2). Here we give another result.

Theorem 1.8. If A(z) is an analytic function in D such that (1.1) is
Blaschke-oscillatory, then

� �

D

|A(z)|(1− |z|)α dσ(z) <∞

for every α > 3.

We now proceed to find necessary conditions for (1.9) to be Blaschke-
oscillatory. When studying the oscillatory behavior of solutions of (1.9),
we may suppose that Ak−1 ≡ 0. For if φ denotes a primitive function of
Ak−1(z), then the standard substitution g = fe−(1/k)φ has no effect on the
zeros, and it transforms (1.9) to an equation where the coefficient of the
(k − 1)th derivative vanishes. It is proved in [12] that if A0, . . . , Ak−2 are
analytic functions in D such that

(1.12) f (k) +Ak−2f
(k−2) + · · ·+A1f

′ +A0f = 0

is Blaschke-oscillatory, then
� �

D(0,r)

|Aj(z)|1/(k−j) dσ(z) = O

(
log2

e

1− r

)
, j = 0, . . . , k − 2,

where D(0, r) = {z ∈ D : |z| < r}.
The next result is a generalization of Theorem 1.8.

Theorem 1.9. If A0, . . . , Ak−2 are analytic functions in D such that
(1.12) is Blaschke-oscillatory, then

� �

D

|Aj(z)|(1− |z|)α dσ(z) <∞, j = 0, . . . , k − 2,

for every α > 2(k − j)− 1.

1.3. Linear differential equations with solutions in the Dirichlet
space D. Heittokangas [10] gave a condition on the analytic coefficient A(z)
of (1.1) which implies that all solutions f of (1.1) are in

⋂
0<p<∞Qp. For
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0 < p <∞, Qp is the space of all analytic functions in D for which

‖f‖Qp = sup
a∈D

�

D

|f ′(z)|2g(a, z)p dσ(z) <∞,

where g(z, a) = log |1−azz−a | is the Green’s function in D.

Theorem 1.10. Let A(z) =
∑∞

n=0 anz
n, an ∈ C, be the analytic coef-

ficient of (1.1) in D with |an| ≤ 1 for all n. Then all solutions f of (1.1)
belong to

⋂
0<p<∞Qp.

An analytic function f in D is said to belong to D, the Dirichlet space,
if �

D

|f ′(z)|2 dσ(z) <∞.

We have the strict inclusion D ⊂
⋂

0<p<∞Qp (see [1, Corollary 4, Theo-
rem 1]).

In 2011, Hao Li and Hasi Wulan [19] improved Theorem 1.10 as follows.

Theorem 1.11. Let A(z) =
∑∞

n=0 anz
n, an ∈ C, be the analytic coeffi-

cient of (1.1) in D with |an| ≤ 1 for all n. Then all solutions of (1.1) belong
to the Dirichlet space D.

We take this opportunity to give a similar result to Theorem 1.11 for (1.9),
which also improves Theorem 1.8 of [20].

Theorem 1.12. Let Aj(z) =
∑∞

n=0 aj,nz
n, aj,n ∈ C, be analytic coeffi-

cients of (1.9) in D with |aj,n| ≤ (n+ 2)k−2−j , k ≥ 2, j = 0, . . . , k − 1, for
all n. Then all solutions of (1.9) belong to the Dirichlet space D.

2. Auxiliary lemmas. The following lemma associates uniformly
q-separated sequences with interpolation in H∞p spaces, and reduces to Car-
leson’s result on H∞ interpolation in the case when q = 0.

Lemma 2.1 ([7]). Let {zn} be an infinite sequence in D, and let s ≥ 0.
Suppose that σn is any sequence of points in C (not necessarily distinct)
satisfying

‖σn‖s = sup
n∈N

(1− |zn|2)s|σn| <∞.

(a) If {zn} is a uniformly q-separated α-Blaschke sequence in D, then
there exists G ∈ H∞α+q+s such that G(zn) = σn for all n ∈ N.

(b) If {zn} is a uniformly q-separated sequence which is a finite union of
separated sequences, then there exists G∈H∞q+s such that G(zn) = σn
for all n ∈ N.
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Lemma 2.2 ([7]). Let B be a Blaschke product with zeros zn 6= 0, and
let k ∈ N.

(a) Suppose that {zn} is a uniformly q-separated α-Blaschke sequence.
Then there exists a set E ⊂ [0, 1) satisfying

(2.1)
�

E

dr

1− r
<∞

such that for all z ∈ D satisfying |z| 6∈ E, we have∣∣∣∣B(k)(z)

B(z)

∣∣∣∣ = O

((
1

1− |z|

)(1+α)k(
1 + q log

e

1− |z|

)k)
.

(b) Suppose that {zn} is a finite union of uniformly separated sequences.
Let δ > 0 denote the infimum in (1.3), and let p ≥ 0. Then for all
z 6∈

⋃
n4(zn, (δ/2)(1− |zn|)p), we have∣∣∣∣B(k)(z)

B(z)

∣∣∣∣ = O

((
1

1− |z|

)(1+p)k)
.

Here 4(ω, τ) =
{
z ∈ D :

∣∣ ω−z
1−ωz

∣∣ < τ
}

is known as the pseudo-hyperbolic
disc of radius τ ∈ (0, 1) centered at ω ∈ D. It is a true Euclidean disc with

Euclidean radius R = τ(1−|ω|2)
1−τ2|ω|2 and Euclidean center γ = (1−τ2)ω

1−τ2|ω|2 (see [6]).

The next lemma allows us to avoid exceptional sets E with
	
E

dr
1−r <∞.

Lemma 2.3 ([2]). Let g(r) and h(r) be increasing real valued functions
on [0, 1) such that g(r) ≤ h(r) possibly outside an exceptional set E ⊂ [0, 1)
with

	
E

dr
1−r <∞. Then there exists a constant b ∈ (0, 1) such that if s(r) =

1− b(1− r), then g(r) ≤ h(s(r)) for all r ∈ [0, 1).

Lemma 2.4 ([6]). Any two points z and ω in the same pseudohyperbolic
disc 4(α, r) satisfy

1

C
≤ 1− |z|

1− |ω|
≤ C

with C = 8
(
1+r2

1−r2
)2

depending only on r.

Lemma 2.5 ([5, Hardy–Littlewood]). If 0 < p < q ≤ ∞, f ∈ Hp, λ ≥ p,
and α = 1/p− 1/q, then

1�

0

(1− r)λα−1{Mq(r, f)}λ dr <∞.

Lemma 2.6 ([4]). Let f be a meromorphic function in D of finite order σ.
Let ε > 0 be a constant, and k and j be integers satisfying k > j ≥ 0.
Assume that f (j) 6≡ 0. Then:
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(i) There exists a set E1 ⊂ [0, 1) with
	
E1

dr
1−r < ∞ such that for all

z ∈ D satisfying |z| 6∈ E1, we have

(2.2)

∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ ( 1

1− |z|

)(k−j)(σ+2+ε)

.

(ii) There exists a set E2 ⊂ [0, 2π) of linear measure zero such that if
θ ∈ [0, 2π) \E2, then there is a constant R = R(θ) ∈ (0, 1) such that
(2.2) holds for all z satisfying arg z = θ and R ≤ |z| < 1.

Lemma 2.7 ([11]). Suppose that Sβ =
∑∞

n=1(1− |zn|)β <∞ (β ∈ (0, 1])
for a sequence {zn} of nonzero points in D. For each r ∈ [0, 1), let n(r) be
the number of points zn lying in {z : |z| ≤ r}. Then

n(r) ≤
Sβ

(1− r)β
.

Lemma 2.8 ([15, 16]). Let f1, . . . , fk be linearly independent solutions
of (1.12), where A0, . . . , Ak−2 are analytic in D. Let

(2.3) ω1 = f1/fk, . . . , ωk−1 = fk−1/fk,

and let Xj be the determinant

Xj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω′1 ω′2 · · · ω′k−1
...

...
...

ω
(j−1)
1 ω

(j−1)
2 · · · ω

(j−1)
k−1

ω
(j+1)
1 ω

(j+1)
2 · · · ω

(j+1)
k−1

...
...

...

ω
(k)
1 ω

(k)
2 · · · ω

(k)
k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, j = 1, . . . , k.(2.4)

Then

(2.5)

Aj =

k−j∑
i=0

(−1)2k−iδki

(
k − i

k − i− j

)
Xk−i
Xk

( k
√
Xk)

(k−i−j)

k
√
Xk

, j = 0, . . . , k − 2,

where δkk = 0 and δki = 1 otherwise.

It is easily checked that (−1)k−1Xk = W/fkk , where W is the Wronskian
of f1, . . . , fk (see e.g. [19, p. 12]). Since W is a nonzero constant, we may

set C = −1/ k
√
W to obtain the equality k

√
Xk = 1/(Cfk). This shows that

k
√
Xk is a well-defined meromorphic function in D.

Lemma 2.9 ([12]). Suppose that A0, . . . , Ak−1 are analytic in D, and
let {f1, . . . , fk} be any solution base of (1.9). Then fn/fm ∈ N for any
n,m ∈ {1, . . . , k} if and only if (1.9) is Blaschke-oscillatory.
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In order to obtain the next lemma, one may follow the proof of [18, Lem-
ma 7.7] step by step, and use Lemma 2.6 each time when logarithmic
derivatives are involved. These calculations culminate in dealing with iden-
tities (7.15) in [18]. We omit the details.

Lemma 2.10. Let ε > 0. Let f1, . . . , fk be linearly independent mero-
morphic solutions of a linear differential equation of type (1.9) with coeffi-
cients A0(z), . . . , Ak−1(z) meromorphic in D. Let σ ≥ 0, and suppose that
σ(fj) ≤ σ for all j = 1, . . . , k. Then there exists a set E ⊂ [0, 1) with	
E

dr
1−r <∞ such that

|Aj(z)| ≤
(

1

1− |z|

)(k−j)(σ+2)+ε

, j = 0, . . . , k − 1,

for all z ∈ D with |z| 6∈ E.

3. Proof of Theorem 1.2
(a) Let B be the Blaschke product associated with {zn}. Write f =

B2eg, where g is some analytic function to be constructed later. Then f is
a solution of (1.5) if and only if

(6B′B′′ + 2BB′′′) + 6(B′2 +BB′′)g′ + 6BB′(g′′ + g′2)

+ ((g′)3 + 3g′g′′ + g′′′ +A)B2 = 0.

At the point zn, we find that

g′(zn) = −B′′(zn)/B′(zn).

Since B(zn) = 0, we have B′(zn) 6= 0. For convenience, set

(3.1) σn = −B′′(zn)/B′(zn).

Since B ∈ H∞, we have B′′ ∈ H∞2 . Moreover, since {zn} is uniformly
q-separated in D, there exists a constant δ ∈ (0, 1) such that

(3.2)
1

|B′(zn)|
= (1− |zn|2)

(∏
j 6=n

∣∣∣∣ zj − zn1− zjzn

∣∣∣∣)−1 ≤ 1

δ
(1− |zn|2)1−q.

We conclude that ‖σn‖1+q <∞. By Lemma 2.1(a), there existsG ∈ H∞1+α+2q

such that G(zn) = σn for all n ∈ N. Define

g(z) =

z�
[G(ζ) +B(ζ)F (ζ)] dζ,

where the integral represents any fixed primitive function ofG(ζ)+B(ζ)F (ζ),
and F (ζ) is an analytic function to be constructed later. Define

A(z) = −(6B′B′′ + 2BB′′′) + 6(B′2 +BB′′)g′ + 6BB′(g′′ + g′2)

B2

− [(g′)3 + 3g′g′′ + g′′′].
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For convenience, set

(6B′B′′ + 2BB′′′) + 3(2B′2 + 2BB′′)g′ + 6BB′(g′′ + g′2) = H(z).

If A(z) is analytic in D, then H(z) has at least a double zero at every zn.
Hence H(zn) = 0 and H ′(zn) = 0 for every n. The requirement H ′(zn) = 0
leads to the interpolation property

F (zn) = − 1

12B′(zn)3
{

6B′′(zn)2 + 8B′(zn)B′′′(zn) + 18B′(zn)B′′(zn)G(zn)

+ 12B′(zn)2G′(zn) + 6B′(zn)2G(zn)2
}

:= sn, n ∈ N.

Since B ∈ H∞ and G ∈ H∞1+α+2q, we have B′′′ ∈ H∞3 , G
′ ∈ H∞2+α+2q,

G2 ∈ H∞2(1+α+2q). Moreover, taking into account (3.2), we conclude that

‖sn‖1+2α+7q <∞. Again by Lemma 2.1(a), there exists F ∈ H∞1+3α+8q such
that F (zn) = sn. Hence A(z) defined by (3.3) is analytic in D. A routine
calculation shows that f = B2eg is a solution of (1.5), where A(z) is defined
by (3.3). Moreover, f has zeros precisely at these points, and of multiplicity
two. It remains to estimate the growth of the coefficient function A(z).
Using (3.3), we obtain

|A(z)| ≤ 6

∣∣∣∣B′B′′B2

∣∣∣∣+ 2

∣∣∣∣B′′′B
∣∣∣∣+ 6

(∣∣∣∣B′B
∣∣∣∣2 +

∣∣∣∣B′′B
∣∣∣∣)∣∣∣∣g′∣∣∣∣

+ 6

∣∣∣∣B′B
∣∣∣∣[|g′′|+ |g′|2] + |g′|3 + 3|g′g′′|+ |g′′′|.

Next, using Lemma 2.2(a), and the fact that g′ ∈ H∞1+3α+8q and g(k) ∈
H∞k+3α+8q, it follows that

(3.3) M(r,A) = O

((
1

1− r

)3+9α+24q)
outside of a possible exceptional set E ⊂ [0, 1) of r-values satisfying (2.1).
Finally, Lemma 2.3 applied to (3.4) yields A ∈ H∞3+9α+24q.

(b) Define {σn} as in (3.1). Evidently ‖σn‖1+q <∞. By Lemma 2.1(b),
there exists G ∈ H∞1+2q such that G(zn) = σn for all n ∈ N. Again, define

g(z) =

z�
[G(ζ) +B(ζ)F (ζ)] dζ,

where the integral represents any fixed primitive function ofG(ζ)+B(ζ)F (ζ),
and F (ζ) is an analytic function with F ∈ H∞1+8q. Define an analytic function
A(z) by (3.3). Let δ > 0 be the infimum in (1.3). Then the pseudo-hyperbolic
discs Dn = 4(zn,

δ
2(1 − |zn|)q) are pairwise disjoint. Using Lemma 2.2(b)

and the fact that g′ ∈ H∞1+8q and g(k) ∈ H∞k+8q, we see that there exists a
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finite constant C1 > 0 such that

(3.4) (1− |z|2)3+24q|A(z)| ≤ C1

for all z 6∈
⋃
nDn.

Now assume that z ∈
⋃
nDn. Then z ∈ Dk for some k ∈ N. By the

maximum modulus principle there exists ζ ∈ ∂Dk such that |A(z)| ≤ |A(ζ)|
for all z ∈ Dk. Recalling that Dk is in fact a Euclidean disc, there exists
ω ∈ ∂Dk of greatest modulus. In particular,

|ζ| ≤ |ω| =
|zk|+ δ

2(1− |zk|)q

1 + δ
2(1− |zk|)q|zk|

.

Since (3.5) holds at ζ, we have

|A(z)| ≤ |A(ζ)| ≤ C1

(1− |ζ|2)3+24q
≤ C1

(1− |ω|)3+24q

≤
(

2 + δ

2− δ

)3+24q C1

(1− |zk|)3+24q
.

As z and zk both belong to 4(zk, δ/2), Lemma 2.4 yields

1− |z|
1− |zk|

≤ 8

(
4 + δ2

4− δ2

)2

,

where the upper bound is independent of k. Hence

(1− |z|2)3+24q|A(z)| ≤
(

1− |z|2

1− |zk|2

)3+24q

|A(z)|(1− |zk|2)3+24q < C2 <∞,

where C2 is independent of k. Combining this with (3.5), we conclude that
A ∈ H∞3+24q. This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.5. Let B(z) be the Blaschke product associ-
ated with {zn}. Write fζ(z) = 2ζ(B(z) + 2)−1 = 2ζ(g(z))−1 for each fixed
ζ ∈ C \ {0}, where g(z) = B(z) + 2. Then a routine calculation shows that

f ′ζ(z)g(z) = −fζ(z)g′(z),
f ′′ζ (z)g(z) + 2f ′ζ(z)g

′(z) = −fζ(z)g′′(z),
...

f
(k)
ζ (z)g(z) + · · ·+ kf ′ζ(z)g

(k−1)(z) = −fζ(z)g(k)(z).

By the classical Cramer rule,

(4.1) f
(k)
ζ (z) = (−fζ(z))

Fk(z)

Ek(z)
,
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where

Ek(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 g(z)

0 0 · · · g(z) 2g′(z)
...

...
...

...

0 g(z) · · · Ck−3k−1g
(k−3)(z) (k − 1)g(k−2)(z)

g(z) kg′(z) · · · Ck−2k g(k−2)(z) kg(k−1)(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.2)

= (−1)k(k−1)/2gk(z),

Fk(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

g′(z) 0 · · · 0 g(z)

g′′(z) 0 · · · g(z) 2g′(z)
...

...
...

...

g(k−1)(z) g(z) · · · Ck−3k−1g
(k−3)(z) (k − 1)g(k−2)(z)

g(k)(z) kg′(z) · · · Ck−2k g(k−2)(z) kg(k−1)(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.3)

= (−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 g(z) g′(z)

0 · · · g(z) 2g′(z) g′′(z)
...

...
...

...

g(z) · · · Ck−3k−1g
(k−3)(z) (k − 1)g(k−2)(z) g(k−1)(z)

kg′(z) · · · Ck−2k g(k−2)(z) kg(k−1)(z) g(k)(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Set

Gk(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 g(z) g′(z)

0 · · · g(z) 2g′(z) g′′(z)
...

...
...

...

g(z) · · · Ck−3k−1g
(k−3)(z) (k − 1)g(k−2)(z) g(k−1)(z)

kg′(z) · · · Ck−2k g(k−2)(z) kg(k−1)(z) g(k)(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.(4.4)

Then

Gk(z) =
k∑
j=1

Cjkg
(j)(z)Mkj(z) =

Nk∑
j=1

Dkj [g],

where Mkj(z) are the algebraic complements of Cjkg
(j)(z) for j = 1, . . . , k,

Nk is some positive integer depending on k, the expressions Dkj [g] are dif-
ferential monomials in g of the form

Dkj [g] = Ckj(g)kj0(g′)kj1 · · · (g(k))kjk

with kj0, . . . , kjk ∈ N ∪ {0} for j = 1, . . . , Nk, and Ckj are some constants.
The sum νkj = kj1 + 2kj2 + · · ·+ k · kjk is the weight of Dkj [g]. The weight
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of Gk =
∑Nk

j=1Dkj [g] is defined by ν(Gk) = max1≤j≤Nk
νkj . We assert that

ν(Gk) = k for k = 2, 3, . . . . We use induction on k. For k = 2, G2 =∣∣ g(z)
2g′(z)

g′(z)
g′′(z)

∣∣ = g(z)g′′(z)− 2g′2(z), and obviously ν(G2) = 2. Assuming now

that for k = n,

(4.5) ν(Gn) = ν
( n∑
j=1

Cjng
(j)(z)Mnj(z)

)
= n,

consider k = n+ 1. Since

(4.6) Gn+1(z)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 g g′

0 0 · · · g 2g′ g′′

...
...

...
...

...

0 g · · · Cn−3n−1g
(n−3) (n− 1)g(n−2) g(n−1)

g ng′ · · · Cn−2n g(n−2) ng(n−1) g(n)

(n+ 1)g′ C2
n+1g

′′ · · · Cn−1n+1g
(n−1) (n+ 1)g(n) g(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=(−1)n+2(n+ 1)g′(z)Gn(z) + (−1)n+1g(z)

n∑
j=1

Cj+1
n+1g

(j+1)(z)Mnj(z),

the assertion ν(Gn+1) = n+ 1 follows immediately by (4.5) and (4.6).

By (4.1)–(4.4), we obtain

f
(k)
ζ (z) = (−fζ(z))(−1)(k−1)(k+2)/2Gk(z)

gk(z)
.

Define

A(z) = (−1)(k−1)(k+2)/2Gk(z)/g
k(z).

Since B ∈ H∞, the Cauchy formula yields B(i) ∈ H∞i , i = 1, . . . , k. These
imply immediately g ∈ H∞ and g(k) ∈ H∞i , i = 1, . . . , k. Therefore obviously
A ∈ H∞k from the fact that the weight of Gk(z) is k. For each fixed ζ ∈
C \ {0}, a simple computation reveals that (1.6) has an analytic solution
fζ(z) = 2ζ(B(z) + 2)−1 which takes the value ζ precisely at the points zn.
Evidently, fζ ∈ H∞. Theorem 1.5 is proved.

5. Proofs of Proposition 1.6 and Corollary 1.7. We prove Propo-
sition 1.6 here for the sake of completeness but the proof is essentially con-
tained in [12].

Proof of Proposition 1.6. J. Heittokangas et al. [14] found sufficient con-
ditions on Aj(z) for all solutions of (1.9) to be in the Nevanlinna class N :
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these conditions are (1.10) and (1.11). On the other hand, since any f ∈ N
can be factorized as f = Bg, where B is a finite or an infinite Blaschke
product and g ∈ N is nonvanishing and analytic in D, Proposition 1.6 fol-
lows.

Proof of Corollary 1.7. We settle the case pj = 1/(2(k − j)), which, by
the nesting property of Hp-spaces, proves the whole statement. Lemma 2.5
gives (with pj = 1/(2(k − j)), q = λ = 1/(k − j) and α = k − j)

� �

D

|Aj(z)|1/(k−j) dσ(z) ≤ 2π

1�

0

M1/(k−j)(r,Aj)
1/(k−j) dr <∞.

The result follows by Proposition 1.6.

Remark 5.1. Using (1.11) instead of (1.10) in the proof of Corollary
1.7, we see that a corresponding result holds for 1/(k − j + 1) ≤ pj ≤ ∞.
However, H1/(k−j+1) ⊂ H1/(2(k−j)). Hence, by using (1.11), we get a weaker
result than that in Corollary 1.7.

6. Proof of Theorem 1.8. Let {f1, f2} be a fundamental system of
solutions of (1.1), and define f = f1 − f2 and G = f1/f2. Since (1.1) is
assumed to be Blaschke-oscillatory, the possible zeros of f and the zeros
and poles of G are all Blaschke sequences. We also observe that the 1-points
of G are the zeros of f, hence they form a Blaschke sequence as well. Now,
by Nevanlinna’s second fundamental theorem,

T (r,G) ≤ N(r,G) +N

(
r,

1

G

)
+N

(
r,

1

G− 1

)
+ S(r,G),

where the error term S(r,G) satisfies

S(r,G) = O

(
log

1

1− r

)
+ o(T (r,G)).

Applying Lemma 2.7 with β = 1, we conclude that G is nonadmissible and
σ(G) = 0. It is well known that 2A(z) = SG(z), where

SG =
G′′′

G′
− 3

2

(
G′′

G′

)2

is the Schwarzian derivative of G. Next, from Lemmas 2.6 and 2.3 we deduce
that

|A(reiθ)| = O

(∣∣∣∣G′′′(reiθ)G′(reiθ)

∣∣∣∣+

∣∣∣∣G′′(reiθ)G′(reiθ)

∣∣∣∣2)
= O

((
1

1− r

)4+2ε)
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and
� �

D

|A(reiθ)|(1− |z|)α dσ(z) = O

(1�

0

1

(1− r)4−α+2ε
dr

)
.

It follows that
	 	

D |A(z)|(1 − |z|)α dσ(z) < ∞, since α > 3. This concludes
the proof of Theorem 1.8.

7. Proof of Theorem 1.9. Let f1, . . . , fk be linearly independent so-
lutions of (1.12), and let ω1, . . . , ωk−1 be defined by (2.3). By Lemma 2.9,
all ωj (j = 1, . . . , k − 1) have bounded characteristic and σ(ωj) = 0 since
(1.12) is Blaschke-oscillatory. It is stated in [16, p. 418] that the functions
1, ω1, . . . , ωk−1 are linearly independent meromorphic solutions of the differ-
ential equation

ω(k) − Xk−1(z)

Xk(z)
ω(k−1) + · · ·+ (−1)k+1X1(z)

Xk(z)
ω′ = 0,

where the functions Xj are defined by (2.4). From σ(ωj) = 0 and Lem-
ma 2.10, we now conclude that∣∣∣∣Xj(z)

Xk(z)

∣∣∣∣ ≤ ( 1

1− |z|

)2(k−j)+ε/3
, j = 1, . . . , k − 1,

that is,

(7.1)

∣∣∣∣Xk−i(z)

Xk(z)

∣∣∣∣ ≤ ( 1

1− |z|

)2i+ε/3

, i = 1, . . . , k − 1.

By (2.4) and σ(ωj) = 0 it is clear that σ(Xk) = 0. Since k
√
Xk is a well-defined

meromorphic function in D, it follows that σ( k
√
Xk) = 0. By Lemma 2.10,

there exists a set E ⊂ [0, 1) with
	
E

dr
1−r < ∞ such that, for all z ∈ D

satisfying |z| 6∈ E, we have

(7.2)

∣∣∣∣( k
√
Xk)

(k−i−j)(z)
k
√
Xk

∣∣∣∣ ≤ ( 1

1− |z|

)2(k−i−j)+ε/3
,

where i and j are as in (2.5). By combining (2.5), (7.1), (7.2) and Lemma 2.3,
we get

|Aj(z)| ≤
(

1

1− |z|

)2(k−j)+ε
, j = 0, . . . , k − 2,

for all z ∈ D and

� �

D

|Aj(reiθ)|(1− |z|)α dσ(z) = O

(1�

0

1

(1− r)2(k−j)−α+ε

)
.

The assertion follows from this since α > 2(k − j)− 1.
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8. Proof of Theorem 1.12. Let f(z) =
∑∞

n=0 bnz
n be a formal solution

of (1.9). Then

(8.1) f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f

=
∞∑
n=0

[(n+ k)(n+ k − 1) · · · (n+ 1)bn+k + cn]zn = 0,

where

cn =
k−1∑
i=0

n+1∑
j=1

(n+k−j− i)(n+k−j− i−1) · · · (n−j+2)bn+k−j−iak−i−1,j−1.

Hence (8.1) holds if and only if

(8.2) bn = − cn−k
n(n− 1) · · · (n+ 1− k)

for all n = k, k + 1, . . . . Choose a finite constant M > 0 such that

(8.3) |bi| ≤
M

(i+ 2)(i+ 1)1/2

for all i = 0, . . . , n (n > k). Then it follows from (8.2) that

(8.4) |bn+1| =
|cn−k+1|

(n+ 1)n · · · (n+ 2− k)

=

∣∣∣k−1∑
i=0

n−k+2∑
j=1

(n+ 1− j − i) · · · (n− k − j + 3)bn+1−j−iak−i−1,j−1

∣∣∣
(n+ 1)n · · · (n+ 2− k)

≤
k−1∑
i=0

Ik−1−i,

where

Ik−1−i

=
|
∑n−k+2

j=1 (n+1− j− i)(n− j− i) · · · (n−k− j+3)bn+1−j−iak−i−1,j−1|
(n+ 1)n · · · (n+ 2− k)

.

It follows from |ak−1,n| ≤ 1/(n+ 2) for all n and (8.3) that

Ik−1 =
|n · · · (n− k + 2)bnak−1,0 + · · ·+ (k − 1) · · · 2bk−1ak−1,n−k+1|

(n+ 1)n · · · (n+ 2− k)

(8.5)

≤ M

(n+ 1)n · · · (n+ 2− k)

×
[
n · · · (n− k + 2)

(n+ 2)(n+ 1)1/2
1

2
+ · · ·+ (k − 1) · · · 2

(k + 1)k1/2
1

n− k + 3

]



292 L. P. Xiao

≤ M

2(n+ 1)n · · · (n+ 2− k)
(n− k + 2)(n− 1)1/2(n− 2) · · · (n− k + 2)

=
M

(n+ 3)(n+ 2)1/2

× (n+ 3)(n+ 2)1/2(n− k + 2)(n− 1)1/2(n− 2) · · · (n− k + 2)

2(n+ 1)n · · · (n+ 2− k)

≤ 2M

3(n+ 3)(n+ 2)1/2
(n > N0 > k).

Here and in what follows, N0 is a sufficiently large positive integer.
Similarly, it follows from |ak−2,n| ≤ 1 for all n and (8.3) that

(8.6) Ik−2

=
|(n− 1) · · · (n− k + 2)bn−1ak−2,0 + · · ·+ (k − 2) · · · 2bk−2ak−2,n−k+1|

(n+ 1)n · · · (n+ 2− k)

≤ M

(n+ 1)n · · · (n+ 2− k)

×
[

(n− 1)(n− 2) · · · (n− k + 2)

(n+ 1)n1/2
+ · · ·+ (k − 2)(k − 3) · · · 2

k(k − 1)1/2

]
≤ M

(n+ 1)n · · · (n+ 2− k)
(n− k + 2)(n− 2)1/2(n− 3) · · · (n− k + 2)

=
M

(n+ 3)(n+ 2)1/2

× (n+ 3)(n+ 2)1/2(n− k + 2)(n− 2)1/2(n− 3) · · · (n− k + 2)

(n+ 1)n · · · (n+ 2− k)

≤ M

3(k − 1)

1

(n+ 3)(n+ 2)1/2
(n > N0 > k).

For i = 2, . . . , k − 3, we have

Ik−1−i =
1

(n+ 1)n · · · (n+ 2− k)
(8.7)

×
∣∣(n− i)(n− i− 1) · · · (n− k + 2)bn−iak−i−1,0

+ · · ·+ (k − 1− i)(k − 2− i) · · · 2bk−1−iak−i−1,n−k+1

∣∣
≤ M

(n+ 1)n · · · (n+ 2− k)

×
[

(n− i)(n− i− 1) · · · (n− k + 2)

(n+ 2− i)(n+ 1− i)1/2
2i−1 + · · ·

+
(k − 1− i)(k − 2− i) · · · 2

(k + 1− i)(k − i)1/2
(n− k + 3)i−1

]
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≤ M

(n+ 1)n · · · (n+ 2− k)

[
(n− k + 2)(n− i− 1)1/2

× (n− i− 2)(n− i− 3) · · · (n− k + 2)(n− k + 3)i−1
]

=
M

(n+ 3)(n+ 2)1/2
(n+ 3)(n+ 2)1/2

(n+ 1)n · · · (n+ 2− k)
×
[
(n− k + 2)

× (n− i− 1)1/2(n− i− 2) · · · (n− k + 2)(n− k + 3)i−1
]

≤ M

3(k − 1)

1

(n+ 3)(n+ 2)1/2
(n > N0 > k)

For i = k − 2, we have

(8.8) I1 =
|(n− k + 2)bn−k+2a1,0 + · · ·+ b1a1,n−k+1|

(n+ 1)n · · · (n+ 2− k)

≤ M

(n+ 1)n · · · (n+ 2− k)

[
n− k + 2

(n− k + 4)(n− k + 3)1/2
× 2k−3

+ · · ·+ 1

3× 21/2
× (n− k + 3)k−3

]
≤ M(n− k + 3)k−3(n− k + 2)

(n+ 1)n · · · (n+ 2− k)

[
1

(n− k + 3)3/2
+ · · ·+ 1

23/2

]
≤ M

(n+ 3)(n+ 2)1/2
(n+ 3)(n+ 2)1/2(n− k + 3)k−3(n− k + 2)

(n+ 1)n · · · (n+ 2− k)

∞∑
i=2

1

i3/2

≤ M

3(k − 1)

1

(n+ 3)(n+ 2)1/2
(n > N0 > k).

For i = k − 1, we have

I0 =
|bn−k+1a0,0 + · · ·+ b0a0,n−k+1|

(n+ 1)n · · · (n+ 2− k)
(8.9)

≤ M

(n+ 1)n · · · (n+ 2− k)

[
1

(n− k + 3)(n− k + 2)1/2
× 2k−2

+ · · ·+ 1

2× 11/2
× (n− k + 3)k−2

]
≤ M

(n+ 3)(n+ 2)1/2
(n+ 3)(n+ 2)1/2(n− k + 3)k−2

(n+ 1)n · · · (n+ 2− k)

∞∑
i=1

1

i3/2

≤ M

3(k − 1)

1

(n+ 3)(n+ 2)1/2
(n > N0 > k).

Inequalities (8.4)–(8.9) show that

|bn+1| ≤
M

(n+ 3)(n+ 2)1/2
.
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Therefore, |bn| ≤ M
(n+2)(n+1)1/2

for all n ≥ 0, and so
∑∞

n=0 bnz
n is absolutely

convergent on D. Hence f is analytic in D and f ∈ D since
∑∞

n=1 n|bn|2 <∞.
This completes the proof of Theorem 1.12.
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