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A QUASISTATIC CONTACT PROBLEM WITH UNILATERAL
CONSTRAINT AND SLIP-DEPENDENT FRICTION

Abstract. We consider a mathematical model of a quasistatic contact be-
tween an elastic body and an obstacle. The contact is modelled with unilat-
eral constraint and normal compliance, associated to a version of Coulomb’s
law of dry friction where the coefficient of friction depends on the slip dis-
placement. We present a weak formulation of the problem and establish an
existence result. The proofs employ a time-discretization method, compact-
ness and lower semicontinuity arguments.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important
role in structural and mechanical systems. Because of the importance of this
process a considerable effort has been made in its modelling and numerical
simulations. An early attempt to study frictional contact problems within
the framework of variational inequalities was made in [7]. The mathematical
analysis of unilateral contact problems, including existence and uniqueness
results, was widely developed in [8]. The mathematical, mechanical and nu-
merical state of the art can be found in [9, 12].

In this paper we analyze the weak solvability of the quasistatic version
of the model of static elastic contact studied recently in [2]. The contact
is modelled with unilateral constraint and normal compliance such that the
penetration is limited, associated with a slip-dependent version of Coulomb’s
law of dry friction. The normal compliance condition with unilateral con-
straint was introduced in [11]; it is a coupling between the Signorini contact
condition and the normal compliance, and it models the contact with an
elastic-rigid foundation. Examples of normal compliance can be found in
[4, 9, 11] for instance.
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We recall that the model of a slip-dependent friction is considered in
geophysics and solid mechanics corresponding to a smooth dependence of
the friction coefficient on the slip uτ , i.e. µ = µ(|uτ |). Several authors were
interested to contact problems with slip-dependent friction (see [2, 4, 6, 14]
and the references therein). In [2] a static contact problem with unilateral
constraint and slip-dependent friction was resolved; numerical results were
presented which illustrate both the behavior of the solution and the conver-
gence order of the error estimates. Also in [4] a static contact problem with
slip-dependent friction and a prescribed normal stress on the contact surface
for elastic materials was studied, while the same model in the quasistatic
contact case was studied in [6]. In both references the authors employ the
abstract results established in [14].

The contact problem with slip-dependent friction was also studied in
dynamic elasticity. By using the Galerkin method and regularization tech-
niques, the authors of [10] have proved the existence of a solution in the
two-dimensional case (in-plane and anti-plane problems), hence for the case
of the one-dimensional shearing problem, the solution that has been found
in two dimensions is unique.

The quasistatic contact problem which uses a normal compliance law has
also been studied in [1] by considering incremental problems and in [13] by
another method using a time regularization.

Here, as in [15], we continue the study of contact problems with slip-
dependent friction. Based on a time discretization method, we prove the
existence of a solution for a variational formulation of the quasistatic fric-
tional problem, given in terms of two variational inequalities as in [5]. Thus
the method is similar to the one used in [5, 15] in order to study quasistatic
contact problems for elastic materials. We construct a sequence of quasi-
variational inequalities for which we prove the existence and uniqueness of
solution. Then, we interpolate the discrete solution in time and, using com-
pactness and lower semicontinuity, we derive the existence of a solution of the
quasistatic contact problem under the smallness assumption on the friction
coefficient and the normal compliance.

2. Problem statement and variational formuation. Consider an
elastic body represented by a bounded Lipschitzian domain Ω in Rd, d = 2, 3.
The boundary Γ of Ω is partitioned as Γ = Γ̄1∪ Γ̄2∪ Γ̄3 where Γi, i = 1, 2, 3,
are disjoint and open parts of Γ with meas(Γ1) > 0. The body is acted upon
by a volume force of density f1 on Ω and a surface traction of density f2 on
Γ2. On Γ3 the body is in unilateral contact with friction with an obstacle.

Under these conditions the classical formulation of the mechanical prob-
lem is the following.
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Problem P1. Find a displacement field u : Ω × [0, T ]→ Rd such that

div σ(u) = −f1 in Ω × (0, T ),(2.1)
σ(u) = Aε(u) in Ω × (0, T ),(2.2)
u = 0 on Γ1 × (0, T ),(2.3)
σν = f2 on Γ2 × (0, T ),(2.4)

uν ≤ g, σν + p(uν) ≤ 0, (σν + p(uν))(uν − g) = 0 on Γ3 × (0, T ),(2.5) 
|στ | ≤ µ(|uτ |)p(uν)

|στ | < µ(|uτ |)p(uν)⇒ u̇τ = 0

|στ | = µ(|uτ |)p(uν)⇒ ∃λ ≥ 0 : στ = −λu̇τ
on Γ3 × (0, T ),(2.6)

u(0) = u0 in Ω.(2.7)

Here (2.1) represents the equilibrium equation in which σ = σ(u) denotes
the stress tensor, (2.2) is the elastic constitutive law and A the fourth order
tensor of elasticity coefficients, and (2.3) and (2.4) are the displacement-
tractions boundary conditions where ν denotes the unit outward normal
vector on Γ .

We make some comments on the contact conditions (2.5) and (2.6) in
which σν denotes the normal stress, p is a prescribed nonnegative func-
tion, uν is the normal displacement, g is a positive constant which denotes
the maximum value of the penetration, στ represents the tangential trac-
tion, µ is the coefficient of friction and u̇τ represents the tangential veloc-
ity.

Indeed, when uν < 0, i.e. when there is separation between the body and
the obstacle, then condition (2.5) combined with hypothesis (2.13) below
shows that the reaction of the obstacle vanishes (σν = 0).

When 0 ≤ uν < g then −σν = p(uν), which means that the reaction of
the obstacle is uniquely determined by the normal displacement.

When uν = g then −σν ≥ p(g) and σν is not uniquely determined.
We note then when g = 0 and p = 0 then condition (2.5) becomes the

classical Signorini contact condition without a gap:

uν ≤ 0, σν ≤ 0, σνuν = 0,

and when g > 0 and p = 0, condition (2.5) becomes the classical Signorini
contact condition with a gap:

uν ≤ g, σν ≤ 0, σν(uν − g) = 0.

The last two conditions are used to model the unilateral conditions with a
rigid foundation.

Conditions (2.6) represent a version of Coulomb’s law of dry friction in
which µ depends on the displacement uτ . The tangential shear cannot ex-
ceed the maximal frictional resistance µ(|uτ |)p(uν). We also point out that
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when uν < 0, conditions (2.5) combined with (2.6) imply that σν = 0,
στ = 0; when 0 ≤ uν < g, we obtain a unilateral contact zone with nor-
mal compliance associated with the quasistatic version of Coulomb’s law of
dry friction; also, when the normal displacement uν reaches g, i.e. uν = g,
we obtain a bilateral contact zone described by the quasistatic version of
Tresca’s friction law. Finally, the function u0 denotes the initial displace-
ment.

Next, to establish the variational formulation we adopt the following
notation. We denote by Sd the space of second order symmetric tensors on
Rd (d = 2, 3). We recall that that the inner products and the corresponding
norms are given by

u.v = uivi, |v| = (u.v)1/2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)1/2 ∀σ, τ ∈ Sd.

The strain tensor is

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), i, j ∈ {1, . . . , d};

div σ = (σij,j) is the divergence of σ where we denote respectively by u and
σ the displacement and stress fields in the body.

To proceed with the variational formulation, we consider the following
function spaces (the summation convention over repeated indices is used):

H = (L2(Ω))d, H1 = (H1(Ω))d,

Q = {σ = (σij) : σij = σji ∈ L2(Ω)},
Q1 = {σ ∈ Q : div σ ∈ H}.

The spaces H, Q and Q1 are real Hilbert spaces endowed with the inner
products given by

〈u, v〉H =
�

Ω

uivi dx, 〈σ, τ〉Q =
�

Ω

σijτij dx,

〈σ, τ〉Q1 = 〈σ, τ〉Q + 〈div σ, div τ〉H .

Keeping in mind the boundary condition (2.3), we introduce the closed sub-
space of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1}.

and let K be the set of admissible displacements given by

K = {v ∈ V : vν ≤ g a.e. on Γ3}.

Since meas(Γ1) > 0, we have Korn’s inequality [7]

(2.8) ‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V,
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where the constant cΩ depends only on Ω and Γ1. We equip V with the
inner product given by

(u, v)V = 〈ε(u), ε(v)〉Q
and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (2.8)
that the norms ‖ · ‖H1and ‖ · ‖V are equivalent on V. Therefore (V, ‖ · ‖V ) is
a Hilbert space. Moreover by Sobolev’s trace theorem, there exists dΩ > 0
which only depends on the domain Ω, Γ3 and Γ1 such that

(2.9) ‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀v ∈ V.
For every v ∈ H1, we also write v for the trace of v on Γ , and we denote
by vν and vτ the normal and the tangential components of v on Γ given
by

vν = v.ν, vτ = v − vνν.
Similarly, for a function σ ∈ Q1, we denote by σν its normal component or
normal stress and στ its tangential component or tangential stress.

When σ is a regular function, we have σν = (σν).ν, στ = σν − σνν, and
the following Green’s formula holds:

(2.10) 〈σ, ε(v)〉Q + 〈div σ, v〉H =
�

Γ

σν.v da ∀v ∈ H1,

where da represents the surface measure element.
Next, for every real Banach space (X, ‖ · ‖X) and T > 0 we write

C([0, T ];X) for the space of continuous functions from [0, T ] to X; it is
a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

For p ∈ [1,∞], we use the standard notation of Lp(0, T ;V ) spaces. We also
use the Sobolev space W 1,∞(0, T ;V ) with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ),

where a dot now represents the weak derivative with respect to the time
variable.

In the study of the contact problem P1 we assume that the linear elasticity
tensor A = (aijkh) satisfies

(2.11)



(a) A : Ω × Sd → Sd;

(b) aijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;

(c) Aσ.τ = σ.Aτ for all σ, τ ∈ Sd and a.e. in Ω;

(d) there exists α > 0 such that Aτ.τ ≥ α|τ |2

for all τ ∈ Sd and a.e. in Ω.
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The friction coefficient satisfies

(2.12)



(a) µ : Γ3 × R+ → R+;

(b) there exists Lµ > 0 such that
|µ(x, u)− µ(x, v)| ≤ Lµ|u− v|
for all u, v ∈ R+ and a.e. x ∈ Γ3;

(c) there exists µ0 > 0 such that
µ(x, u) ≤ µ0 for all u ∈ R+ and a.e. x ∈ Γ3;

(d) the function x 7→ µ(x, u) is Lebesgue measurable on Γ3
for all u ∈ R+.

We assume that the normal compliance function satisfies

(2.13)



(a) p : Γ3 × R→ R+;

(b) there exists L1 > 0 such that
|p(x, r1)− p(x, r2)| ≤ L1|r1 − r2|
for all r1, r2 ∈ R and a.e. x ∈ Γ3;

(c) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0

for all r1, r2 ∈ R and a.e. x ∈ Γ3;
(d) there exists L2 > 0 such that

p(x, g) ≤ L2 for a.e. x ∈ Γ3;
(e) the function x→ p(x, r) is Lebesgue measurable on Γ3

for all r ∈ R;

(f) p(x, r) = 0 for all r ≤ 0 and a.e. x ∈ Γ3.

We assume that the body forces and surface tractions satisfy

(2.14) f1 ∈W 1,∞(0, T ;H), f2 ∈W 1,∞(0, T ; (L2(Γ2))
d) and there exists an

open subset denoted by S2 such that supp(f2(t)) ⊂ S2 ⊂ S2 ⊂ Γ2
for all t ∈ [0, T ].

Using Riesz’s representation theorem we define an element f(t) ∈ V by

(f(t), v)V =
�

Ω

f1(t).v dx+
�

Γ2

f2(t).v da ∀v ∈ V, t ∈ [0, T ].

The hypotheses on f1 and f2 imply that

f ∈W 1,∞(0, T ;V ).

Next we define a bilinear symmetric form a : V × V → R by

a(u, v) = 〈Aε(u), ε(v)〉Q.
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By the hypotheses (2.11)(b) & (d) on F , the bilinear form a(·, ·) is continu-
ous, that is,

(2.15)

{
(a) ∃M > 0, |a(u, v)| ≤M‖u‖V ‖v‖V ∀u, v ∈ V,
(b) ∃m > 0, a(v, v) ≥ m‖v‖2V ∀v ∈ V.

Next let us introduce a subset V0 of H1 defined by

V0 = {v ∈ H1 : div σ(v) ∈ H}

and let the functionals jc, jfr : V × V → R be given by

jc(u, v) =
�

Γ3

p(uν)vν da ∀(u, v) ∈ V × V,

jfr(u, v) =
�

Γ3

µ(|uτ |)p(uν)|vτ | da ∀(u, v) ∈ V × V.

We will denote by 〈·, ·〉 the duality pairing on H−1/2(Γ )×H1/2(Γ ).

Let t ∈ [0, T ]. For a function v ∈ H1 such that div σ(v) = −f1(t), we
define the normal stress σν(v) ∈ H−1/2(Γ ) by

(2.16) 〈σν(v), wν〉 = a(v, w)− 〈f1(t), w〉H ∀w ∈ H1 with wτ = 0 on Γ.

We shall use the notation

〈ρσν(v), wν〉 = 〈σν(v), ρwν〉 ∀ρ ∈ C1
0 (Rd).

We also assume that the initial data u0 satisfies

(2.17)


u0 ∈ K,
a(u0, v − u0) + jc(u0, v − u0) + jfr(u0, v − u0)
≥ (f(0), v − u0)V ∀v ∈ K.

Now, using Green’s formula (2.10), it is straighforward to see that if u is
a sufficiently regular function which satisfies (2.1)–(2.6), then for almost all
t ∈ (0, T ), we have

a(u(t), v − u̇(t)) + jfr(u(t), v)− jfr(u(t), u̇(t))

≥ (f(t), v − u̇(t))V + (σν(u(t)), vν − u̇ν(t))L2(Γ3) ∀v ∈ V,(
σν(u(t)) + p(uν(t)), zν − uν(t)

)
L2(Γ3)

≥ 0 ∀z ∈ K.

Finally we define the cut-off function θ ∈ C∞0 (Rd), 0 ≤ θ ≤ 1, such that θ = 1
in a neighbourhood of Γ 3 and 0 in a neighbourhood of S2. Therefore, using
(2.7) and the inequalities above leads to the following variational formulation
of Problem P1.

Problem P2. Find a displacement field u ∈ W 1,∞(0, T ;V ) such that
u(0) = u0 in Ω, u(t) ∈ K ∩ V0 for all t ∈ [0, T ], and for almost all t ∈ (0, T ),
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a(u(t), v − u̇(t)) + jfr(u(t), v)− jfr(u(t), u̇(t))(2.18)
≥ (f(t), v − u̇(t))V + 〈σν(u(t)), θ(vν − u̇ν(t))〉 ∀v ∈ V,

〈σν(u(t)) + p(uν(t)), θ(zν − uν(t))〉 ≥ 0 ∀z ∈ K.(2.19)

The main result of this paper, to be proved in the next section, is the fol-
lowing.

Theorem 2.1. Let (2.11)–(2.14) and (2.17) hold. If

(L2Lµ + µ0L1)d
2
Ω < m,

then Problem P2 has at least one solution u.

3. The time-discretized formulation. In order to solve Problem P2,
we adopt the following time discretization. For all n ∈ N∗, we set ∆t = T/n
and ti = i∆t, 0 ≤ i ≤ n. We denote by ui the approximation of u at time ti
and set ∆ui = ui+1 − ui. For w ∈ C([0, T ];X) where X is a Banach space,
we use the notation wi = w(ti). Then we obtain a sequence of incremental
time-discretized problems P in defined for u0 = u0 by

Problem P in. Find ui+1 ∈ K ∩ V0 such that
a(ui+1, w − ui+1) + jfr(u

i+1, w − ui)− jfr(ui+1,∆ui)

≥ (f i+1, w − ui+1)V + 〈σν(ui+1), θ(wν − ui+1
ν )〉 ∀w ∈ V,

〈σν(ui+1) + p(ui+1
ν ), θ(zν − ui+1

ν )〉 ≥ 0 ∀z ∈ K.

Lemma 3.1. Problem P in is equivalent to the following:

Problem Qin. Find ui+1 ∈ K ∩ V0 such that

(3.1)
{

(Aui+1, w − ui+1)V + jfr(u
i+1, w − ui)− jfr(ui+1,∆ui)

≥ (f i+1, w − ui+1)V ∀w ∈ K,
where the operator A : V → V is defined as

(Au, v)V = a(u, v) + jc(u, v) ∀u, v ∈ V.

Proof. We refer the reader to [5].

Now we can prove the following result.

Proposition 3.2. If

(L2Lµ + µ0L1)d
2
Ω < m,

then problem Qin has a unique solution.

To show Proposition 3.2 we introduce an auxiliary problem. We consider
the nonempty closed subset L2(Γ3)+ defined as

L2(Γ3)+ = {s ∈ L2(Γ3) : s ≥ 0 a.e. on Γ3}.
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For η ∈ L2(Γ3)+ define a mapping ϕ : K → R by

ϕ(w) =
�

Γ3

η|wτ − uiτ | da ∀w ∈ K.

Then we define the following contact problem with given friction bound.

Problem Qinη. Find uη ∈ K such that

(3.2) (Auη, w − uη)V + ϕ(w)− ϕ(uη) ≥ (f i+1, w − uη)V ∀w ∈ K.
We have the lemma below.

Lemma 3.3. Problem Qinη has a unique solution.

Proof. We use (2.13)(a) & (b) and (2.15)(a) & (b) to see that the operator
A is Lipschitz continuous and strongly monotone, K is a nonempty closed
convex of V , and ϕ is convex and lower semicontinuous. Then it follows
(see [3]) that for every η ∈ L2(Γ3)+, Problem Qinη has a unique solution uη.

Next, we prove the following lemma.

Lemma 3.4. Let Φ : L2(Γ3)+ → L2(Γ3)+ be defined by

Φ(η) = µ(|uητ |)p(uην).

If
(L2Lµ + µ0L1)d

2
Ω < m,

then Φ has a unique fixed point η∗, and uη∗ is a unique solution of Prob-
lem Qin.

Proof. It suffices to show that Φ is a contraction. For simplicity we write
uηi = ui, i = 1, 2. Then

‖Φ(η1)− Φ(η2)‖L2(Γ3) = ‖µ(|u1τ |)p(u1ν)− µ(|u2τ |)p(u2ν)‖L2(Γ3)

Using (2.9), (2.12)(b) & (c) and (2.13)(b) & (d) we obtain

‖µ(|u1τ |)p(u1ν)− µ(|u2τ |)p(u2ν)‖L2(Γ3)

= ‖(µ(|u1τ |)− µ(|u2τ |))p(u1ν) + µ(|u2τ |)(p(u1ν)− p(u2ν))‖L2(Γ3)

≤ (L2Lµ + µ0L1)dΩ‖u1 − u2‖V .
On the other hand, setting v = u1 in Qinη1 and v = u2 in Qinη2 and adding
the relevant inequalities, by using (2.9) and (2.15)(b), we get

‖u1 − u2‖V ≤
dΩ
m
‖η1 − η2‖L2(Γ3).

Hence

‖Φ(η1)− Φ(η2)‖L2(Γ3) ≤
(L2LµdΩ + µ0L1)d

2
Ω

m
‖η1 − η2‖L2(Γ3).

Thus if (L2LµdΩ + µ0L1)d
2
Ω < m, we deduce that Φ is a contraction, so it

has a unique fixed point η∗ and uη∗ is a unique solution of Problem Qin.
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Now, in order to prove the existence of a solution, we first need to estab-
lish the following estimates.

Lemma 3.5. We have

(3.3) ‖ui+1‖V ≤
(
µ0L2dΩ

√
meas(Γ3) + ‖f i+1‖V

)
/m,

and if
(L2Lµ + µ0L1)d

2
Ω < m,

then there exists a constant c > 0 such that

(3.4) ‖∆ui‖V ≤ c‖∆f i‖V .

Proof. We take w = 0 in inequality (3.1) to deduce

(Aui+1, ui+1)V ≤ jfr(ui+1, ui+1) + (f i+1, ui+1)V .

Using (2.12)(c) & (b) and (2.13)(e) we have

jfr(u
i+1, ui+1) ≤ dΩµ0L2

√
meas(Γ3)‖ui+1‖V .

Using (2.15)(b) and (2.13)(c), we deduce

m‖ui+1‖2V ≤ dΩµ0L2

√
meas(Γ3)‖ui+1‖V + ‖f i+1‖V ‖ui+1‖V ,

from which we conclude that (3.3) holds.
To show the estimate (3.4) we consider the translated inequality of (3.1)

at time ti, that is,

(3.5) (Aui, w − ui)V + jfr(u
i, w − ui−1)− jfr(ui, ui − ui−1)

≥ (f i, w − ui)V ∀w ∈ V.

Taking w = ui in (3.1) and w = ui+1 in (3.5) and adding up the results, one
obtains

− (Aui+1 −Aui,∆ui)V − jfr(ui+1,∆ui) + jfr(u
i, ui+1 − ui−1)

− jfr(ui, ui − ui−1) ≥ (−∆f i,∆ui)V .

Then using the inequality∣∣|ui+1
τ − ui−1τ | − |uiτ − ui−1τ |

∣∣ ≤ |ui+1
τ − uiτ |,

we have

jfr(u
i, ui+1 − ui−1)− jfr(ui, ui − ui−1) ≤ jfr(u

i,∆ui).

Therefore

(3.6) (Aui+1 −Aui,∆ui)V + jfr(u
i+1,∆ui)− jfr(ui,∆ui) ≤ (∆f i,∆ui)V .

Using (2.9), (2.12)(b) & (c) and (2.13)(b) & (d) we obtain

|jfr(ui+1,∆ui)− jfr(ui,∆ui)| ≤ (L2Lµ + µ0L1)d
2
Ω‖∆ui‖2V .
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Applying (2.15)(b), (2.13)(c) and the estimate above we deduce from (3.6)
that

m‖∆ui‖2V ≤ (L2Lµ + µ0L1)d
2
Ω‖∆ui‖2V + ‖∆f i‖V ‖∆ui‖V .

Then we deduce that if (L2Lµ +µ0L1)d
2
Ω < m, there exists a constant c > 0

such that
‖∆ui‖V ≤ c‖∆f i‖V .

4. Existence of a solution for Problem P2. In this section we shall
prove Theorem 2.1. The weak solution for Problem P2 is obtained as a limit
of the interpolate function in time of the discrete solution. For this, we shall
define a sequence of functions un : [0, T ]→ V by

un(t) = ui +
t− ti
∆t

∆ui on [ti, ti+1], i = 0, . . . , n− 1.

As in [15] we have the following lemma.

Lemma 4.1. There exists u ∈W 1,∞(0, T ;V ) and a subsequence of (un),
still denoted (un), such that

un → u weak∗ in W 1,∞(0, T ;V ).

Proof. From (3.3), we deduce that the sequence (un) is bounded in
C([0, T ];V ) and there exist positive constants c1 and c2 such that

max
0≤t≤T

‖un(t)‖V ≤ c1‖f‖C([0,T ];V ) + c2.

From (3.4), the sequence (u̇n) is bounded in L∞(0, T ;V ) and there exists
c3 > 0 such that

‖u̇n‖L∞(0,T ;V ) = max
0≤i≤n−1

∥∥∥∥∆ui

∆t

∥∥∥∥
V

≤ c3‖ḟ‖L∞(0,T ;V ).

Consequently, (un) is bounded in W 1,∞(0, T ;V ). Therefore, there exists a
function u ∈ W 1,∞(0, T ;V ) and a subsequence, still denoted by (un), such
that

un → u weak∗ in W 1,∞(0, T ;V ) as n→∞.
Remark 4.2. As W 1,∞(0, T ;V ) ↪→ C([0, T ];V ) we have un(t) → u(t)

weakly in V for all t ∈ [0;T ].

Now let us introduce piecewise constant functions ũn, f̃n : [0, T ] → V ,
defined as follows:

ũn(t) = ui+1, f̃n(t) = f(ti+1), ∀t ∈ (ti, ti+1], i = 0, . . . , n− 1.

As in [15] we have the following result.

Lemma 4.3. After passing to a subsequence, again denoted (ũn), we have

(i) ũn → u weak∗ in L∞(0, T ;V ),
(ii) ũn(t)→ u(t) weakly in V for a.e. t ∈ [0, T ],
(iii) u(t) ∈ K ∩ V0 for all t ∈ [0, T ].
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Now we have all the ingredients to prove the following proposition.

Proposition 4.4. The function u is a solution to Problem P2.

Proof. In the first inequality of Problem P in, for v ∈ V set w = ui + v∆t
and divide by ∆t to obtain

a

(
ui+1, v − ∆ui

∆t

)
+ jfr(u

i+1, v)− jfr
(
ui+1,

∆ui

∆t

)
≥
(
f(ti+1), v −

∆ui

∆t

)
V

+

〈
σν(ui+1), θ

(
vν −

∆uiν
∆t

)〉
.

Hence for any v ∈ L2(0, T ;V ), we have

a(ũn(t), v(t)− u̇n(t)) + jfr(ũ
n(t), v(t))− jfr(ũn(t), u̇n(t))

≥ (f̃n(t), v(t)− u̇n(t))V + 〈θσν(ũn(t)), vν(t)− u̇nν (t))〉, a.e. t ∈ [0, T ].

Integrating both sides on (0, T ) gives

(4.1)
T�

0

a(ũn(t), v(t)− u̇n(t)) dt+

T�

0

jfr(ũ
n(t), v(t)) dt

−
T�

0

jfr(ũ
n(t), u̇n(t)) dt

≥
T�

0

(f̃n(t), v(t)− u̇n(t))V dt+

T�

0

〈θσν(ũn(t)), vν(t)− u̇nν (t))〉 dt.

Before passing to the limit as n→∞ in (4.1), we need to prove the lemma
below.

Lemma 4.5. We have the following properties:

lim sup
n→∞

T�

0

a(ũn(t), v(t)− u̇n(t)) dt(4.2)

≤
T�

0

a(u(t), v(t)− .
u(t)) dt ∀v ∈ L2(0, T ;V ),

lim inf
n→∞

T�

0

jfr(ũ
n(t), u̇n(t)) dt ≥

T�

0

jfr(u(t),
.
u(t)) dt,(4.3)

lim
n→∞

T�

0

jfr(ũ
n(t), v(t)) dt =

T�

0

jfr(u(t), v(t)) dt ∀v ∈ L2(0, T ;V ),(4.4)

lim
n→∞

T�

0

(f̃n(t), v(t)− u̇n(t))V dt(4.5)

=

T�

0

(f(t), v(t)− .
u(t))V dt ∀v ∈ L2(0, T ;V ),
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lim
n→∞

T�

0

〈θσν(ũn(t)), vν(t)− u̇nν (t))〉 dt(4.6)

=

T�

0

〈θσν(u(t)), vν(t)− u̇ν(t))〉 dt ∀v ∈ L2(0, T ;V ).

Proof. For (4.2) we refer the reader to [5]. For the proof of (4.3) we have

jfr(ũ
n(t), u̇n(t)) =

�

Γ3

(
µ(|ũnτ (t)|)− µ(|uτ (t)|)

)
p(ũnν (t))|u̇nτ (t)| da

+
�

Γ3

µ(|uτ (t)|)p(ũnν (t))|u̇nτ (t)| da.

Using the hypotheses (2.12)(b) and (2.13)(c), we get∣∣∣ �
Γ3

(µ(|ũnτ (t)|)− µ(|uτ (t)|))p(ũnν (t))|u̇nτ (t)| da
∣∣∣

≤ L2Lµ‖ũnτ (t)− uτ (t)‖(L2(Γ3))d‖u̇
n
τ (t)‖(L2(Γ3))d .

From (2.9) and ‖u̇n‖L∞(0,T ;V ) ≤ c‖f‖W 1,∞(0,T.V )+c
′, where c′ > 0, we deduce

that∣∣∣ T�
0

�

Γ3

(
µ(|ũnτ (t)|)− µ(|uτ (t)|)

)
p(ũnν (t))|u̇nτ (t)| da dt

∣∣∣
≤ c4‖ũnτ − uτ‖L2(0,T ;(L2(Γ3))d)

for some constant c4 > 0. Now, for t ∈ (0, T ) we write

‖ũnτ (t)− uτ (t)‖L2(Γ3)d ≤ ‖ũ
n
τ (t)− unτ (t)‖(L2(Γ3))d + ‖unτ (t)− uτ (t)‖(L2(Γ3))d ,

and using (2.9) we obtain, for every t ∈ (0, T ),

‖ũnτ (t)− unτ (t)‖L2(Γ3)d ≤ dΩ
T

n
‖u̇n(t)‖V ≤ c3dΩ

T

n
‖ḟ‖L∞(0,T ;V ).

On the other hand,

unτ (t)→ uτ (t) strongly in (L2(Γ3))
d for all t ∈ [0, T ],

from which we deduce that

ũnτ → uτ strongly in L2(0, T ; (L2(Γ3))
d),

and we conclude that

lim
n→∞

T�

0

�

Γ3

(
µ(|ũnτ (t)|)− µ(|uτ (t)|)

)
p(ũnν (t))|u̇nτ (t)| da dt = 0.
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Finally, as by Mazur’s lemma we have

lim inf
n→∞

T�

0

jfr(u(t), u̇n(t)) dt ≥
T�

0

jfr(u(t), u̇(t)) dt,

we obtain

lim inf
n→∞

T�

0

jfr(ũ
n(t), u̇n(t)) dt ≥

T�

0

jfr(u(t), u̇(t)) dt.

The same proof of (4.3) is used to prove (4.4). To prove (4.5), it suffices to
use the fact that f̃n → f strongly in L2(0, T ;V ) (see [15]). Finally, for the
proof of (4.6) use (2.16) and see also [5].

Now using (2.16) and passing to the limit in (4.1), we get
T�

0

(
a(u(t), v(t)− .

u(t)) + jfr(u(t), v(t))− jfr(u(t),
.
u(t))

)
dt

≥
T�

0

(f(t), v(t)− .
u(t))V dt+

T�

0

〈θσν(u(t)), vν(t)− u̇ν(t)〉 dt.

In this inequality we take v ∈ L2(0, T ;V ) defined by

v(s) =

{
z for s ∈ [t, t+ λ],
u̇(s) elsewhere,

and dividing by λ, we obtain

1

λ

t+λ�

t

(
a(u(s), z − .

u(s)) + jfr(u(s), z)− jfr(u(s),
.
u(s))

)
ds

≥ 1

λ

t+λ�

t

(f(s), z − .
u(s))V ds+

1

λ

t+λ�

t

〈θσν(u(s)), zν − u̇ν(s)〉 ds.

Letting λ→ 0+, by Lebesgue’s theorem we infer that u satisfies (2.18).
To complete the proof, we deduce from (3.1) that

(Aũn(t), v − ũn(t))V + jfr(ũ
n(t), v − ũn(t))

≥ (f̃n(t), v − ũn(t))V ∀v ∈ K, a.e. t ∈ [0, T ].

Integrating both sides gives
T�

0

(Aũn(t), v(t)− ũn(t))V dt+

T�

0

jfr(ũ
n(t), v(t)− ũn(t)) dt

≥
T�

0

(f̃n(t), v(t)− ũn(t))V dt ∀v ∈ L2(0, T ;V ); v(t) ∈ K, a.e. t ∈ [0, T ].
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Letting n→∞, we get
T�

0

(Au(t), v(t)− u(t))V dt+

T�

0

jfr(u(t), v(t)− u(t)) dt

≥
T�

0

(f(t), v(t)− u(t))V dt ∀v ∈ L2(0, T ;V ); v(t) ∈ K, a.e. t ∈ [0, T ].

Proceeding in a similar way, we deduce that

(Au(t), v − u(t))V + jfr(u(t), v − u(t))

≥ (f(t), v − u(t))V ∀v ∈ K, a.e. t ∈ [0, T ].

Using Green’s formula, as in [5], we conclude that u satisfies the inequality
(2.19) and consequently u is a solution of Problem P2.
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