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LOCAL CONVERGENCE FOR A MULTI-POINT FAMILY OF

SUPER-HALLEY METHODS IN A BANACH SPACE

UNDER WEAK CONDITIONS

Abstract. We present a local multi-point convergence analysis for a fam-
ily of super-Halley methods of high convergence order in order to approxi-
mate a solution of a nonlinear equation in a Banach space. Our sufficient con-
vergence conditions involve only hypotheses on the first and second Fréchet
derivative of the operator involved. Earlier studies use hypotheses up to the
third Fréchet derivative. Numerical examples are also provided.

1. Introduction. In this study we are concerned with the problem of
approximating a solution x∗ of the nonlinear equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a subset D of a
Banach space X with values in a Banach space Y.

Many problems in computational sciences and other disciplines can be
brought to the form of equation (1.1) using mathematical modelling [3]. So-
lutions of (1.1) can rarely be found in closed form. Therefore the solutions
are approximated by iterative methods. In particular, the practice of numer-
ical functional analysis for finding such a solution is essentially connected
with Newton-like methods [1]–[28]. The study of convergence of iterative
procedures is usually of two types: semilocal and local convergence analysis.
The semilocal analysis is, based on the information around an initial point,
to give conditions ensuring the convergence of the iterative procedure; while
the local analysis is, based on the information around a solution, to find esti-
mates of the radii of convergence balls. There exist many studies which deal
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with the local and semilocal convergence analysis of Newton-like methods
[1]–[28].

We present the local convergence analysis for the super-Halley method
defined for each n = 0, 1, 2, . . . by

(1.2)

yn = xn − F ′(xn)−1F (xn),

zn = yn + 2
3F
′(xn)−1F (xn) = xn − 1

3F
′(xn)−1F (xn),

vn = yn −AnF ′(xn)−1F (xn),

xn+1 = vn −BnF ′(xn)−1F (vn),

where x0 is an initial point, the operator K : X → X is defined by

K(x) = F ′(x)−1F ′′
(
x− 1

3F
′(x)−1F (x)

)
F ′(x)−1F (x),

and

An = 1
2Kn + 1

2K
2
n +Kθ

nP (Kn),

Kn = K(xn) = F ′(xn)−1F ′′(zn)F ′(xn)−1F (xn),

Bn = I − F ′(xn)−1F ′′(zn)(vn − xn) + δ(F ′(xn)−1F ′′(zn)(vn − xn)2),

θ = 1, 2, . . . , δ is a real parameter, and P is a bounded operator on D. The
semilocal convergence analysis was presented in [25] under the following
conditions (C):

F ′(x0)
−1 ∈ L(Y,X) exists and ‖F ′(x0)−1‖ ≤ β;(C1)

‖F ′(x0)−1F (x0)‖ ≤ β1;(C2)
‖F ′(x0)−1F ′′(x)‖ ≤ β2 for each x ∈ D;(C3)
‖F ′(x0)−1F ′′′(x)‖ ≤ β3 for each x ∈ D;(C4)

‖F ′(x0)−1(F ′′′(x)− F ′′′(y))‖ ≤ β4‖x− y‖q(C5)

for each x, y ∈ D and q ∈ [0, 1].

The R-order of convergence was shown to be 5 + q. Notice that in [25],
θ = 3, 4, . . . , δ ∈ [−1, 1], whereas in the present paper θ = 1, 2, . . . and δ is
a real parameter. Hence, the applicability of method (1.2) is extended.

Similar conditions have been used by other authors [1]–[28], on other
high convergence order methods. The corresponding conditions for the lo-
cal convergence analysis are given by simply replacing x0 by x∗ in the (C)
conditions. These conditions however are very restrictive. As a motivational
example, define a function F on D = [−1/2, 5/2] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0,

0, x = 0.
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Then x∗ = 1,

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, F ′(1) = 3,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Obviously, F cannot satisfy condition (C4), since F ′′′ is unbounded. In the
present paper we only use hypotheses on the first and second order Fréchet
derivative (see conditions (2.13)–(2.16)). This way we extend the applica-
bility of method (1.2).

The paper is organized as follows. The local convergence of method (1.2)
is analyzed in Section 2, whereas some numerical examples are given in
Section 3.

2. Local convergence analysis. Let U(v, ρ), U(v, ρ) denote the open
and closed balls in X, respectively with center v ∈ X and radius ρ > 0. Let
L0, L,M,N > 0, α ≥ 0, δ ∈ (−∞,∞) and θ = 1, 2, . . . be given parameters.
It is convenient to define certain functions on [0, 1/L0):

g1(r) =
Lr

2(1− L0r)
,

g2(r) =
1

2(1− L0r)

(
Lr +

4M

3

)
,

g3(r) =
MNr

(1− L0r)2
,

g4(r) =
1

2

MNr

(1− L0r)2
+

1

2

M2N2r2

(1− L0r)4
+

(MN)θrθα

(1− L0r)2θ
,

g5(r) =
1

2(1− L0r)
(Lr + 2Mg4(r)).

Suppose that

(2.1) M < 3/2.

Define

(2.2) r2 =
2(1− 2M/3)

L+ 2L0
.

Then

(2.3) 0 < r2 < rR =
2

3L
≤ rA =

2

L+ 2L0
,

where the last inequality holds for L0 ≤ L. Then it follows from the definition
of g2 that

(2.4) 0 < g2(r) < 1 for each r ∈ [0, r2).
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It also follows from the definition of g1 and (2.5) that

0 < g1(r) < 1 for each r ∈ [0, r2].

We need g5(r) ∈ [0, 1) for each r ∈ [0, r̄) for some r̄ to be determined.
Let us define a function p5 on [0, 1/L0] by

p5(r) = 2
[
Lr(1− L0r)

4(1− L0r)
2θ

+M2Nr(1− L0r)
2(1− L0r)

2θ + 2M3N2r2(2− L0r)
2θ

+ 2M θ+1N θrθα(1− L0r)
4 − 2(1− L0r)

5(1− L0r)
2θ
]
.

Using the definitions of g4 and g5, we get

g5(r)− 1

=
1

2(1− L0r)

[
Lr + 2M

(
MNr

2(1− L0r)2
+

M2N2r2

2(1− L0r)4
+

(MN)θrθα

(1− L0r)2α

)]
− 1

=
p5(r)

4(1− L0r)2α+5
.

Hence
p5(r) < 0 ⇒ g5(r) < 1 for each r ∈ (0, r̄).

The function p5(r) can also be written as

p5(r) = 2(1− L0r)
2θp6(r) or p5(r) = 2(1− L0r)

4p7(r),

where
p6(r) = Lr(1− L0r)

4 +M2Nr(1− L0r)
2 + 2M3N2r2

+ 2M θ+1N θrθα(1− L0r)
4−2θ − 2(1− L0r)

5

and

p7(r) = Lr(1− L0r)
2θ +M2Nr(1− L0r)

2(1− L0r)
2θ−4

+ 2M3N2r2(1− L0r)
2θ−4

+ 2M θ+1N θrθα− 2(1− L0r)
2(1− L0r)

2θ.

Then

p6(0) = −4 < 0, p6(1/L0) = 2M3N2(1/L0)
2 > 0, for θ ≤ 2,

p7(0) = −4 < 0, p7(1/L0) = 2M θ+1N θ(1/L0)
2 > 0, for θ ≥ 2.

It follows that with either choice for θ, the function g5(r) − 1 has zeros in
(0, 1/L0). Denote by r5 the smallest such zero. Set

(2.5) r∗ = min{r2, r5}.
Then

0 < g1(r) < 1,(2.6)

0 < g2(r) < 1,(2.7)

0 < g3(r),(2.8)
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0 < g4(r),(2.9)

0 < g5(r) < 1,(2.10)

for each r ∈ (0, r∗).

Moreover, define functions g6 and g7 on [0, 1/L0) by

g6(r) = 1 +
MN(1 + g4(r))r

(1− L0r)2
+ |δ|(MN(1 + g4(r))r)

2

(1− L0r)4
,

g7(r) =

(
1 +

Mg6(r)

1− L0r

)
g5(r).

As in the case of g5, we show that the function g7 has zeros in (0, 1/L0). It
follows from the definition of g5 and g7 that r7 < r5 and

0 < g7(r) < 1 ⇒ 0 < g5(r) < 1 for each r ∈ (0, r7).

Set

(2.11) r∗ = min{r2, r7}.

Then clearly inequalities (2.6)–(2.10) hold for each r ∈ (0, r∗). Next, we
present the local convergence analysis of method (1.2).

Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Suppose that there exist x∗ ∈ D, parameters L0, L,N > 0, M ∈ (0, 3/2) and
α ≥ 0 such that for all x ∈ D,

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X),(2.12)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖,(2.13)

‖F ′(x∗)−1[F (x)− F (x∗)− F ′(x)(x− x∗)]‖ ≤ L

2
‖x− x∗‖2,(2.14)

‖F ′(x∗)−1F ′(x)‖ ≤M,(2.15)

‖F ′(x∗)−1F ′′(x)‖ ≤ N,(2.16)

‖P (K(x))‖ ≤ α,(2.17)

Ū(x∗, r∗) ⊆ D,(2.18)

where r∗ is given by (2.5). Then the sequence {xn} generated by method
(1.2) for x0 ∈ U(x∗, r∗) is well defined, remains in U(x∗, r∗) for each n =
0, 1, 2, . . . and converges to x∗. Moreover, the following estimates hold for
each n = 0, 1, 2, . . . :

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r∗,(2.19)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖,(2.20)

‖Kn‖ ≤ g3(‖xn − x∗‖),(2.21)

‖An‖ ≤ g4(‖xn − x∗‖)(2.22)
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and

‖vn − x∗‖ ≤ g5(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖,(2.23)

‖Bn‖ ≤ g6(‖xn − x∗‖),(2.24)

‖xn+1 − x∗‖ ≤ g7(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖.(2.25)

Proof. Using (2.13), the definition of r∗ and the hypothesis x0 ∈ U(x∗, r∗)
we get

(2.26) ‖F ′(x∗)−1(F (x0)− F (x∗))‖ ≤ L0‖x0 − x∗‖ < L0r
∗ < 1.

It follows from (2.26) and the Banach Lemma on invertible operators [3]
that F ′(x0)

−1 ∈ L(Y,X) and

(2.27) ‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− L0‖x0 − x∗‖
<

1

1− L0r∗
.

Hence, y0 and z0 are well defined. Using the first substep of method (1.2)
for n = 0, (2.14) (for x = x0) and the definition of g1 and g2, we obtain in
turn

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= −F ′(x0)−1F ′(x∗)F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]

so

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖
×‖F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,

which shows (2.19) for n = 0. Consequently, from the second substep of
method (1.2) for n = 0, we have

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ 2
3‖F

′(x0)
−1F ′(x∗)‖

×
∥∥∥ 1�

0

F ′(x∗)−1F ′
(
x∗ + t(x0 − x∗)(x0 − x∗)

)
dt
∥∥∥

≤
(

L‖x0 − x∗‖
2(1− L0‖x0 − x∗‖)

+
2M

3(1− L0‖x0 − x∗‖)

)
‖x0 − x∗‖

= g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,

which shows (2.20) for n = 0 and z0 ∈ U(x∗, r∗). Next, using the definition
of K0 and A0, we obtain in turn
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‖K0‖ ≤ ‖F ′(x0)−1F ′(x∗)‖ ‖F ′(x∗)−1F ′′(z0)‖

×‖F ′(x0)−1F ′(x∗)‖
∥∥∥ 1�

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗)) dt
∥∥∥ ‖x0 − x∗‖

≤ MN‖x0 − x∗‖
(1− L0‖x0 − x∗‖)2

= g3(‖x0 − x∗‖),

which shows (2.21) for n = 0. Moreover, we have

‖A0‖ ≤ 1
2‖K0‖+ 1

2‖K0‖2 + ‖K0‖θ‖P (K(x0))‖

≤ MN‖x0 − x∗‖
2(1− L0‖x0 − x∗‖)2

+
(MN‖x0 − x∗‖)2

2(1− L0‖x0 − x∗‖)4

+
(MN)θ‖x0 − x∗‖α

(1− L0‖x0 − x∗‖)2θ
= g4(‖x0 − x∗‖),

which shows (2.22) for n = 0. Then, using the third substep in method (1.2)
for n = 0, we get

‖v0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖A0‖ ‖F ′(x0)−1F ′(x∗)‖

×
∥∥∥ 1�

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗) dt
∥∥∥

≤ 1

2(1− L0‖x0 − x∗‖)
[L‖x0 − x∗‖+ 2Mg4(‖x0 − x∗‖)]‖x0 − x∗‖

= g5(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,

which shows (2.23) for n = 0. Using the definition of B0 and g6, (2.15),
(2.16), (2.21), (2.22), (2.27), and the estimate

‖F ′(x∗)−1F (x0)‖ =
∥∥∥ 1�

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗) dt
∥∥∥

≤M‖x0 − x∗‖,
we get

‖B0‖ ≤ ‖I‖+ ‖F ′(x0)−1F ′(x∗)‖ ‖F ′(x∗)−1F ′′(z0)‖
× (1 + ‖A0‖)‖F ′(x0)−1F ′(x∗)‖ ‖F ′(x∗)−1F (x0)‖

+ |δ|
(
‖F ′(x0)−1F ′(x∗)‖ ‖F ′(x∗)−1F ′′(z0)‖

× (1 + ‖A0‖)‖F ′(x0)−1F ′(x∗)‖ ‖F ′(x∗)−1F (x0)‖
)2

≤ 1 +
MN(1 + g4(‖x0 − x∗‖)‖x0 − x∗‖

(1− L0‖x0 − x∗‖)2

+ |δ|(MN(1 + g4(‖x0 − x∗‖)‖x0 − x∗‖)2

(1− L0‖x0 − x∗‖)4
= g6(‖x0 − x∗‖),
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which shows (2.24) for n = 0. Hence, using the definition of g7, (2.15), (2.23)
and the preceding estimate we get

‖x1 − x∗‖ ≤ ‖v0 − x∗‖+ ‖B0‖ ‖F ′(x0)−1F ′(x∗)‖

×
∥∥∥ 1�

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(v0 − x∗) dt
∥∥∥

≤
[
1 +

Mg6(‖x0 − x∗‖)
1− L0‖x0 − x∗‖

]
‖v0 − x∗‖

≤
[
1 +

Mg6(‖x0 − x∗‖)
1− L0‖x0 − x∗‖

]
g5(‖x0 − x∗‖)‖x0 − x∗‖

= g7(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,

which shows (2.25) for n = 0.
By simply replacing y0, z0, v0, x1 by yk, zk, vk, xk+1 in the preceding esti-

mates we arrive at (2.19)–(2.25). Finally, from the estimate ‖xk+1 − x∗‖ <
‖xk − x∗‖ we deduce that limk→∞ xk = x∗.

Remark 2.2. 1. In view of (2.13) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖

condition (2.15) can be dropped and M can be replaced by

M(r) = 1 + L0r.

Moreover, condition (2.14) can be replaced by the popular but stronger
conditions

(2.28) ‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖ for each x, y ∈ D
or

‖F ′(x∗)−1(F ′(x∗ + t(x− x∗))− F ′(x))‖ ≤ L(1− t)‖x− x∗‖
for each x, y ∈ D and t ∈ [0, 1].

2. The results obtained here can be used for operators F satisfying au-
tonomous differential equations [3] of the form

F ′(x) = T (F (x))

where T is a continuous operator. Then since F ′(x∗) = T (F (x∗)) = T (0),
we can apply the results without actually knowing x∗. For example, let
F (x) = ex − 1. Then we can choose T (x) = x+ 1.

3. The local results obtained here can be used for projection methods
such as Arnoldi’s method, the generalized minimum residual method (GM-
RES), the generalized conjugate method (GCR) for combined Newton/finite
projection methods, and in connection with the mesh independence principle
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can be used to develop the cheapest and most efficient mesh refinement
strategies [3, 4].

The parameter rA given in (2.3) was shown by us to be the convergence
radius of Newton’s method [3, 4]

(2.29) xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, . . .

under conditions (2.14) and (2.28). It follows from (2.6) and (2.12) that the
convergence radius r∗ of method (1.2) cannot be larger than the convergence
radius rA of the second order Newton’s method (2.29). As already noted in
[3, 4], rA is at least as large as the convergence radius given by Rheinboldt
[3, 4]

rR =
2

3L
.

In particular, for L0 < L we have

rR < rA and rR/rA → 1/3 as L0/L→ 0.

That is, our convergence radius rA is at most three times larger than Rhein-
boldt’s. The same value for rR was given by Traub [3, 4].

4. It is worth noticing that method (1.2) does not chang when we use
the conditions of Theorem 2.1 instead of the stronger (C) conditions used
in [25]. Moreover, we can compute the computational order of convergence
(COC) defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)/
ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
,

or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)/
ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

Thus we obtain in practice the order of convergence in a way that avoids the
bounds given in [25] involving estimates up to the third Fréchet derivative
of the operator F.

3. A numerical example. We present a numerical example in this
section.

Example 3.1. Let X = Y = R2, D = Ū(0, 1), x∗ = 0, and define a
function F on D by

(3.1) F (x) =
(
sinx, 14(ex + 3x− 1)

)
.

Let P = 0. Then we can choose α = 0. Using (2.12)–(2.17), we get L0=L=1,
M = 1

4(e+ 3), N = e/4, θ = 3, δ = 0.1. Then r2 = 0.0313 and r7 = 0.0720,
so by (2.11) we obtain

r∗ = 0.0313 < rR = rA = 0.6667.
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