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BAYESIAN ESTIMATION OF THE MEAN HOLDING TIME
IN AVERAGE SEMI-MARKOV CONTROL PROCESSES

Abstract. We consider semi-Markov control models with Borel state and
action spaces, possibly unbounded costs, and holding times with a gener-
alized exponential distribution with unknown mean θ. Assuming that such
a distribution does not depend on the state-action pairs, we introduce a
Bayesian estimation procedure for θ, which combined with a variant of the
vanishing discount factor approach yields average cost optimal policies.

1. Introduction. This paper deals with a class of semi-Markov con-
trol models (SMCM) in which the holding time process {δn} is a sequence
of independent and identically distributed (i.i.d.) random variables with a
generalized exponential density g with unknown mean θ, independent of the
state-action pairs. Assuming that the costs are possibly unbounded, our ob-
jective is to construct optimal policies under the long-run average criterion.

As is observed in Section 3, because g does not depend on the state-action
process, the corresponding semi-Markov control problem becomes a Markov
control problem. Furthermore, as usual in the study of the average criterion
for SMCM (see, e.g., [12, 13, 16]), the cost-per-stage depends on the holding
times δn, and by using properties of conditional expectation, it can be written
in terms of the mean θ. Hence, since θ is unknown, we are facing a Markov
optimal control problem with unknown cost-per-stage. In this sense, before
choosing the action at the nth decision epoch, the controller gets an estimate
θn of the parameter θ, and therefore of the cost, and combines this with the
history of the system to select an action a = an(θn).

The estimation of the parameter θ is obtained by the application of a
Bayesian procedure, which is based on the minimization of the so-called
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Bayes’ risk function. This scheme includes a posterior model of the unknown
parameter given the observation and a cost-of-error function.

It is worth observing that the hypotheses of independence of the density
g and the state-action process could be strong in some application prob-
lems. However, it is satisfied, for instance, in some class of queueing systems
(see, e.g., [16]).

The average optimality is studied by means of a combination of a variant
of the so-called vanishing discount factor approach (see, e.g., [4, 8]) with
the Bayesian estimation procedure. Specifically, to construct the average
cost optimal policy, we analyze the α̂n-discount optimality equation for a
suitable sequence of discount factors α̂n ↗ 1, and replace the unknown
parameter θ by the estimator θn obtained at each decision time. The idea of
such an approach was originally introduced by Gordienko in [3] and revised
in [7], both for Markov control processes with bounded cost and unknown
transition law (see also [14]). In this work we use some of their main ideas,
but extended to the unbounded and unknown one-stage cost case.

There are similar papers dealing Bayesian estimation in Markov control
models under average criterion (see, e.g., [1, 2]). However, unlike our work, in
both papers it is assumed that the transition probability among the states
depends on an unknown parameter which must be estimated in order to
obtain nearly optimal policies.

The paper is organized as follows. In Section 2 we describe the SMCM
we will be dealing with. Next, Section 3 contains preliminary results on the
average optimality criterion and the assumptions required. The Bayesian
estimation procedure is introduced in Section 4, whereas the construction of
the optimal policies is presented in Section 5. Finally, the proofs are given
in Section 6.

Notation. Given a Borel space X (that is, a Borel subset of a complete
and separable metric space) its Borel σ-algebra is denoted by B(X), and
“measurable”, for either sets or functions, means “Borel measurable”. Let X
and Y be Borel spaces. Then a stochastic kernel Q(dx | y) on X given Y is
a function such that Q(· | y) is a probability measure on X for each fixed
y ∈ Y, and Q(B | ·) is a measurable function on Y for each fixed B ∈ B(X).
We denote by N (respectively N0) the set of positive (resp. nonnegative)
integers; R (respectively R+) denotes the set of real (resp. nonnegative real)
numbers.

2. The control model. The semi-Markov control model we are con-
cerned with is described by the following elements.

(a) The state space X and the control set A are assumed to be Borel
spaces.
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To each x ∈ X, we associate a nonempty measurable subset A(x) of A
denoting the set of admissible controls (or actions) when the system is in
state x. The set

K = {(x, a) : x ∈ X, a ∈ A(x)}
of admissible state-action pairs is a Borel subset of the Cartesian product of
X and A. We assume that for each x ∈ X, the set A(x) is compact.

(b) The transition law among the states Q(· | ·) is a stochastic kernel
on X given K. That is, if x is the state at the nth decision time and the
controller selects the action a, Q(· | x, a) is the distribution of the next state
of the system:

Q(B | x, a) := Pr[xn+1 ∈ B | xn = x, an = a], B ∈ B(X).

We assume that Q is strongly continuous on A(x) for every x ∈ X, that is,
for each bounded measurable function v : X→ R, the function

a 7→
�

X

v(y)Q(dy | x, a)

is continuous on A(x).
(c) The time of the nth decision is denoted by Tn where T0 = 0. Thus

δn+1 := Tn+1 − Tn, n ∈ N0, are random variables defined on a probability
space (Ω,F , P ) representing the sojourn or holding time at state xn. More-
over, observe that Tn =

∑n
k=1 δk. We assume that {δn} is a sequence of

independent and identically distributed (i.i.d.) random variables such that
δn ≥ m a.s. for some m > 0, with a generalized exponential density of the
form

g(s|λ) = λ−1 exp[−(s−m)λ−1]1[m,∞)(s),

which is independent of the state-action pairs, where λ > 0 is an unknown
parameter. Therefore, the mean holding time θ := E(δn) = λ+m is unknown
by the controller.

(d) Finally, the cost-per-stage C is a measurable and possibly unbounded
real-valued function on K. In particular we assume that C is the sum of an
immediate cost D(x, a) incurred at the moment when the controller chooses
a decision, plus a cost rate d(x, a) imposed until the transition to a new state
of the system occurs. As is specified below (see (6) and (9)–(11)), the cost
C takes the form

(1) C(x, a) = Cθ(x, a) = D(x, a) + θd(x, a), (x, a) ∈ K.

We assume that both functions D(x, ·) and d(x, ·) are lower semicontinuous
(l.s.c.) on A(x) for every x ∈ X, and there exists a measurable function
W : X→ [1,∞) such that for all (x, a) ∈ K,

(2) |D(x, a)| ≤W (x) and |d(x, a)| ≤W (x).
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Therefore

(3) |Cθ(x, a)| ≤ (1 + θ)W (x).

In addition, we suppose that the mapping

(x, a) 7→
�

X

W (y)Q(dy | x, a)

is continuous on K, and

(4)
�

X

W 2(y)Q(dy | x, a) ≤ β̄W 2(x) + d̄, (x, a) ∈ K,

for some constants β̄ ∈ (0, 1) and d̄ ≥ 0. Observe that from Jensen’s inequal-
ity, (4) yields

(5)
�

X

W (y)Q(dy | x, a) ≤ βW (x) + d, (x, a) ∈ K,

where β = (β̄)1/2 and d = (d̄)1/2.
The evolution in time of the system is as follows. At time Tn of the

nth decision, the system is in state xn = x. Since θ (and therefore the cost
function Cθ) is unknown, by using the historical observations of the holding
times δ1, . . . , δn, the controller implements a Bayesian inference procedure
to construct an estimator θn of the mean holding time θ, and combines this
with the control objectives to select a control a = an(θn) ∈ A(x). Then
the system remains in state x during a nonnegative random time δn+1 with
density function g, the system jumps to a new state xn+1 = y according to
the transition law Q(· | x, a), and the cost Cθ(x, a) is incurred. Next the
process is repeated. Furthermore, the costs are accumulated throughout the
evolution of the system in an infinite time horizon using an average cost
criterion defined below.

3. Average optimality criterion. The actions applied by the con-
troller are selected according to rules known as control policies. We denote
byΠ the set of all control policies and by F ⊂ Π the subset of stationary poli-
cies. If necessary, see for instance [8, 9] for further information about those
policies. Following a standard convention, every stationary policy π ∈ F is
identified with some measurable function f : X→ A such that f(x) ∈ A(x),
x ∈ X, so that π is of the form π = {f, f, . . .}. In this case we denote π by f,
and moreover, to ease the notation, we write

Cθ(x, f) := Cθ(x, f(x)) and Q(· | x, f) := Q(· | x, f(x)), x ∈ X.

For x ∈ X and π ∈ Π, we define the long-run expected average cost as

(6) J(π, x) := lim sup
n→∞

Eπx [
∑n−1

k=0{D(xk, ak) + δk+1d(xk, ak)}]
Eπx [Tn]

,
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where Eπx denotes the expectation operator with respect to the probability
measure P πx induced by the policy π, given the initial state x0 = x. The
semi-Markov optimal control problem (OCP) is then to find an optimal
policy π∗ ∈ Π such that

(7) J(x) = J(π∗, x) for all x ∈ X,

where

(8) J(x) := inf
π∈Π

J(π, x)

is the optimal average cost function. A policy π∗ ∈ Π satisfying (7) and (8)
is said to be average cost optimal (AC-optimal).

It is worth noting that the semi-Markov OCP (6)–(8) can be seen as a
Markov OCP. Indeed, first observe that considering the cost Cθ defined in
(1) and using the properties of conditional expectation, we can write the
performance index (6) as

(9) J(π, x) = lim sup
n→∞

Eπx [
∑n−1

k=0 Cθ(xk, ak)]

nθ
.

Thus,

(10) J(π, x) = lim sup
n→∞

Eπx [
∑n−1

k=0 C̄θ(xk, ak)]

n
,

where

(11) C̄θ(x, a) :=
Cθ(x, a)

θ
,

which represents the average performance index of a Markov control process.
However, since θ is unknown, we have a Markov OCP with unknown one-
stage cost (11). In this sense, our approach consists in combining a suitable
statistical estimation process of the parameter θ with a control procedure to
construct an AC-optimal control policy.

Observe that, because θ > m, from (3) we get, for all (x, a) ∈ K,

|C̄θ(x, a)| ≤MW (x),

where M := 1/m+ 1.

The average optimality is studied by means of the vanishing discount
factor approach. For each π ∈ Π and x ∈ X, we define the total expected
α-discounted cost as

(12) Vα(π, x) := Eπx

[ ∞∑
n=0

αnC̄θ(xn, an)
]
,

where α ∈ (0, 1) is the so-called discount factor . The corresponding α-value
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function is defined as

(13) Vα(x) := inf
π∈Π

Vα(π, x), x ∈ X.

To analyze the asymptotic behavior for the average optimality criterion
we need the following ergodicity condition.

For every f ∈ F, B ∈ B(X), x ∈ X, and n ≥ 0, we define

Qnf (B | x) := Qn(B | x, f) = P fx (xn ∈ B).

Observe that Q0
f (B | x) = 1B(x). In addition, we denote by BW (X) the

normed linear space of all measurable functions u : X→ R with norm

(14) ‖u‖W := sup
x∈X

|u(x)|
W (x)

<∞.

Assumption 1 (W -geometric ergodicity). For every f ∈ F, x ∈ X, and
u ∈ BW (X), there exists a probability measure µf on X such that∣∣∣�

X

u(y)Qnf (dy | x)− µf (u)
∣∣∣ ≤ ‖u‖WRρnW (x), n ≥ 0,

where µf (u) :=
	
X u dµf , andR > 0 and 0 < ρ < 1 are constants independent

of f.

In [4, 5, 9, 10, 11] sufficient conditions for the geometric ergodicity prop-
erty are given, and as a consequence we have the following results.

Proposition 2. There exists a constant M ′ > 0 such that

Vα(x) ≤ M ′W (x)

1− α
, x ∈ X.

In addition, Vα ∈ BW satisfies the discounted optimality equation Vα(x) =
T θαVα(x), where

(15) T θαu(x) = inf
a∈A(x)

[
C̄θ(x, a)+α

�

X

u(y)Q(dy | x, a)
]
, x ∈ X, u ∈ BW .

Moreover, if Assumption 1 holds, there exist a constant j∗ and a function
h ∈ BW such that

(16) j∗ + h(x) ≥ inf
a∈A(x)

[
C̄θ(x, a) +

�

X

h(y)Q(dy | x, a)
]
, x ∈ X,

and j∗ is the optimal average cost, i.e.,

j∗ = inf
π∈Π

J(π, x) for all x ∈ X.

Fix an arbitrary state z ∈ X, and define, for α ∈ (0, 1),

(17) jα := (1− α)Vα(z) and hα(x) := Vα(x)− Vα(z), x ∈ X.
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It is easy to see that the discounted optimality equation (15) is equivalent
to

jα + hα(x) = T θαhα(x), x ∈ X, α ∈ (0, 1).

Following standard arguments in the literature on average cost Markov con-
trol processes (e.g., [4, 5, 9, 11]) we deduce that for any sequence {αn} of
discount factors such that αn ↗ 1,

(18) lim
n→∞

jαn = j∗,

and

(19) sup
α∈(0,1)

‖hα‖W <∞.

4. Bayesian estimation. Let δ1, . . . , δn be independent random vari-
ables observed up to the nth decision time with density g and unknown mean
θ = λ+m.We assume that the prior distribution on λ is Inv-Gamma(µ0, β0),
with density

(20) g∗(λ) =
βµ00
Γ (µ0)

λ−(µ0+1) exp

(
−β0
λ

)
1(0,∞)(λ),

and hyperparameters µ0, β0 > 0, where Γ (µ0) =
	∞
0 zµ0−1 exp(−z) dz. The

likelihood function of the observed sample δon = (δ1, . . . , δn) is

L(δon | λ) =

n∏
i=1

g(δi | λ)(21)

=

n∏
i=1

λ−1 exp[−(δi −m)λ−1]

= λ−n exp[−(nδ̄ − nm)λ−1],

where δ̄ = (1/n)
∑n

i=1 δi. According to (20)–(21), the posterior distribution
of λ given the data is

g∗(λ|δon) =
L(δon | λ)× g∗(λ)	∞

0 L(δon | λ)× g∗(λ) dλ

=
(β0 + nδ̄ − nm)(µ0+n)

Γ (µ0 + n)
λ−[(µ0+n)+1] exp[−(β0 + nδ̄ − nm)λ−1],

which is Inv-Gamma(µ0 + n, β0 + nδ̄ − nm).
Using the mean squared error (MSE) as risk, the Bayes estimator of the

unknown parameter λ is simply the mean of the posterior distribution of λ,

λn =
β0 + nδ̄ − nm
µ0 + n− 1

= knβ0 + knY,
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where kn = (n + µ0 − 1)−1 > 0 and Y = nδ̄ − nm =
∑n

i=1(δi − m) is
Gamma(n, λ).

The moment generating function of λn is

Mλn(t) = exp(knβ0t)

(
1

1− knλt

)n
, t <

1

λ
.

Thus,

E(λn) =
d

dt
Mλn(t)

∣∣∣∣
t=0

= knβ0 + nknλ,

E(λ2n) =
d2

dt2
Mλn(t)

∣∣∣∣
t=0

= k2nβ
2
0 + nk2n(2λβ0 + λ2) + n2k2nλ

2.

We then have

(22) E[(λn − λ)2] = E(λ2n)− 2λE(λn) + λ2

= k2nβ
2
0 + nk2n(2λβ0 + λ2) + n2k2nλ

2 − 2θ(knβ0 + nknλ) + λ2

= k2nβ
2
0 + nk2n(2λβ0 + λ2)− 2knλβ0 + n2k2nλ

2 − 2nknλ
2 + λ2

= k2nβ
2
0 + nk2n(2λβ0 + λ2)− 2knλβ0 + (nkn − 1)2λ2.

Now we obtain the rate of convergence of E[(λn − λ)2]. For µ0 ∈ (0, 1)
and n > (1− µ20)µ

−1
0 , we have

kn < (1 + µ0)

(
1

n

)
,

k2n < (1 + µ0)
2

(
1

n

)2

,

nk2n < (1 + µ0)
2

(
1

n

)
,

(nkn − 1)2 < (1 + µ0)
2

(
1

n

)2

.(23)

On the other hand, for µ0, n ≥ 1,

kn ≤
1

n
,

k2n ≤
(

1

n

)2

,

nk2n ≤
1

n
,

(nkn − 1)2 ≤ (1− µ0)2
(

1

n

)2

.(24)
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Therefore, combining (22)–(24) we obtain

E[(λn − λ)2] = O(n−2) as n→∞.
Hence, we define the Bayes estimator of the parameter θ as θn = λn + m.
Furthermore, observe that θn satisfies

θn > m,

and

E[(θn − θ)2] = E[((λn +m)− (λ+m))2](25)

= E[(λn − λ)2]

= O(n−2) as n→∞.

5. Estimation and control. In this section we present the construction
of an AC-optimal policy. The procedure consists in the combination of the
Bayes estimation scheme of the mean holding time θ with a variant of the
vanishing discount factor approach.

Let ν ∈ (0, 1/2) be arbitrary. Now we fix a nondecreasing sequence {α̂n}
of discount factors with the following properties:

S.1. (1− α̂n)−1 = O(nν) as n→∞.
S.2. limn→∞ κ(n)/n = 0, where κ(n) is the number of changes of value

of {α̂n} among the first n terms.

Let C̄θn(·, ·) be the corresponding estimator of the one-stage cost Cθ(·, ·)
(see (11)), that is,

(26) C̄θn(x, a) :=
Cθn(x, a)

θn
=
D(x, a) + θnd(x, a)

θn
, (x, a) ∈ K.

Now, for a fixed n, let V θn
α̂n

(π, x) := Eπx [
∑∞

t=0 α̂
t
nC̄θn(xt, at)] and V θn

α̂n
(x) :=

infπ∈Π V
θn
α̂n

(π, x), x ∈ X, be the total expected α̂n-discounted cost and the
corresponding optimal value function under the one-stage cost C̄θn . We define
accordingly the sequences jθnα̂n , h

θn
α̂n

(·) and T θnα̂n (see (17) and (15)). Then, from
Proposition 2 we have, for each x ∈ X and n ≥ 0,

(27) V θn
α̂n

(x) = T θnα̂nV
θn
αn (x) and jθnα̂n + hθnα̂n(x) = T θnα̂nh

θn
α̂n

(x) a.s.

Hence, by applying standard arguments on the existence of minimizers (see,
e.g., [17]), for each n ≥ 0 there exists fn ∈ F such that

(28) jθnα̂n + hθnα̂n(x) = C̄θn(x, fn) + α̂n
�

X

hθnα̂n(y)Q(dy | x, fn) a.s., x ∈ X.

Finally, we state our main result.

Theorem 3. Under Assumption 1, the control policy π̂ = {fn} de-
termined by the minimizers fn in (28) is average cost optimal, that is,
J(π̂, x) = j∗.
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6. Proofs. We first introduce some useful consequences of our assump-
tions which are summarized in the following remark.

Remark 4. (a) By means of an iterative process (see, e.g., [4, 6, 9, 10, 11])
it is easy to see that the inequalities (4) and (5) yield

(29) sup
n>0

Eπx [W (xn)] <∞ and sup
n>0

Eπx [W 2(xn)] <∞, ∀x ∈ X, π ∈ Π.

Then, from (19), Eπx [hα(xn)] < M1 for all α ∈ (0, 1) and some constant
M1<∞. In addition, observe that Condition S.2 implies that the sequence
{α̂n} remains constant for long time periods. Hence, denoting byα∗1, . . . , α∗κ(n),
n ≥ 1, the different values of α̂t for t ≤ n, and using the fact that {α̂n} is
nondecreasing, we have, for any k ∈ N,

(30) n−1Eπx

[ n∑
t=k

(hα̂t(xt)− α̂thα̂t(xt+1))
]

= n−1Eπx

[ n∑
t=k

(hα̂t(xt)− α̂thα̂t(xt))
]

+ n−1Eπx

[ n∑
t=k

α̂t(hα̂t(xt)− hα̂t(xt+1))
]

≤ (1− αk)M1 + n−12M1

κ(n)∑
i=1

α∗i

≤ (1− αk)M1 + 2M1κ(n)n−1, x ∈ X, π ∈ Π.
(b) (cf. Van Nunen and Wessels [18], [15]) Let d be the constant in (5).

For each n ∈ N, we define ρn := (1 + α̂n)/2 ∈ (α̂n, 1), en := d(ρn/α̂n− 1)−1,
and the function Wn(x) := W (x) + en for x ∈ X. Now, consider the space
BWn(X) of functions u : X→ R with finite Wn-norm, that is,

‖u‖Wn := sup
x∈X

|u(x)|
Wn(x)

<∞.

As is shown in [18, Lemma 2], the inequality (5) implies that the operators
T θα̂n and T θnα̂n are contractions with respect to the Wn-norm with ratio ρn,
that is, for all v, u ∈ BW (X) and n ∈ N,

(31)
‖T θα̂nv − T

θ
α̂nu‖Wn ≤ ρn‖v − u‖Wn

‖T θnα̂nv − T
θn
α̂n
u‖Wn ≤ ρn‖v − u‖Wn .

Moreover, observe that for each n ∈ N,
(32) ‖u‖Wn ≤ ‖u‖W ≤ ln‖u‖Wn ,

where

(33) ln := 1 +
2d

1− α̂n
.
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It is worth noting that from condition S.1, α̂n and ρn satisfy the relation

(34)
1

(1− ρn)(1− α̂n)
= O(n2ν) as n→∞.

(c) From (1), (11), and (26),

sup
a∈A(x)

|C̄θ(x, a)− C̄θn(x, a)| = sup
a∈A(x)

∣∣∣∣D(x, a)

θ
− D(x, a)

θn

∣∣∣∣(35)

≤W (x)

∣∣∣∣1θ − 1

θn

∣∣∣∣
≤W (x)

|θ − θn|
m2

a.s., ∀n∈N, x∈X,

where the last inequality follows from the fact that θ, θn > m.

Lemma 5. Suppose that Assumption 1 holds. Then, for each x ∈ X and
π ∈ Π,

lim
n→∞

Eπx‖hα̂n − h
θn
α̂n
‖2W = 0.

Proof. (a) From Proposition 2, (27), and (31) we have

‖Vα̂n − V
θn
α̂n
‖Wn ≤ ‖T θα̂nVα̂n − T

θn
α̂n
Vα̂n‖Wn + ρn‖Vα̂n − V

θn
α̂n
‖Wn .

Thus,

(36) ln‖Vα̂n − V
θn
α̂n
‖Wn ≤

ln
1− ρn

‖T θα̂nVα̂n − T
θn
α̂n
Vα̂n‖Wn , n ∈ N.

On the other hand, from (35),

|T θα̂nVα̂n(x)− T θnα̂nVα̂n(x)| ≤ sup
a∈A(x)

|C̄θ(x, a)− C̄θn(x, a)|(37)

≤W (x)
|θ − θn|
m2

a.s., ∀n ∈ N, x ∈ X.

Hence,

(38) ‖T θα̂nVα̂n − T
θn
α̂n
Vα̂n‖Wn ≤

|θ − θn|
m2

, ∀n ∈ N.

Then, combining (36)–(38) and using (25), (33), and (34), we get

l2nE
π
x‖Vα̂n − V

θn
α̂n
‖2Wn

≤ 1

m4

[
1 + 2d

(1− ρn)(1− α̂n)

]2
|θ − θn|2(39)

= O(n4ν)O(n−2) as n→∞.
Taking expectation Eπx on both sides of (39) and using the fact that 4ν < 2
(see condition S.1) yields

l2nE
π
x‖Vα̂n − V

θn
α̂n
‖2Wn

→ 0 as n→∞.

Finally observe that from (17), ‖hα̂n − h
θn
α̂n
‖W ≤ 2‖Vα̂n − V

θn
α̂n
‖W for each

n ∈ N, which in turn, by (32), proves the result.
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Remark 6. Let M̂ := supn≥0(E
π
x [W 2(xn)])1/2 < ∞ (see (29)). Then

applying Hölder’s inequality and Lemma 5 we get

(40) Eπx‖hα̂n − h
θn
α̂n
‖WW (xn)

≤ M̂(Eπx [‖hα̂n − h
θn
α̂n
‖2W ])1/2 → 0 as n→∞.

Lemma 7. Under Assumption 1,

lim
t→∞

Eπ̂xηα̂t(xt, at) = 0,

where

(41) ηα(x, a) := C̄θ(x, a) + α
�

X

hα(y)Q(dy | x, a)− jα − hα(x),

α ∈ (0, 1), (x, a) ∈ K.
Proof. Let kt = {(xt, at)} be a sequence of state-action pairs correspond-

ing to application of the policy π̂, and denote

(42) ηt := ηα̂t(xt, at).

We will show that
lim
t→∞

Eπ̂xηt = 0.

Adding and subtracting the term C̄θt(kt) + α̂t
	
X h

θt
α̂t

(y)Q(dy | kt) we get

ηt = C̄θ(kt)− C̄θt(kt)(43)

+ α̂t
�

X

hα̂t(y)Q(dy | kt)− α̂t
�

X

hθtα̂t(y)Q(dy | kt)

+ C̄θt(kt) + α̂t
�

X

hθtα̂t(y)Q(dy | kt)− jα̂t − hα̂t(xt).

Furthermore, using the fact that |u(x)| ≤ ‖u‖WW (x) for u ∈ BW (X) and
x ∈ X, (28), and (35), we obtain

ηt ≤ sup
a∈A(x)

|C̄θ(xt, a)− C̄θt(xt, a)|(44)

+ α̂t‖hα̂t−h
θt
α̂t
‖W [βW (xt)+d]+ jθtα̂t +hθtα̂t(xt)− jα̂t−hα̂t(xt)

≤W (xt)
|θ − θt|
m2

+ α̂t‖hα̂t − h
θt
α̂t
‖W [βW (xt) + d]

+ jθtα̂t + hθtα̂t(xt)− jα̂t − hα̂t(xt).
Now, note that from (25) and (29), for each x ∈ X,

(45) Eπ̂x

[
W (xt)

|θ − θt|
m2

]
≤ M̂

m2
(Eπ̂x |θ − θt|2)1/2 → 0 as t→∞

(see Remark 6 for the constant M̂), and from Lemma 5 and (40),

(46) lim
t→∞

Eπ̂x
[
α̂t‖hα̂t − h

θt
α̂t
‖W [βW (xt) + d]

]
= 0.
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In addition, taking into account that for each t ∈ N,
|jθtα̂t − jα̂t | ≤ (1− α̂t)‖V θt

α̂t
− Vα̂t‖WW (z)

and
|hθtα̂t(xt)− hα̂t(xt)| ≤ ‖h

θt
α̂t
− hα̂t‖WW (xt),

again Lemma 5 and (40) yield

(47) lim
t→∞

Eπ̂x (jθtα̂t − jα̂t) = 0

and

(48) lim
t→∞

Eπ̂x (hθtα̂t(xt)− hα̂t(xt)) = 0.

Therefore, since ηt is nonnegative, the combination of (43)–(48) proves the
desired result.

Proof of Theorem 3. Observe that from (41) and (42),

ηt := C̄θ(xt, ft) + α̂tE
π̂
x [hα̂t(xt+1) | ht]− jα̂t − hα̂t(xt).

Hence

Eπ̂x C̄θ(xt, at) = jα̂t + Eπ̂x [hα̂t(xt)− α̂thα̂t(xt+1)] + Eπ̂x (ηt),

which implies, for n ≥ k ≥ 1,

n−1Eπ̂x

[n−1∑
t=0

C̄θ(xt, at)
]

= n−1
n−1∑
t=0

jα̂t + n−1Eπ̂x

[k−1∑
t=0

(hα̂t(xt)− α̂thα̂t(xt+1))
]

+ n−1Eπ̂x

[n−1∑
t=k

(hα̂t(xt)− α̂thα̂t(xt+1))
]

+ n−1Eπ̂x

[n−1∑
t=0

ηt

]
.

Now, from (18),

lim
n→∞

n−1
n−1∑
t=0

jα̂t = j∗ = inf
π∈Π

J(π, x).

Therefore, from (10), condition S.1, (30), and Lemma 7 we get

lim
n→∞

n−1Eπ̂x

[n−1∑
t=0

C̄θ(xt, at)
]

= j∗, ∀x ∈ X,

that is, π̂ is an average cost optimal policy.
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